原子与腔复合系统中增强的真空拉比分裂和双暗态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息科学是量子物理与信息科学相结合而形成的新兴交叉学科,它被认为是最具有应用潜力的发展学科之一,因此备受研究者关注。原子与光场相互作用作为量子信息科学的一个重要研究方向,是实现量子开关,量子逻辑门,量子存储等的天键。腔量子电动力学就是阐述腔场与原子相互作用的现象,早期人们对腔量子电动力学的研究发现,在原子和腔发生强耦合过程中,引起原子和腔之间不断的能量变换,原子不断的将腔模中的光子吸收然后释放,在原子能级间形成拉比振荡,从而产生了真空拉比分裂。过去人们普遍认为真空拉比分裂是腔量子电动力学系统中,光与原子强耦合作用下的量子现象;鉴于腔量子电动力学实验的复杂性,近年来,有关原子团或原子系综在腔中的各种量子现象的研究引起很大的关注。最近,美国研究组报道了利用三能级热原子系综与腔耦合,不仅可以观察到真空拉比分裂,同时也可以观察到原子相干效应引起的暗态透射谱,从而将腔量子电动力学的一些量子现象扩展到普通的光与原子相互作用研究范围。该论文进一步研究了四能级N型系统中的真空拉比分裂和原子相干效应现象,从而在腔与四能级原子耦合系统中观察到真空拉比分裂和双暗态效应,这一研究将会对量子开光,光谱测量以及激光稳频等具有应用前景。
     该论文通过两束激光(耦合光和控制光)与腔内四能级原子系统耦合后,对耦合腔的腔透射谱进行测量,表明谱线出现四个独立的透射峰,即双真空拉比边带和双内腔暗态,并同时验证了可以通过第三束控制光实现对真空拉比分裂的增强效应。与此同时讨论了真空拉比频率和控制光对模分裂和暗态的影响,说明其双拉比边带和双暗态的位置和大小可以通过真空拉比频率和控制光的拉比频率进行调控。当控制光拉比频率足够大时,双暗态与拉比边带位置重合,此时两个拉比边带的分裂不仅得到增强,其边带峰的强度也明显强于同等条件下的三能级系统,这一结果说明,通过提高第三束耦合光的功率可以实现真空拉比分裂的增强,为常温条件下,真空拉比分裂的观测提供了一种简便方法。
     总之,该论文讨论了多能级原子系统与多光束光场相互作用情况下真空拉比分裂与内腔暗态的量子现象,预测了得以增强的真空拉比分裂,为将来进一步研究原子与腔相互作用的量子行为奠定了基础。
Quantum information science, as a emerging cross-disciplinary of quantum physics and information science, is considered one of the most potential applications of the developing disciplines and receives so much attention to the researchers. The atom-cavity interaction is one of the most important research directions of quantum information science and the key of the realization of quantum switch, quantum logical gate, quantum storage. Cavity QED is the early phenomenon of interaction between atoms and the cavity field. As is shown in the early research of cavity quantum electrodynamics, there is ongoing energy exchange between atom and cavity field in the strong-coupling regime. Thereby the vacuum Rabi splitting comes into being due to the Rabi oscillation: the atom cyclically absorbs photons and re-emits them. In the past, it is universally acknowledged that the vacuum Rabi splitting is the quantum phenomenon of Cavity QED in the atom-cavity strong-coupling regime. In view of the complexity of the CQED, some researches on quantum phenomenon related with atoms or atomic ensembles in a cavity have raised a lot of concern in recent years. Lately, the American groups report three-level hot-atom-regime the vacuum Rabi splitting and intra-cavity dark state similar to the EIT in a cavity. Thus some quantum phenomena expand from Cavity QED to the general interaction of light and atoms. This paper further study of the vacuum Rabi splitting phenomenon and atomic coherence effects in the N-type four-level system and could observe the vacuum Rabi splitting and double dark states in the four-level atom-cavity system. The study has application prospects for quantum light switch, spectral measurements and laser frequency stabilization.
     In this framework, we calculate the transmission spectrum of four-level atom-cavity system by making use of two laser beam (the coupling beam and the controlling beam) coupled to the four-level system and manifest that we can observe simultaneously four separate transmission peaks- twoRabi sidebands and double darks states. Meanwhile we prove that the enhanced vacuum Rabi splitting could be achieved by the third controlling laser beam. We also study the influence of the vacuum Rabi frequency and the Rabi frequency of controlling beam on the Rabi splitting and dark states, indicating that we could manipulate the position and intensity of the Rabi splitting and dark states by changing of the vacuum Rabi frequency and the Rabi frequency of controlling beam. We find that when the Rabi frequency of the controlling beam is large enough, the double dark states and the Rabi sidebands have superposition. The splitting of two Rabi sidebands enhances and their intensity is obviously larger than that of three-level system in the same conditions. This results show that we could get the enhanced vacuum Rabi splitting by increasing the power of the controlling beam. The study provides a convenient method to observe the evident vacuum Rabi splitting in the normal temperature condition.
     In a word, we discuss the quantum phenomena of the vacuum Rabi splitting and intra-cavity dark states in the interaction between multi-level atom and multi-beam field and forecast the enhanced vacuum Rabi splitting in the experiment. We lay the foundation of accurately predicting the quantum behavior of the interaction between atom and cavity in the future.
引文
[1] A. Einstein, Phys. Zeit., 1917,18, 121. 英译文见D. ter Haar, The Old Quantum Theory, Pergamon Press ,1967.
    
    [2] T. H. Maiman, Stimulated Optical Radiation in Ruby. Nature, 1960, 187, 493-494.
    
    [3] E. Arimondo, and G. Orriols, Lettere al Nuovo Cimento, 1976, 17, 333.
    
    [4] H. R. Gray, R. M. Whitley, and C. R. Stroud, Optic Letters, 1978, 3, 218.
    
    [5] E. Arimondo, Progress in Optics, 1996, 35, 257-354.
    
    [6] O. A. Kocharovskaya and Y. I. Khanin, Jetp Letters, 1988, 48, 630-634 .
    
    [7] S. E. Harris, Physical Review Letters, 1989, 62, 1033-1036 .
    
    [8] M. O. Scully, S. Y. Zhu and A. Gavrielides, Physical Review Letters, 1989, 62, 2813-2816.
    
    [9] A. S. Zibrov, M. D. Lukin, et al., Physical Review Letters, 1995, 75, 1499 .
    
    [10] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, Nature (London) , 1999, 397, 594.
    
    [11] C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, Nature (London), 2001, 409,490 .
    [12] D. F. Phillips, A. Fleischhauer, A.Mair, and R. L. Walsworth, M. D. Lukin, Phys. Rev. Lett., 2001, 86,783.
    
    [13] Klaus M. Gheri, et al, Phys. Rev. A, 1994, 50,1871-1876 .
    
    [14] B. Julsgaard, A. Kozhekin, E. S. Polzik, Nature, 2001, 413,400 .
    
    [15] C.H.Van der Wal, et al., Science, 2003, 301,196.
    
    [16] A. Kuzmich, et al, Nature, 2003,423,731.
    
    [17] B. B. Blinov, D. L. Moehring, L.-M. Duan, C. Monroe, Nature, 2004,428,153.
    
    [18] A. Dogariu, A. Kuzmich, and L. J. Wang, Phys. Rev. A, 2001,63, 053806.
    
    [19] M. G.Payne and L. Deng, Phys. Rev. A, 2001,64, R031802.
    
    [20] L. Deng, E. W. Hagley, M. Kozuma, D. Akamatsu, and M. G. Payne, Appl. Phys. Lett, 2002,81, 1168-1170.
    
    [21] M. Kozuma, D. Akamatsu, and L. Deng, E. W. Hagley and M. G. Payne, Phys. Rev.A, 2002,66, R031801.
    
    [22] H. Chang, H. B. Wu, C. D. Xie, H. Wang, Physical Review Letters, 2004,93, 213901.
    
    [23] J.J.Sanchez-Mondragon, N.B.Narozhny,and J.H.Eberly , Physical Review Letters, 1983,51,550.
    
    [24]M.G.Raizen,R.J.Thompson, R.J.Brecha,H.J.Kimble,and H.J.Carmichael, Physical Review Letters, 1989.63.240.
    
    [25] R.J.Thompson,G.Rempe,and H.J.Kimble, Physical Review Letters, 1992,68,1132.
    
    [26] J. J. Childs, K. An, M. S. Otteson,* R. R. Dasari, and M. S. Feld, Physical Review Letters, 1996.76,2901.
    
    [27] Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu, Physical Review Letters, 2007,76, 053814.
    
    [28] Haibin Wu, J. Gea-Banacloche, and Min Xiao, Physical Review Letters, 2008,100, 173602.
    
    [29] E. M. Purcell, "Spontaneous Emission Probability at Radio Frequencis (Abstract)," Phys.Rev. 1946,69,681.
    
    [30] P. L. Knight and P. W. Milonni, "Spontaneous Emission Between Mirrors ," Opt. Commun. 1973,9, 119.
    
    [31] G. Feher et al., "Spontaneous Emission of Radiation from an Electron Spin System," Phys.Rev. 1958,109,221.
    
    [32] K. H. Drexhage, in "Progress in Optics XII," (E. Wolf, ed,). Morth-Holland, New York, 1974.
    
    [33] R. G. Hulet, E. S. Hilfer, and D. Kleppner "Inhibited Spontaneous Emission by a Rydberg Atom,"Phys. Rev. Lett. 1985,55,2137.
    
    [34] E T Jaynes, and F W Cummings, "Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser," Proc. IEEE 1963,51, 89.
    
    [35] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997.
    
    [36] Q. A. Turchette, Quantum optics with single atoms and single photons, PhD thesis California institute of technology ,1997.
    
    [37] X. Maitre et al., "Quantum Memory with a Single Photon in a Cavity," Phys. Rev. Lett. 1997,79, 769.
    
    [38] M. Combescot and C. Tanguy, "New criteria for bosonic behavior of excitons," Europhys. Lett. 2001,55,390.
    
    [39] H. Mabuchi, A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 2002,298,1372.
    [40]S.Nuβmann et al.,"Submicron Positioning of Single Atoms in a Microcavity," Phys.Rev.Lett.2005,95,173602.
    [41]HAPPER W,MATHUR B S.Effective Operator Formalism in Optical Pumping[J].Phys Rev,1967,163,12.
    [42]MIZUSHIMA M.Theory of Resonance Frequency Shift Due to Radiation Field[J].Phys Rev,1964,133,A414.
    [43]邢爱堂,董太乾,黄湘友.用相位分析方法计算原子的AC Stark效应[J].量子光学学报,1998,4,99.
    [44]邢爱堂,董太乾,黄湘友.二能级原子的AC Stark效应[J].原子分子物理学报(增刊),1998,15,303.
    [45]KUWAKO A,NITTOH K,et al.Measurement of electric-dipole moment by polarization laser Spectroscopy[J].Atomic energy Soc,(Japan) 1997,34,360.
    [46]邢爱堂,黄湘友,董太乾.量子场作用下二能级原子的AC Stark效应[J].量子光学学报,2000,6(2),60.
    [47]BORGHS G,DE BISSCHOP P,et al.Light-shift Deviation obseevd in collinear Laser-rfdouble-Resonance Spectroscopy[J].Phys Rev A,1985,31,1434.
    [48]GAETANO MILETI,PIERRE,THOMANN.Light-Shift Saturation in a Laser Pumped Rubidium Frequency Standard[C].8th EFTF(European Time and Frequency Frorum),Munich(D),1994.,377-384.
    [49]APPELT S,ABEN-AMAR BARANGA,YONG A R,HAPPER.Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells[J].Phys Rev A,1999,59,2078.[8]M.O.Scully,S.Y.Zhu and A.Gavrielides,Physical Review Letters,1989,62,2813-2816.
    [50]H.Kroemer,A proposed class of heterojunction injection lasers,Proc.IEEE,1963,51,1782-1783.
    [51]Eli Yablonovitch,Inhibited Spontaneous Emission in Solid-State Physics and Electronics,Phys.Rev.Lett.,1987,58,2059-2062.
    [52]Sajeev John,Strong localization of photons in certain disordered dielectric superlattices,Phys.Rev.Lett.1987,58,2486-2489.
    [53] J. C. Knight. P. St. J. Russell, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett.. 1996, 21, 1547.
    
    [54] 0. Painter, R. K. Lee, A. Scherer. A. Yariv, J. D. O'Brien, P. D. Dapkus. and I. Kim, Two-Dimensional Photonic Band-Gap Defect Mode Laser Science, 1999, 284, 1819-1821.
    
    [55] E. R. Brown. C. D. Parker, E. Yablonovitch, Radiation properties of a planar antenna on a photonic-crystal substrate, J. Opt. Soc. Am. B, 1993, 10, 404-407.
    [56] Min Xiao, Novel linear and nonlinear optical properties of electromagnetically induced transparency systems, IEEE Journal of selected topics in quantum electronics, 2003. 9, 86.
    
    [57] L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, Light speed reduction to 17 meters per second in an ultrocold atomic gas, Nature, 1999, 397, 594.
    
    [58] C. Liu, Z. Dutton, C. H. Bohroozi, and L. V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature, 2001, 409, 490.
    
    [59] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and, M. D. Lukin, Storage of light in atomic vapor, Phys. Rev. Lett., 2001, 86, 783.
    
    [60] B. B. Blinov, D. L. Moehring, L.- M. Duan, and C. Monroe, Observation of entanglementb between a single trapped atom and a single photon, Nature, 2004, 428, 153.
    
    [61] M. D. Lukin, and A. Imamoglu, Controlling photons using electromagnetically induced transparency, Nature, 2001, 413, 273.
    
    [62] S. E. Harris, Electromagnetically induced transparency, Phys. Today, 1997, 50, 36.
    
    [63] S. E. Harris, Lasers without inversion: Interference of lifetime-broadened resonances, Phys. Rev. Lett. 1989, 62, 1033.
    
    [64] M. O. Scully, S. Y. Zhu, and A. Gavrielides, Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing, Phys. Rev. Lett. 1989, 62, 2813-2816.
    
    [65] K.-J. Boiler, A. Imamolu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 1991, 66. 2593.
    [66] J. E. Field, K. H. Hahn, and S. E. Harris, Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Rev. Lett. 1991, 67, 3062.
    
    [67] E. Paspalakis and P. L. Knight, Electromagnetically induced transparency and controlled group velocity in a multilevel system Phys. Rev. A 2002, 66, 015802.
    
    [68] D. Petrosyan, and Y. P. Malakyan, Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration, Phys. Rev. A 2004, 70, 023822.
    
    [69] S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, Polarization phase gate with a tripod atomic system, Phys. Rev. A 2004, 70, 032317.
    
    [70] C. Goren, A.D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system, Phys. Rev. A 2004, 69, 063802.
    
    [71] J. Wang, Yifu Zhu, K.J. Jiang, and M.S. Zhan, Bichromatic electromagnetically induced transparency in cold rubidium atoms, Phys. Rev. A 2003, 68, 063810.
    
    [72] C. Wei, and N.B. Manson, Observation of the dynamic Stark effect on electromagnetically induced transparency, Phys. Rev. A, 1999, 60, 2540.
    
    [73] Y-C. Chen, Y-A. Liao, H-Y. Chiu, J-J. Su, and Ite A. Yu, Observation of the quantum interference phenomenon induced by interacting dark resonances, Phys. Rev. A, 2001,64,053806.
    
    [74] S. F. Yelin, V.A. Sautenkov, M.M. Kash, G.R. Welch, and M.D. Lukin, Nonlinear optics via double dark resonances, Phys. Rev. A 2003, 68, 063801.
    
    [75] C. Y. Ye, A. S. Zibrov, Yu. V. Rostovtsev, and M. O. Scully, Unexpected Doppler-free resonance in generalized double dark states, Phys. Rev. A, 65, 2002, 043805.
    
    [76] Bo Wang, Y. Han, J. Xiao, X. Yang, C. D. Xie, H. Wang, and Min Xiao, Multi-dark-state resonances in cold multi-Zeeman-sublevel atoms, Opt. Lett. 2006, 31,3647.
    
    [77] J.Gea-Banacloche, Haibin Wu, and Min Xiao, Phys. Rev. A 2008,78, 023828.
    
    [78] J. J. Childs, K. An, M. S. Otteson, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 1996,77,2901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700