基于多孔道结构PAM微球为模板的多级表面结构复合微球的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模板法制备具有特殊结构和性能的复合微球材料是当今材料科学领域的研究热点,其优势在于模板的自身结构和形貌特征可对合成材料的大小、形貌、结构等进行有效控制,同时也可根据合成材料的大小和形貌预先设计模板。此外,还可以实现纳米尺寸颗粒与大尺度模板间的有效复合,该复合材料在整体上的大尺寸和表面纳米级复合物为其在很多方面的应用创造了极为有利的条件。
     高分子微凝胶具有独特的分子内交联结构,并在良性溶剂中具有可逆的溶胀特性。因此,以高分子微凝胶为模板,可以制备具有特异微结构特点的复合材料。本论文工作正是基于这一基本思路,提出了通过冷冻干燥技术处理水溶胀的聚丙烯酰胺微凝胶,并以得到的多孔结构凝胶微球为模板制备新型复合材料的新方法。通过控制多孔模板微球的形成条件及复合材料的制备条件,成功可控性地获得具有特异孔道结构和表面形貌的无机.有机复合微球材料。依据上述研究思路,开展了以下几个方面的工作。
     (1)采用反相悬浮聚合法合成了聚丙烯酰胺(PAM)高分子微凝胶,利用微凝胶在良性溶剂中的溶胀作用,通过冷冻干燥处理得到具有规则均匀多孔道结构的球形材料。运用扫描电镜表征手段对凝胶微球的表面结构进行了检测。研究表明:通过调节PAM微凝胶中的交联剂-N,N′-亚甲基双丙烯酰胺(BA)的含量,可实现对PAM凝胶材料孔道结构的有效调控。随着微凝胶中交联剂含量的增加,多孔凝胶的孔道交联度增加,孔壁刚性增强,凝胶微球孔径减小、孔壁变薄,且该微凝胶为无定型态。BET和压汞法研究结果表明:该微凝胶是一种兼备大孔(孔尺寸>50nm)和微孔(孔尺寸<2 nm)的凝胶材料。这一研究结果为制备具有多级孔径分布的多孔结构的有机-无机复合微球材料提供了一个新途径。
     (2)采用具有多孔道结构的PAM高分子微凝胶为模板,将前驱体钛酸四丁酯(TBOT)浸渍的模板微球置于密闭潮湿气氛中发生原位水解缩合反应制备了具有多级表面结构的PAM/TiO_2有机-无机复合微球。利用扫描电子镜(SEM)、红外光谱(FT-IR)、热重分析(TGA)、X-射线衍射分析(XRD)、BET、压汞法等检测手段对复合微球的表面形貌、无机沉积物的相对含量、晶型和相对应的孔参数等进行了表征。实验表明:微凝胶中交联剂BA的含量、前驱体TBOT的浓度、环境气相中的湿度以及前驱体浸渍液在凝胶模板上的残留量等因素对复合微球表面形貌产生显著影响。随着BA含量的增加,PAM凝胶的孔尺寸明显减小,相应的PAM/TiO_2复合微球的孔尺寸可以得到相当调节;改变凝胶模板上的浸渍液残留量和沉积反应气氛中的湿度,可有效控制PAM/TiO_2复合微球的表面形貌;前驱体TBOT的浓度对复合微球表面形貌和孔结构也会产生显著的影响。尽管上述研究结果说明复合微球形貌的控制极为复杂,但这种复杂性也为复合微球表面形貌的调控带来了许多优势,即形貌可控的多元化。整体而言,通过改变以上反应参数,可以得到三种典型表面形貌的复合微球:①表面被大尺寸TiO_2微球致密覆盖的复合微球;②较大粒径的TiO_2微球稀疏分布于多孔复合微球表面,而较多地沉积于孔道内壁;③均匀分布有小粒径TiO_2的大孔表面结构的复合微球。基于这种复合材料微观结构优越的可调性,复合微球微米级尺寸的易分离性,纳米级表面结构的表面活性,使这种多孔材料有望在构筑微反应器、制备吸附分离材料等方面得到较为广泛的应用。这种方法将有望成为制备多种类型多孔有机-无机复合微球材料的新方法。
     (3)采用具有多孔道结构的PAM微凝胶为模板,提出了在室温下,利用气相中的水合肼还原浸渍在多孔凝胶模板上的前驱体硝酸银来制备PAM/Ag多孔道结构复合微球的新方法。实验系统研究了不同前驱体浓度和不同模板组成对复合微球表面结构的影响。SEM及XRD表征结果表明:通过调节模板微球的交联剂BA含量可有效控制多孔复合微球的孔隙率。通过调节前驱体浸渍液AgNO_3的浓度,可以有效控制复合微球上Ag单质的担载量。同时,实验结果说明:利用多孔模板微球对客体分子的空间限域作用可有效地对客体起到分散作用,可以很好地控制客体分子的聚集行为,并实现对客体分子结晶粒径的有效控制。该研究结果对于制备具有催化活性及杀菌性能的复合微球材料具有重要的借鉴意义。
Recently, template method on preparation of composite materials with special structure and properties has become the focus of active research. The template method is superior to other approaches, in which the size, structure and morphology of the prepared materials can be controlled and adjusted by simple altering the nature of template and the preparation conditions. Moreover, template can be predesigned in the size and shape of objective materials.
     Polymer microgels are microsphere materials with similar structures of bulk gels. The three-dimentional network structure appears in rich solvent, and then porous microgles with unusual surface morphologies after treatment of microgles can be obtained. Additionally, the organic-inorganic composite microspheres with hierarchical surface morphologies can be feasibly gained using the controllable porous microgels as template. Based on the idea mentioned above, the research in this thesis includes the following parts.
     (1) The polylacrylamide (PAM) microgels are prepared by inverse suspension polymerization method, and porous PAM microgels are prepared by the freeze-drying treatment of the swollen microgels. The different surface morphology of porous PAM microgels can be obtained by adjusting the content of cross-linker-N, N'-methylene bisacryamide (BA) in microgels. The surface morphology of porous microgels can be controlled in the swollen degree of microgels and the content of cross-linker in microgels. SEM and X-ray diffraction measurements are empolyed to monitor the porous surface structures and the crystallographic state. The research results show that the surface morphology in the pore size and pore volume regularly change with the content of cross-linker, and the microgels are amorphous. The results of BET and mercury injection method analysis indicate that the pore size in the porous microgels are commonly divided into macropores (the pore size>50 nm), and micropores (the pore size<2 nm). Based on these results, a novel approach for preparation organic-inorganic composite microspheres with porous structure surface morphology could be set up.
     (2) Utilizing the porous PAM microgels as templates, PAM/TiO_2 composite microsheres with hierarchical surface morphologies are prepared by in situ hydrolysis and condensation of tetrabutyl titanate located at the templates in a moist atmosphere. The morphology and constitute of composite microspheres are characterized by SEM、FT-IR、TGA、XRD、Brunauer-Enmet-Teller and mercury injection method analysis, respectively. The results indicate that the composite microspheres with different hierarchical surface morphologies could be obtained by controlling the cross-linking degree of the porous PAM microgels, the relative humidity of the gas phase, the amount of residual impregnation liquid and the TBOT concentration in the porous PAM microgels. Although the surface morphologies of the composite microspheres are varied, the morphologies are typically divided into three categories: (1) wrinkled surfaces covered with large dense TiO_2 particles; (2) porous structures sparsely suffused with large TiO_2 particles along the fringes and inner walls of the porous channels; (3) macroporous surfaces with small TiO_2 particles distributed ubiquitously. The incorporation of TiO_2 particles into PAM microgels resulted in an obvious increase in specific surface area, and the pore size distribution of the microspheres depended strongly on the size of TiO_2 particles.
     (3) Based on the porous PAM microgels as template, the porous structure PAM/Ag composites microspheres are prepared by in situ reduction of silver nitrate by hydrazine hydrate in a closed container at room temperature. The SEM results show that the composite materials with different surface morphologies and porous structure can be obtained by changing the reaction conditions. According to the results, the pore parameter and specific area of the composite materials can be effective adjusted. Additionally, Ag particles loaded on the composite microspheres are homogeneously distributed. XRD spectra demonstrate that the composite material is amorphous. The PAM/Ag composite material has a potential application in catalysis and adsorption due to the property of Ag and the regular porous structure.
引文
[1] Saunders B R, Vincent B. Microgel particles as model colloids: theory, properties and applications[J]. Adv. Colloid Interface Sci., 1999, 80(1): 1-25.
    [2] Murray M J, Snowden M J. The preparation, characterisation and application of colloidal microgels[J]. Adv. Colloid Interface Sci., 1995, 54: 73-91.
    [3] 袁才登,王艳君,张彤瑄,刘德华,曹同玉.反应性聚合物微凝胶的合成及应用[J].热固性树脂,1999,(3):24-29.
    [4] 严瑞.水溶性高分子[M].北京:化学工业出版社,2003.
    [5] Li F S, Hu X Q, Du M, Guo H J. Study of synthesis technology and application of polyacrylamide[J]. Applied Chemical Industry, 2002, 31(5): 1-4.
    [6] Glockner P, Metz N, Ritte H. Cyclodextrins in polymer synthesis: free-radical polymerization of methylated-cyclodextrin complexes of methyl methacrylate and styrene controlled by n-acetyl-l-cysteine as a chain-transfer agent in aqueous medium[J]. Macromolecules, 2000, 33(11): 4288-4290.
    [7] 赵玲琳,徐自力.分散聚合法制备单分散聚苯乙烯微球的研究[J],安徽师范大学学报,2002,25(1):38-41.
    [8] Cho M S, Yoon K J, Song B K. Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: synthesis and characterization[J]. J. Appl. Polym. Sci., 2002, 83(7): 1397-1405.
    [9] Song B K, Cho M S, Yoon K J, Lee D C. Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution[J]. J. Appl. Polym. Sci., 2003, 87(7): 1101-1108.
    [10] 张卫华,後晓淮.等离子体引发丙烯酰胺水溶液聚合[J].高分子学报,2000, (5):577-579.
    [11] Hirokawa Y, Tanaka T. Volume phase transition in a nonionic gel[J]. J. Chem. Phys., 1984, 81(12): 6379-6380.
    [12] Geoffrey A, Bevington J C. The synthesis, characterization, reactions & applications of polymers[M]. Oxford, Comprehensive polymer science, 1989, 4.
    [13] Kimura I, Kase T, Taguchi Y, Tanaka M. Preparation of titania/silica composites micro- spheres by sol-gel process in reverse suspension[J]. Mater. Res. Bull., 2003, 38(4): 585-597.
    [14] Murray M, Charlesworth D, Swires L, Riby P, Cook J, Chowdhry B Z, Snowden M J. Microwave synthesis of the colloidal poly(N-isopropylacrylamide) microgel system[J]. J. Chem. Soc., Faraday Trans., 1994, 90(13): 1999-2000.
    [15] Kuckling D, Vo C D, Wohlrab S E. Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking[J]. Langmuir, 2002, 18(11): 4263-4269.
    [16] Vo C D, Kuckling D, Adler H J P, Schonhoff M. Preparation of thermo-sensitive nanogels by photo-cross-linking[J]. Colloid Polym. Sci., 2002, 280(5): 400-409.
    [17] Nieuwenhuis E A, Vrij A. Preparation and characterization of spherical monodisperes silica dispersions in nonaqueous solvents[J]. J. Colloid Interface Sci., 1981, 81(2): 354-368.
    [18] Wu X, Pelton R H, Hamielec A E, Woods D R, McPhee W. The kinetics of poly(N-iso- propylacrylamide) microgel latex formation[J]. Colloid Polym. Sci., 1994, 272(4): 467-477.
    [19] Pelton R. Temperature-sensitive aqueous microgels[J]. Adv. Colloid Interface Sci., 2000, 85(1): 1-33.
    [20] Flory P J. Molecular size distribution in three dimensional polymers gelation[J]. J. Am. Chem. Soc., 1941, 63(11): 3083-3090.
    [21] Pelton R H, Pelton H M, Morphesis A, Rowell P L. Particle sizes and electrophoretic mobilities of poly(N-isopropylacrylamide) latex[J]. Langmuir, 1989, 5(3): 816-818.
    [22] Agbugba C B, Hendriksen B A, Chowdhry B Z, snowden M J. The redispersibility and physico-chemical properties of freeze-dried colloidal microgels[J]. Colloids Surf. A., 1998, 137(1-3): 155-164.
    [23] Saunders B R, Vincent B. Osmotic de-swelling of polystyrene microgel particles[J]. Colloid Polym. Sci., 1997, 275(1): 9-17.
    [24] Williams W D, Giordano N. Fabrication of 80 A metal wires[J]. Rev. Sci. Instrum., 1984, 55(3): 410-412.
    [25] Yin J L, Qian X F, Yin J, Shi M W, Zhou G T. Preparation of ZnS/P_s microspheres and ZnS hollow shells[J]. Mater. Lett., 2003, 57(24-25): 2859-2863.
    [26] 白超良,王姗,张颖,房喻.微凝胶模板法制备PNIPAM/PbS有机-无机复合微球[J].陕西师范大学学报(自然科学版),2003,31(4):62-66.
    [27] Bai C L, Fang Y, Zhang Y, Chen B. Synthesis of novel metal sulfide-polymer composite microspheres exhibiting patterned surface structures [J]. Langmuir, 2004,20(1): 263-265.
    [28] Ninjbadgar T, Yamaoto S, Fukuda T. Synthesis and magnetic properties of the γ-Fe_2O_3/poly-(methyl methacrylate)-core/shell nanoparticles[J]. Solid State Sci., 2004, 6(8): 879-885.
    [29] Luna-Xavier J-L, Guyot A, Bourgeat-Lami E. Synthesis and characterization of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator[J]. J. Colloid Interface Sci., 2002, 250(1): 82-92.
    [30] Lukens W W, Jr, Yang P, Stucky G D. Synthesis of mesocellular silica foams with tunable window and cell dimensions[J]. Chem. Mater., 2001, 13(1):28-34.
    [31] Siripurapu S, Gay Y J, Royer J R, DeSimone J M, Spontak R J, Khan S A. Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process[J]. Polymer, 2002,43(20): 5511-5520.
    [32] Akay G, Birch M A, Bokhari M A. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro[J]. Biomaterials, 2004, 25(18): 3991-4000.
    [33] Moine L, Deleuze H, Maillard B. Preparation of high loading PolyHIPE monoliths as scavengers for organic chemistry[J]. Tetrahedron Letters, 2003, 44(42): 7813-7816.
    [34] Dai X H, Liu Z M, Wang Y, Yang G Y, Xu J, Han B X. High damping property of microcellular polymer prepared by friendly environmental approach[J]. J. of Supercritical Fluids, 2005, 33(3): 259-267.
    [35] Kresge C T, Leonowicz M E, Roth W J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(10): 710-712.
    [36] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc, 1992, 114(27): 10834-10843.
    [37] Velev O D, Jede T A, Lobo R F. Porous silica via colloidal crystallization[J]. Nature, 1997, 389(6650): 447-448.
    [38] Edler K J, White J W. Room-temperature formation of molecular-sieve MCM-41[J]. J. Chem. Soc., Chem. Commun., 1995, (2): 155-156.
    [39] Chatterjee M, Iwasaki T, Hayashi H, Onodera Y, Ebina T, Nagase T. Room-temperature formation of thermally stable aluminum-rich mesoporous MCM-41[J]. Catal. Lett., 1998, 52(1-2): 21-23.
    [40] Wu C G, Bein T. Microwave synthesis of Molecular Sieve MCM-41[J]. Chem. Commun., 1996, (8): 925-926.
    [41] Lin W Y, Chen J S, Sun Y, Pang W Q. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel[J]. J. Chem. Soc, Chem. Commun., 1995, (23): 2367-2368.
    [42] Fyfe C A, Fu G Y. Structure organization of silicate polyanions with surfactants-a new approach to the syntheses, structure transformation, and formation mechanisms of mesostructural materials[J]. J. Am. Chem. Soc, 1995, 117(38): 9709-9714.
    [43] Gallis K W, Landry C C. Synthesis of MCM-48 by a phase transformation process[J]. Chem Mater., 1997, 9(10): 2035-2038.
    [44] Yang P D, Zhao D I, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396 (6707): 152-155.
    [45] MacLachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4-clusters[J]. Nature, 1999, 397(6721): 681-684.
    [46] Zhao D, Yang P, Melosh N, Feng J, Chmelka B F, Stucky G D. Continuous mesoporous silicate films with highly ordered large pore structures [J]. Adv. Mater., 1998, 10(16): 1380-1385.
    [47] Brinker C J, Lu Y F, Sellinger A, Fan H Y. Evaporation-inducted self-assembly: nanostructures made easy[J]. Adv. Mater., 1999,11(7): 579-585.
    [48] Melosh N A, Lipic P, Bates F S. Molecular and mesoscopic structures of transparent block copolymer-silica monoliths[J]. Macromolecules, 1999, 32(13): 4332-4342.
    [49] Melosh N A, Davidson P, Chmelka B F. Monolithic mesophase silica with large ordering domains[J]. J. Am. Chem. Soc, 2000, 122(5): 823-829.
    [50] Yang P, Zhao D, Margolese D I, Chmelka, B F, Stucky G D. Block copolymer templating syntheses of mesoporous metal oxides with large-pore ordering lengths and semicrystalline frameworks[J]. Chem. Mater., 1999, 11(10): 2813-2826.
    [51] Grosso D, Illia G, Crepaldi E L, Charleux B, Sanchez C. Nanocrystalline transition-metal oxide spheres with controlled multiscale porosity[J]. Adv. Funct. Mater., 2003,13(1): 37-42.
    [52] Crepaldi E L, Soler-Illia G, Grosso D J, Sanchez C, Albouy P-A. Design and post-functionalisation of ordered mesoporous zirconia thin films[J]. Chem. Commun.,2001,(17): 1582-1583.
    [53] Schmidt-Winkel P, Lukens W W, Yang P, Margolese D I, Lettow J S, Ying J Y, Stucky G D. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores[J]. Chem.Mater., 2000, 12(3): 686-696.
    [54] Johnson S A, Ollivier P J, Mallouk T E. Order mesoporous polymers of tunable pore size from colloidal silica templates [J]. Science, 1999, 283(5404): 963-965.
    [55] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials[J]. Curr. Opin. Colloid Interface Sci., 2000, 5(1-2): 56-63.
    [56] Hulteen J C, Martin C R. A general template-based method for the preparation of nanomaterials[J]. J. Mater. Chem., 1997, 7(7): 1075-1087.
    [57] Vogli E, Mukerji J, HoffmanC. Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide[J]. J. Am. Ceram. Soc., 2001, 84(6): 1236-1240.
    [58] Sieber H, Hoffmann C, Kaindl A, Greil P. Biomorphic cellular ceramics[J]. Adv. Eng. Mater, 2000,2(3): 105-109.
    [59] Patel M, Padhi B K. Production of alumina fibre through jute fibre substrate[J]. J. Mater. Sci., 1990, 25(2): 1335-1343.
    [60] Krishnarao R V, Mahajan Y R, Kumar T J. Conversion of raw rice husks to SiC by pyrolysis in nitrogen atmosphere[J]. J. Eur. Ceram. Soc, 1998, 18(2): 147-152.
    [61] Greil P, Lifka T, Kaindl A. Biomorphic cellular silicon carbide ceramics from wood, I processing and microstructure [J]. J. Eur. Ceram. Soc, 1998, 18(14): 1961-1973.
    [62] Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solids[J]. Curr. Opin. Solid State Mater. Sci, 2001, 5(6): 553-564.
    [63] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature, 1997, 389(6654): 948-951.
    [64] Stein A. Sphere templating methods for periodic porous solids[J]. Microporous Mesoporous Mater., 2001, 44-45: 227-239.
    [65] StEber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interface Sci., 1968, 26(1): 62-69.
    [66] Zakhidov A A, Baughman R H, Iqbal Z. Carbon structures with three-dimensional periodicity at optical wave lengths[J]. Science, 1998, 282 (5390): 897-901.
    [67] Davis K E, Russel W B, Glantschnig W J. Disorder-to-order transition in settling suspensions of colloidal silica-X-ray measurements[J]. Science, 1989, 245(4717): 507-510.
    [68] Blaaderen A, Ruel R, Wiltzius P. Template-directed colloidal crystallization[J]. Nature, 1997, 385(6614): 321-324.
    [69] Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids[J]. Science, 1998, 281(5376): 538-540.
    [70] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templateing[J]. Science, 1998, 282(5391): 1111-1114.
    [71] 王策,张亚红,董林,付立民,白玉白,李铁津,刘志红,危岩.超快速溶胶-凝胶法制备高纯二氧化硅单块[J].高等学校化学学报,1999,20(5):824-826.
    [72] 齐凯,杨振忠,刘正平,王利军,赵得禄.聚苯乙烯模板制备SiO_2三维有序孔材料[J].科学通报,2000,45(3):267-269.
    [73] Imhof A, Pine D J. Ordered macroporous materials by emulsions tempalting[J]. Nature, 1997, 389(6654): 948-951.
    [74] 高静,李晓,张卫英,刘振枫.透明多孔聚合物凝胶的微乳液合成研究[J].石油化工,2003,32(7):599-603.
    [75] Davis S A, Burkett S L, Mendelson N H. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J]. Natrue, 1997, 385(6615): 420-423.
    [76] Ogasawara W, Shenton W, Davis S A, Mann S. Tempalte mineralization of ordered macroporous vhitin-silica composites using a cuttlebone-derived organic matrix[J]. Chem. Mater., 2000, 12(10): 2835-2837.
    [77] 杨冬,齐利民.利用生物组织或生物大分子合成具有复杂形态的无机材料[J].化学通报,2002,65:w036.
    [78] 杨振忠,齐凯,容建华,王利军,刘正平,杨运信.模板技术合成有序介孔/大孔二氧化硅[J].科学通报,2001,46(16):1349-1353.
    [79] Antonietti M, Berton B, Goltner C, Hentze H P. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer lattices[J]. Adv. Mater., 1998, 10(2): 154-159.
    [80] Bagshaw S A. Morphosynthesis of macrocellular mesoporous silicate foams[J]. Chem. Commun., 1997, (8): 767-768.
    [81] Haskouri J E, Zarate D O d, Guillem C, Latorre J, Caldes M, Beltran A, Beltran D, Descalzo A B, Rodriguez-Lopez G, Martinez-Manez R, Marcos M D, Amoros P. Silica-based powders and monoliths with bimodal pore systems[J]. Chem. Commun., 2002, (4): 330-331.
    [82] Raman N K, Anderson M T, Brinker C J. Template-based approaches to the preparation of amorphous, nanoporous silicas[J]. Chem. Mater., 1998, 8(8): 1682-1701.
    [83] Holland B T ,Abrams L ,Stein A. Dual templating of macroporous silicates with zcolitic microporous frame-4 works[J]. J. Am. Chem. Soc., 1999, 121(17): 4308-430.
    [84] Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review[J]. Mater. Chem. Phys., 2003,78(3): 563-573.
    [85] Interrante L V, Hampdensmith M J. Chemistry of advanced materials[M]. New York: A Wiley VCH, 1998, 329.
    [86] Velve o d, Jede T A, Lobo R F. Microstructured porous silica obtained via colloidal crystal templates[J]. Chem. Mater., 1998, 10(11): 3597-3602.
    [87] Jiang P, Hwang K S, Millteman D M, Bertone J F, Colvin V L. Template-directed preparation of macroporos polymers with oriented and crystalline of voids[J]. J. Am. Chem. Soc., 1999, 121(50): 11630-11637.
    [88] Park S H, Xia Y N. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores[J]. Adv. Mater., 1999, 10(13): 1045-1048.
    [89] Rhodes K H, Davis S A, Caruso F, Zhang B, Mann S. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-Shell building blocks[J]. Chem. Mater., 2000, 12(10): 2832-2834.
    [90] Zhang B, Davis S A, Mendelson N H. Bacterial templating of zeolite fibres with hierarchical structure[J]. Chem. Commun., 2000, (9): 781-782.
    [91] Park S H, Xia Y. Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates[J]. Chem. Mater., 1998, 10(7): 1745-1747.
    
    [92] Martinez-Rubio M I, Ireland T G, Fern G R, Silver J, Snowden M J. A new application for microgels: novel method for the synthesis of spherical particles of the Y_2O_3: Eu phosphor using a copolymer microgel of NIPAM and acrylic acid[J]. Langmuir, 2001, 17(22):145-7149.
    [93] He X D, Ge X W, Wang M Z, Zhang Z C. Polystyrene/melamine-formaldehyde hollow microsphere composite by self-assembling of latex particles at emulsion droplet interface[J]. Polymer, 2005,46(18): 7598-7604.
    [94] Turner M E, Trentler T J, Colvin V L. Thin films of macroporous metal oxides [J]. Adv.Mater., 2001, 13(3): 180-183.
    [95] Yang J X, Hu D D, Fang Y, Bai C L, Wang H Y. Novel method for preparation of structural microspheres poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2[J]. Chem. Mater., 2006,18(20), 4902-4907.
    [96] Washington R P, Steinbock O. Frontal polymerization synthesis of temperature-sensitive hydrogels[J]. J. Am. Chem. Soc, 2001, 123(32): 7933-7934.
    [97] Matsuo E S, Orkiszj M, Sun S T, Li Y, Tanaka T. Origin of structural inhomogeneities in polymer gels[J]. Macromolecules, 1994, 27(23): 6791-6796.
    [98] Tanaka T, Fillmore D, Sun S T, Nishio I, Swislow G, Shah A. Phase transitions in ionic gels[J]. Phys. Rev. Lett., 1980, 45(20): 1636-1639.
    [99] Holland B T, Blanford C F, Do T, Stein A. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites[J]. Chem. Mater., 1999, 11(3): 795-805.
    [100]Dabrowski A. Adv. Adsorption-from theory to practice[J]. Colloid. Interface. Sci., 2001, 93(1-3): 135-224.
    [101]Fomasieri G, Badaire S, Backov R, Olivier M. M, Zakri C, Poulin P. Mesoporous and homothetic silica capsules in reverse-emulsion microreactors[J]. Adv. Mater., 2004, 16(13): 1094-1097.
    [102] Cooper A I. Porous materials and supercritical fluids[J]. Adv. Mater., 2003, 15(13): 1049-1059.
    [103] Martinez C J, Hockey B, Montgomery C B, Semancik S. Porous tin oxide nanostructured microspheres for sensor applications[J]. Langmuir, 2005, 21(17): 7937-7944.
    [104] Laberty-Robert C, Long J W, Lucas E M, Pettigrew K A, Stroud R M, Doescher M S, Rolison D R. Sol-gel-derived ceria nanoarchitectures: synthesis, characterization, and electrical properties[J]. Chem. Mater., 2006,18(1): 50-58.
    [105] Archibald D D, Mann S. Template mineralization of self-assembled anisotropic lipid microstructures[J]. Nature, 1993, 364(29): 430-433.
    [106] Xia Y N, Gates B, Yin Y D, Lu Y. Monodispersed colloidal spheres old materials with new applications[J]. Adv. Mater., 2000,12(10): 693-713.
    [107] Wang J, Lin B P, Yuan C W. Macroporous silicon-containing polyimide films obtained via colloidal crystal template[J]. Acta Chim. Sinica, 2004, 62(11): 1019-1023.
    [108]Hiwatari K I, Serizawa T, Seto T. Graft copolymers having hydrophobic backbone and hydrophilic branches XXXIV. Fabrication and vcontrol of honeycomb structure prepared from amphiphilic graft copolymers[J]. Polymer, J. 2001, 33(9): 669-675.
    [109]Nabeta M, Sano M. Nanotube foam prepared by gelatin gel as a template[J]. Langmuir, 2005, 21(5): 1706-1708.
    [110]Matsuyama H, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K. Formation of porous flat membrane by phase separation with supercritical CO_2[J]. J. Membr. Sci., 2001,194(2): 157-163.
    [111] Nishihara H, Mukai S R, Yamashita D, Tamon H. Ordered macroporous silica by ice templating[J]. Chem. Mater., 2005,17(3): 683-689.
    [112] Lee S, Jeon C, Park Y. Fabrication of TiO_2 tubules by template synthesis and hydrolysis with water vapor[J]. Chem. Mater., 2004,16(22): 4292-4295.
    [113]Sasahara K, Hyodo T, Shimizu Y, Egashira M. Macroporous and nanosized ceramic films prepared by modified sol-gel method with PMMA microsphere templates[J]. J. Eur. Ceram. Soc, 2004,24(6): 1961-1967
    [114] Collins A, Carriazo D, Davis S A, Mann S. Spontaneous template-free assembly of ordered macroporous titania[J]. Chem. Commun., 2004, (6): 568-596.
    [115]Breulmann M, Davis S A, Mann S, Hentze H P, Antonietti M. Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks[J]. Adv. Mater., 2000,12(7): 502-507.
    [116] He X D, Ge X W, Liu H R, Wang M Zh, Zhang Zh Ch. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface[J]. Chem. Mater., 2005,17(24): 5891-5892.
    [117] Zhang Z P, Shao X Q, Yu H D, Wang Y B, Han M Y. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures[J]. Chem. Mater., 2005, 17(2): 332-336.
    [118] Li D, Haneda H, Hishita S, Ohashi N. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization[J]. Chem. Mater., 2005,17(10): 2588-2595.
    [119] Wang Y W, Xu H, Wang X B, Zhang X, Jia H M, Zhang L Z, Qiu J R. A general approach to porous crystalline Ti_O2, SrTiO_3, and BaTiO_3 spheres[J]. J. Phys. Chem. B., 2006,110(28): 13835-13840.
    [120] Zhao Q R, Zhang Z G, Dong, T, Xie Y. Facile synthesis and catalytic property of porous tin dioxide nanostructures[J]. J. Phys. Chem. B., 2006, 110(31): 15152-15156.
    [121] Siegel R A, Firestone B A. pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels[J]. Macromolecules, 1988, 21(11): 3254-3259.
    [122] Ilnaubm F, Tanaka T, Kokufuta E. Volume transition in a gel driven by hydrogen bonding[J]. Nature, 1991, 349(31): 400-401.
    [123]Kajiwara K, Ross-Murphy S B. Synthetic gels on the move[J]. Nature, 1992, 355(6357): 208-209.
    [124] Weissman J M, Sunkara H B, Tse A S, Asher S A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials[J]. Science, 1996, 274(5289): 959-960.
    [125]Holtz J H, Holtz J S W, Munro C H, Asher S A. Intelligent polymerized crystalline colloidal arrays novel chemical sensor materials[J]. Anal Chem., 1998, 70(4): 780-791.
    [126] Fang Y, Bai C L, Zhang Y. Preparation of metal sulfide-polymer composite microspheres with patterned surface structures[J]. Chem. Commun., 2004, (7): 804-805.
    [127] Zhang Y, Fang Y, Wang S. Preparation of spherical nanostructured poly(methacrylic acid)/PbS composites by a microgel template method [J]. J. Colloid Interface Sci., 2004,272(2): 321-325.
    [128] Zhang Y, Fang Y, Lin S Y, Liu J, Yang J L. Preparation of spherical Nano-structured PMMA- CdS composites by a microgel template method[J]. Acta. Phys.-Chim. Sin., 2004, 20[P]: 897-901.
    [129] Bai C L, Wang S, Zhang Y, Fang Y. Preparation of PNIPAM/PbS spherical organic-inorganic composites via polymeric microgel template method[J]. Shaanxi Normal Univ, Natural Sci. Ed., 2003, 31(4): 62-66.
    [130] Yang J X, Fang Y, Bai C L, Hu D D.CuS-poly(N-isopropylacrylamide-co-acrylic-acid) composite microspheres with patterned surface structures: preparation and characterization[J]. Chin. Sci. Bull., 2004,49(19): 2026-2032.
    [131] Cheng X J, Chen M, Wu L M, Gu G X. Novel and facile method for the preparation of monodispersed titania hollow spheres[J]. Langmuir, 2006, 22(8): 3858-3863.
    [132]Eiden-Assmann S, Widoniak J, Maret G. Synthesis and characterization of porous and nonporous monodisperse colloidal TiO_2 particles[J]. Chem. Mater., 2004, 16(1): 6-11.
    [133]Nakashima T, Kimizuka N. Interfacial synthesis of hollow TiO_2 microspheres in ionic liquids[J]. J. Am. Chem. Soc, 2003,125(21): 6386-6387.
    [134] Meyer U, Larsson A, Hentze H P, Caruso R A. Templating of porous polymeric beads to form porous silica and titania spheres[J]. Adv. Mater., 2002, 14(23): 1768-1772.
    [135] Zhu J F, Zhu Y J. Microwave-assisted one-step synthesis of polyacrylamide-metal(M=Ag, Pt, Cu) nanocomposites in ethylene glycol[J]. J. Phys. Chem. B., 2006, 110(17): 8593-8597.
    [136] Zhang Y X, Li G H, Wu Y C, Luo Y Y, Zhang L D. The formation of mesoporous TiO_2 spheres via a facile chemical process[J]. J. Phys. Chem. B., 2005,109(12): 5478-5481.
    [137] Tang W P. Preparation of anatase-type TiO_2 nanocrystal/acetylene black composites by a dry process, and their electrochemical lithium insertion[J]. J. Mater. Chem., 2004,14(23): 3457-3461.
    [138] Minsk L M, Kotlarchik C, Meyer G N, Kenyon W O. J. Polym. Sci. Pol. Chem., 1974,12: 133.
    [139] Conley R T. Thermal stability of polymers [M]. New York: Marcel Dekker. Inc., 1970,1,254.
    [140] Dussert A, Gooris E, Hemmerle, J. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum[J]. Int. J. Cosmet Sci., 1997, 19(3): 119-129.
    [141] Jiang D L. Thesis for doctor of philosophy[D]. Australia, Griffith University, 2004.
    [142] Hall S R, Davis S A, Mann S. Cocondensation of organosilica hybrid shells on nanoparticle templates: a direct synthetic route to functionalized core-shell colloids[J]. Langmuir, 2000, 16(3): 1454-1456.
    [143] Fleming M S, Mandal T K, Walt D R. Nanosphere-microsphere assembly: methods for core-shell materials preparation[J]. Chem. Mater., 2001, 13(6): 2210-2216.
    [144] Davies R, Schurr G A, Meenan P. Engineered particle surfaces[J]. Adv. Mater., 1998,10(5): 1264-12.
    [145] Strohm H, Lobmann P. Liquid-phase deposition of TiO_2 on polystyrene latex particles functionalized by the adsorption of polyelectrolytes[J]. Chem. Mater., 2005,17(26): 6772-6780.
    [146] Chen J F, Wang J X, Liu R J, Shao L, Wen L X. Synthesis of porous silica structures with hollow interiors by templating nanosized calcium carbonate[J]. Inorg. Chem. Commun., 2004, 7(3): 447-449.
    [147] Liu J, Pelton R, Hrymak AN. Properties of poly(N-isopropylacrylamide)-grafted colloidal silica[J]. J. Colloid Interface Sci., 2000,227: 408-411.
    [148] Dabrowski A. Adsorption-from theory to practice[J]. Adv. Colloid Interface Sci., 2001,93(1-3): 135-224.
    [149] Yang M J, Dan Y. Preparation and characterization of poly(methyl methacrylate)/titanium oxide composite particles[J]. Collid. Polym. Sci., 2005, 284(3): 243-250.
    [150] Xia H Y, Zhang Y, Peng J X, Fang Y. Preparation of silver-poly(acrylamide-co-methacrylic) composite microspheres with patterned surface structures[J]. Collid. Polym. Sci., 2005, 284(11): 1221-1228.
    [151] Wu D, Ge X, Zhang Z, Wang M, Zhang S. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres[J]. Langmuir, 2004, 20(13): 5192-5195.
    [152] Zhang Z P, Shao X Q, Yu H D, Wang Y B, Han M Y. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures[J]. Chem. Mater., 2005, 17(2): 332-336.
    [153] Nishihara H, Mukai S R, Yamashita D, Tamon H. Ordered macroporous silica by ice templating[J]. Chem. Mater., 2005, 17(3): 683-689.
    [154] Sun Y, Yin Y, Mayers B T, Herricks T, Xia Y. Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)[J]. Chem. Mater., 2002, 14(11): 4736-4745.
    [155] Yan H, Blanford C F, Holland B T, Smyrl W H, Stein A. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion[J]. Chem. Mater., 2000, 12(4): 1134-1141.
    [156] Wang W, Asher S A. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications[J]. J. Am. Chem. Soc., 2001, 123(50): 12528-125351.
    [157] 廖学红,赵小宁.纳米银的电化学合成[J].高等学校化学学报,2000,21(12): 1837-1839.
    [158] Liu H R, Ge X W, Ni Y, Ye Q. Synthesis and characterization of polyacrylonitrile-silver nanocomposites by γ-irradiation[J]. Radiat. Phys. Chem., 2001, 61(1): 89-91.
    [159] Kim J W, Lee J E, Kim S J, Lee J S. Synthesis of silver/polymer colloid composites from surface-functional porous polymer microspheres[J]. Polymer, 2004, 45(14): 4741-4747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700