基于三种咪唑类离子液体的修饰电极构置及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体又称室温熔融盐,是由有机阳离子和无机或有机阴离子构成、在室温或邻近温度下旱液态的有机化合物。具有粘度大、电导率高、电化学窗口宽等一系列独特的特性,已成为电化学等诸多领域的研究热点。本论文构置了四种基于新型离子液体修饰电极,研究了两种蛋白质的直接电化学和电催化行为,并建立了多巴胺和抗坏血酸的伏安测定新方法。该研究对于拓宽离子液体的应用范围、丰富电化学的研究内容具有一定的科学意义。全文共分四章,主要研究内容如下:
     以离子液体1-丁基-3-甲基咪唑六氟磷酸([BMIM]BF_6)为黏合剂制备了离子液体碳糊基体电极([BMIM]PF_6-CPE),采用层层组装技术构置了Nafion/AuNPs/[BMIM]PF_6-CPE,研究了多巴胺(DA)的电化学行为。研究表明,DA在Nafion/AuNPs/[BMIM]PF_6-CPE上出现了一对氧化还原峰,峰电位差ΔE_p=0.129 V,DA在该修饰电极上的电子转移常数k_s=0.71 s~(-1);其氧化峰电流与浓度在5.0×10~(-7)-1.0×10~(-5) mol·L~(-1)范围内呈线性关系,检出限为2.0×10~(-7)mol·L~(-1)(S/N=3),该法用于盐酸多巴胺注射液中多巴胺测定获得了满意结果。
     构置了基于离子液体1-十四烷基-3-甲基咪唑六氟磷酸([C_(14)mim]PF_6)-壳聚糖(CS)复合物修饰的玻碳电极([C_(14)mim]PF_6-CS/GCE),研究了DA和抗坏血酸(AA)的电化学行为,建立了同时测定DA和AA的伏安新方法。研究表明,在[C_(14)mim]PF_6-CS/GCE上,AA和DA产生的氧化峰完全分开(ΔE_p=0.385 V),可实现两者的同时测定;AA氧化峰电流与其浓度在2.6×10~(-5)-1.0×10~(-3)mol·L~(-1)范围内呈线性关系,DA氧化峰电流与其浓度在1.3×10~(-5)-5.2×10~(-4)mol·L~(-1)范围内呈线性关系。
     以离子液体1-丁基-3-甲基咪唑三氟乙酸([BMIM]TA)-透明质酸(HA)复合膜为固定矩阵,采用滴涂法分别构置了细胞色素c(Cyt c)或肌红蛋白(Mb)修饰的玻碳电极Cyt c-HA-[BMIM]TA/GCE和Mb-HA-[BMIM]TA/GCE,采用电化学方法和光谱法对两种电极进行了研究。结果表明,Cyt c或Mb在[BMIM]TA-HA复合膜内均能保持其生物活性;修饰电极Cyt c-HA-[BMIM]TA/GCE和Mb-HA-[BMIM]TA/GCE在0.1 mol·L~(-1) PBS(pH7.0)中均出现了一对准可逆的氧化还原峰。Mb-HA-[BMIM]TA/GCE对H_2O_2具有电催化作用,催化峰电流与H_2O_2的浓度在3.0×10~(-6)-1.2×10~(-4)mol·L~(-1)范围内呈线性关系;Cytc-HA-[BMIM]TA/GCE对H_2O_2具有电催化作用,催化峰电流与H_2O_2的浓度在3.0×10~(-6)-1.0×10~(-4)mol·L~(-1)范围内呈线性关系。
Ionic liquids, named as room temperature molten salts, are organic compounds which composed of organic cations and inorganic or organic anions. They are liquds at room temperature or close to room temperature, and have been used widely in electrochemical fields because of their unique electrochemical properties of good conductivity, wide electrochemical windows and high viscosity. In this thesis, four kinds of modified electrodes based on ionic liquid are fabricated and utilized to investigate electrochemical behaviors of two proteins, AA and DA. The new voltammetry methods for determination of AA and DA are established. The studies have scientific significance to expand the application range of ionic liquids and enrich electrochemical research contents. The thesis consists of four chapters. The main contributions are summarized and presented as follows:
     The ionic liquid 1-butyl-3-methylimidazoiium hexafluorophosphat ([BMIM]PF_6) is used as binder to prepare ionic liquid carbon paste base electrode ([BMIM]PF_6-CPE). The Nafion/AuNPs/[BMIM]PF_6-CPE is fabricated by layer-by-layer assembly of AuNPs and nafion to investigate the electrochemical behaviors of dopamine (DA). The results suggest that a pair of redox peaks of DA is observed at Nafion/AuNPs/[BMIM]PF_6-CPE,peak-to-peak separation and the electron transfer rate constant (k_s) of DA are 0.129 V and 0.71 s~(-1), respectively. In addition, the peak currents of DA are proportional to its concentrations from 5.0×10~7 to 1.0×10~5 mol·L~1 with the detection limit of 2.0×10~(-7) mol·L~(-1)(S/N=3).The method has been applied to determine DA in the hydrochloride dopamine injection samples and a satisfying result is obtained.
     The modified glassy carbon electrode ([C_(14)mim]PF_6-CS/GCE) is fabricated by the composite of ionic liquid 1-tetradecyl-3-methylimidazolium hexafluorophosphate ([C_(14)mim]PF_6) and chitosan (CS). The electrochemical behaviors of DA and ascorbic acid (AA) are investigated at [C_(14)mim]PF_6-CS/GCE. A new method has been established for the simultaneous determination of AA and DA at the modified electrode. The results show that the oxidation peaks of AA and DA can be separated completely (ΔE_p = 0.385 V) at [C_(14)mim]PF_6-Chit/GCE.The peak currents of AA and DA are proportional to their concentrations in a range of 2.6×10~(-5)-1.0×10~(-3) mol·L~(-1) and 1.3×10~5-5.2×10~4 mol·L~(-1), respectively.
     The composite film is prepared by combining 1-butyl-3-methylimidazolium trifluoroacetate ([BM1M]TA) with hyaluronic acid (HA). The modified electrodes of Cyt c-HA-[BMIM]TA/GCE and Mb-HA-[BMIM]TA/GCE are fabricated by embedding Cyt c and Mb in the composite film and casting them on the surface of GCE, respectively. The characters of two modified electrodes are investigated using electrochemical and spectrometric methods. The results indicate that Cyt c and Mb can retain their activity in the composite film and realize their direct electrochemistry. Both of the modified electrodes exhibit excellent electrocatalytic activity toward the reduction of H_2O_2.The catalysis current are linear to H_2O_2 concentration in the range of 3.0×10~(-6)-1.2×10~(-4) mol·L~(-1) at Mb-HA-[BMIM]TA/GCE and 3.0×10~(-6)-1.0×10~(-4) mol·L~(-1) at Cyt c-HA-[BMIM]TA/GCE, respectively.
引文
[1] Walden P.B., Molecular weights and electrical conductivity of several fused salts[J].Bull Acda Imper Sci.(St Petersburg), 1914, 1800,405-422
    [2] Hurley F.H., Wier T.P., Electrodeposition of metals from fused quaternary ammonium salts[J]. Journal of the Electrochemical Society, 1951,98,203-206
    [3] Chum H.L., Koch V.R., Miller L.L., Osteryoung R.A., Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt[J]. Journal of the American Chemical Society, 1975,97(11): 3264-3265
    [4] Laher T.M., Hussey C.L., Copper(I) and copper(II) chloro complexes in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid[J]. Inorganic Chemistry, 1983, 22(22):3247-3251
    [5] Wilkes J.S., Zaworotko M.J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, Journal of the Chemical Society[J]. Chemical communications, 1992,13,965-967
    [6] Davis J.H., Fox P.A., From curiosities to commodities: ionic liquids begin the transition[J]. Chemical Communications, 2003, 11,1209-1212
    [7] 李汝雄,离子液体的合成及应用[M].北京:化学化工出版社,2004,10-12
    [8] Chary M.V., Keerthysri N.C., Vupallapati S.V.N., Lingaiah N., Kantevari S., Tetrabutylammonium bromide (TBAB) in isopropanol: An efficient, novel, neutral and recyclable catalytic system for the synthesis of 2,4,5-trisubstituted imidazoles[J]. Catalysis Communications, 2008, 9(10): 2013-2017
    [9] Sekiguchi K., Atobe M., Fuchigami T., Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid[J].Electrochemistry Communications, 2002,4(11):881-885
    [10] Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D.,Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chemistry,2001,3(4):156-164
    [11] Park M.J.,Lee J.K., Lee B.S., Lee Y.W., Choi I. S., Lee S., Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: effect of anions on solubility[J].Chemistry of Materials, 2006, 18(6): 1546-1551
    [12] Carmichael A. J., Hardacre C, Holbrey J. D., Seddon K. R., Nieuwenhuyzen M., Structure and bonding in ionic liquids[J]. Proceedings Electrochemical Society, 2000, 99(41): 209-221
    [13] Wasserschied P., Welton T., Ionic liquids in synthesis[J]. Wiley-VCH:Weinheim,2003
    [14] 邓友全,离子液体-性质、制备与应用[M].北京:中国石化出版社,2006,8-10
    [15] Forsyth S.A., Pringle J.M., MacFarlane D.R., Ionic Liquids-An Overview[J]. Australian Journal of Chemistry, 2004, 57(2):113-119
    [16] Hirao M, Sugimoto H, Ohno H., Preparation of novel room-temperature molten salts by neutralization of amines[J]. Journal of the Electrochemical Society, 2000,147(11): 4168-4172
    [17] Demberelnyamba D., Chen B.K., Lee H., Ionic liquids based on N-vinyl-gamma-butyrolactam:potential liquid electrolytes and green solvents[J]. Chemical Communications, 2002, 21(14):1538-1539
    [18] Caddick S.,Fitzmaurice R., Microwave enhanced synthesis[J]. Tetrahedron,doi:10.1016/j.tet.2009.01.105.
    [19] Varma R.S., Namboodiri V.V., An expeditious solvent-free route to ionic liquids using microwaves[J].Chemical Communications, 2001,7,643-644
    [20] Thanh G.V.,Pegot B., Loupy A., Solvent-free microwave-assisted preparation of chiral ionic liquids from (-)-N-methylephedrine[J]. European Journal of Organic Chemistry, 2004, 5,1112-1116
    [21] Bowias C.J., Bruce D.W., Seddon K.R., Liquid-crystalline ionic liquids[J]. Chemical communications,1996,14,1625-1626
    [22] Gu Z.Y., Brennecke J.F., Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids[J]. Journal of Chemical and Engineering Data, 2002,47(2): 339-345
    [23] Bonhote P., Dias A.P., Papageorgiou N., Kalyanasundaram K.,Gratzel M, Hydrophobic highly conductive ambient-temperature molten salts[J]. Inorganic Chemistry, 1996,35(5):1168-1178
    [24] 卢宪波,室温离子液体和纳米材料在酶和蛋白质的直接电化学和生物传感器中的应用研究[D].中国科技大学博士学位论文,2007,14-15
    [25] Karodia N., Guise S., Newlands C, Andersen J.A., Clean catalyst with ionic solvents phosphonium tosylates for hydroformylation[J]. Chemical Communications, 1998,21,2341-2342
    [26] Grey GE., Winnick J., Kohl P.A., Plating and stripping of sodium from a room temperature 1-methyl-3-propylimidazolium chloride melt[J]. Journal of the Electrochemical Society, 1996,143(12): 3820-3828
    [27] Earle M.J., Seddon K.R., Ionic liquids: green solvents for the future[J]. Pure and Applied Chemistry,2000, 72(7): 1391-1398
    [28] Machado GO., Ferreira H.C.A., Pawlicka A., Influence of plasticizer contents on the properties of HEC-based solid polymeric electrolytes[J]. Electrochimica Acta, 2005, 50(19): 3827-3831
    [29] Seki S., Kobayashi Y., Miyashiro H., Ohno Y., Usami A.,Mita Y., Watanabe M., Terada N., Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material[J]. Chemical Communications, 2006, 5, 544-545
    [30] Noda A., Hasan S.M.A.B., Kudo K., Mitsushima S., Hayamizu K., Watanabe M., Bronsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes[J]. Journal of Physical Chemistry B, 2003, 107(17): 4024-4033
    [31] De Souza Ro.F., Padilha J.C., Goncalves R.S., Dupont J., Room temperature dialkylimidazolium ionic liquid-based fuel cells[J]. Electrochemistry Communications, 2003, 5(8): 728-731
    [32] Lee J.S., Nohira T., Hagiwara R., Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell[J]. Journal of Power Sources, 2007, 171(2): 535-539
    [33] Ye H., Huang J., Xu J.J., Kodiweera N.K.A.C., Jayakody J.R.P., Greenbaum S.G, New membranes based on ionic liquids for PEM fuel cells at elevated temperatures[J]. Journal of Power Sources, 2008, 178(2): 651-660
    [34] Xia J.B., Masaki N., Jiang K.J., Yanagida S., Deposition of a thin film of TiO_x from a titanium metal target as novel blocking layers at conducting glass/TiO_2 interfaces in ionic liquid mesoscopic TiO_2 dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2006,110(50): 25222-25228
    [35] Borisenko N., Ispas A., Zschippang E., Liu Q., Zein El Abedin S., Bund A., Endres F., In situ STM and EQCM studies of tantalum electrodeposition from TaF_5 in the air and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)-amide[J]. Electrochimica Acta, 2009, 54(5): 1519-1528
    [36] Raz O., Cohn G, Freyland W., Mann O., Ein-Eli Y., Ruthenium electrodeposition on silicon from a room-temperature ionic liquid[J]. Electrochimica Acta, doi:10.106/electacta.2009.01.012
    [37] Legeai S., Diliberto S., Stein N., Boulanger C, Estager J., Papaiconomou N., Draye M., Room-temperature ionic liquid for lanthanum electrodeposition[J]. Electrochemistry Communications, 2008,10(11): 1661-1664
    [38] NuLi Y.N., Yang J., Wang P., Electrodeposition of magnesium film from BMIMBF_4 ionic liquid[J]. Applied Surface Science, 2006,252(23): 8086-8090
    [39] Liu H.T., He P., Li Z.Y., Liu Y., Li J.H., A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte[J]. Electrochimica Acta, 2006, 51(10): 1925-1931
    [40] Liu K.K., Hu Z.L., Xue R., Zhang J.R., Zhu J.J., Electropolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor[J]. Journal of Power Sources, 2008, 179(2): 858-862
    [41] Zhu Q., Song Y, Zhu X.F., Wang X.L., Ionic liquid-based electrolytes for capacitor applications[J]. Journal of Electroanalytical Chemistry, 2007, 601(1-2): 229-236
    [42] Zheng J.P., Pettit C.M., Goonetilleke P.C., Zenger G.M., Roy D., D.C. voltammetry of ionic liquid-based capacitors: Effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO_4[J].Talanta,doi:10.1016/j.talanta.2009.01.014
    [43] Chernyshov D.V., Shvedene N.V., Antipova E.R., Pletnev I.V., Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines[J]. Analytica Chimica Acta,2008,621(2): 178-184
    [44] Wei D., Ivaska A., Applications of ionic liquids in electrochemical sensors[J]. Analytica Chimica Acta,2008, 607(2): 126-135
    [45] 张普玉,娄帅,李文斌,离子液体应用研究进展[J].精细化工,2005,22,324-325
    [46] MacFarlnae D.R., Forsyth S., Golding J., Deacon GB., Ionic liquid based on imidazolium,ammonium and pyrrolidinium salts of the dicyanamide anion[J]. Green Chemistry, 2002,4(5): 444-448
    [47] 孙茜,刘元兰,陆嘉星,离子液体在电化学中的应用[J].化学通报,2003,2,112-114
    [48] Papageorgiou N., Athanassov Y., Armand M., Bonh(?)te P., Pettersson H., Azam A.,Gr(?)tzel M., The performance and stability of amperatue molten salts for solar cell applications[J]. Journal of the Electrochemical Society, 1996,143(10): 3099-3108
    [49] Wang P., Wenger B., Humphry B.R., Moser J., Teuscher J., Kantlehner W., Mezger J., Stoyanov E.V.,Zakeeruddin S.M., Gratzel M., Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on vinary ionic liquids[J]. Journal of the American Chemical Society,2005,127(18): 6850-6856
    [50] Gamstedt H., Hagfeldt A., Kloo L.,Photoelectrochemical studies of ionic liquid-containing solar cells sensitized with different polypyridyl-ruthenium complexes[J]. Polyhedron, 2009,28(4): 757-762
    [51] Lee K., Chen P., Lee C, Ho K., Binary room-temperature ionic liquids based electrolytes solidified with SiO_2 nanoparticles for dye-sensitized solar cells[J]. Journal of Power Sources,doi:10.1016/j.jpowsour.2009.01.080
    [52] Jhong H.R., Wong D.S.H., Wan C.C., Wang Y.Y., Wei T.C., A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells[J]. Electrochemistry Communications,2009,11(1): 209-211
    [53] Berginc M., Opara K.U., Hocevar M., Topi(?) M., Performance of dye-sensitized solar cells based on Ionic liquids: Effect of temperature and iodine concentration[J]. Thin Solid Films, 2008, 516(20):7155-7159
    [54] Chen D., Zhang Q., Wang G., Zhang H., Li J.H., A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cellsfJ]. Electrochemistry Communications, 2007, 9(12): 2755-2759
    [55] Lewandowski A., Galinski M., Carbon-ionic liquid double-layer capacitors[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2-3): 281-286
    [56] Balducci A., Bardi U., Caporali S., Ionic liquids for hybrid supercapacitors[J]. Electrochemistry Communications, 2004, 6(6): 566-570
    [57] Devarajan T., Higashiya S., Dangler C, Rane-Fondacaro M., Snyder J., Haldar P., Novel ionic liquid electrolyte for electrochemical double layer capacitors[J]. Electrochemistry Communications, 2009, 11(3): 680-683
    [58] Handa N., Sugimoto T., Yamagata M., Kikuta M., Kono M., Masashi Ishikawa, A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor[J]. Journal of Power Sources, 2008, 185(2): 1585-1588.
    [59] Zhang Y., Zheng J.B., Direct electrochemistry and electrocatalysis of Cytochrome c based on chitosan-room temperature ionic liquid-carbon nanotubes composite[J]. Electrochimica Acta, 2008, 54(2): 749-754
    [60] Compton D.L., Laszlo J.A., Direct electrochemical reduction of hemin in imidazolium-based ionic liquids[J]. Journal of Electroanalytical Chemistry, 2002, 520(1-2): 71-78
    [61] Wang S.F., Chen T., Zhang Z.L., Pang D.W., Activity and stability of horseradish peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous biosensing[J]. Electrochemistry Communications, 2007,9(6): 1337-1342
    [62] Xiong H.Y., Chen T., Zhang X.H., Wang S.F., Electrochemical property and analysis application of biosensors in miscible nonaqueous media-room temperature ionic liquid[J]. Electrochemistry Communications, 2007,9(7): 1648-1654
    [63] Sun W., Jiang Q., Wang Y., Jiao K., Electrochemical behaviors of metol on hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate-modified electrode[J]. Sensors and Actuators B: Chemical, 2009,136(2): 419-424
    [64] Sun W., Duan Y.Y., Li Y.Z., Gao H.W., Jiao K., Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination[J]. Talanta, doi:10.1016/j.talanta.2008.12.034
    [65] Sun W, Li Y.Z., Yang M.X., Liu S.F., Jiao K., Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode[J]. Electrochemistry Communications, 2008, 10(2): 298-301
    [66] Sun W., Li Y.Z., Yang M.X., Li J., Jiao K., Application of carbon ionic liquid electrode for the electrooxidative determination of catechol[J]. Sensors and Actuators B: Chemical, 2008, 133(2): 387-392
    [67] Sun W., Yang M.X., Jiang Q., Jiao K., Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified eIectrode[J]. Chinese Chemical Letters, 2008, 19(10): 1156-1158
    [68] Sun W., Wang D.D., Gao R.F., Jiao K., Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode[J]. Electrochemistry Communications, 2007, 9(5): 1159-1164
    [69] Ding C.F., Zhao F., Ren R., Lin J.M., An electrochemical biosensor for α-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles[J]. Talanta, doi:10.1016/j.talanta.2009.01.036
    [70] Wang S.F., Xiong H.Y., Zeng Q.X., Design of carbon paste biosensors based on the mixture of ionic liquid and paraffin oil as a binder for high performance and stabilization[J]. Electrochemistry Communications, 2007, 9(4): 807-812
    [71] Safavi A., Maleki N., Momeni S., Tajabadi F., Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples[J]. Analytica Chimica Acta, 2008, 625(1): 8-12
    [72] Sun W., Zhai Z.Q., Wang D.D., Liu S.F., Jiao K., Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode[J]. Bioelectrochemistry, 2009, 74(2): 295-300
    [73] Sun W, Gao R.F., Jiao K., Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO_3 film on a new ionic liquid BPPF_6 modified carbon paste electrode[J]. Journal of Physical Chemistry B, 2007,111(17): 4560-4567
    [74] Zhao Y., Liu H., Kou Y., Li M., Zhu Z., Zhuang Q., Structural and characteristic analysis of carbon nanotubes-ionic liquid gel biosensor[J]. Electrochemistry Communications, 2007,9(10): 2457-2462
    [75] Sun N.J., Guan L.H., Shi Z.J., Li N.Q., Gu Z.N., Zhu Z.W., Li M.X., Shao Y.H., Ferrocene peapod modified electrodes: preparation, characterization, and mediation of H_2O_2[J]. Analytical Chemistry, 2006, 78(17): 6050-6057
    [76] Li J.W., Yu J.J., Zhao F.Q., Zeng B.Z., Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing[J]. Analytica Chimica Acta, 2007,587(1): 33-40
    [77] Liu Y., Liu L., Dong S.J., Electrochemical characteristics of glucose oxidase adsorbed at carbon nanotubes modified electrode with ionic liquid as binder[J]. Electroanalysis, 2007,19(1): 55-59
    [78] Zhao F.g, Wang M.K., Liu Y., Gao L.X., Dong S.J., Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials[J]. Analytical Chemistry, 2004, 76(17): 4960-4967
    [79] Dupont J., De Souza R.F., Suarez P.A.Z. Ionic liquid(molten salt) phase organometallic catalysis[J]. Chemical Reviews, 2002, 102(10): 3667-3691
    [80] Chiappe C, Caprero D., Conte V., Pieraccini D., Stereoselective halofenations of alkenes and alkynes in ionic liquids[J]. Organic Letters, 2001, 3(7): 1061-1063
    [81] Li Z.J., Wei Q., Yuan R., Zhou X., Liu H.Z., Shan H.X., Song Q.J., A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry[J]. Talanta, 2007,71(1): 68-72
    [82] Germani R., Mancini M.V., Savelli G., Spreti N., Mercury extraction by ionic liquids: temperature and alkyl chain length effect[J]. Tetrahedron Letters, 2007,48(10): 1767-1769
    [83] Wei G.T., Yang Z.S., Chen C.J., Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions[J]. Analytica Chimica Acta, 2003,488(2): 183-192
    [84] Sun X.Q., Peng B., Chen J., Li D.Q., Luo F., An effective method for enhancing metal-ions' selectivity of ionic liquid-based extraction system: Adding water-soluble complexing agent[J]. Talanta, 2008, 74(4): 1071-1074
    [85] Fan J., Fan Y.C., Pei Y.C., Wu K., Wang J.J., Fan M.H., Solvent extraction of selected endocrine-disrupting phenols using ionic liquids[J]. Separation and Purification Technology, 2008, 61(3): 324-331
    [86] Egorov V.M., Smirnova S.V., Pletnev I.V., Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation[J]. Separation and Purification Technology, 2008, 63(3): 710-715
    [87] Tian M.L., Yan H.Y., Row K.H., Solid-phase extraction of tanshinones from Salvia Miltiorrhiza Bunge using ionic liquid-modified silica sorbents[J]. Journal of Chromatography B, doi:10.1016/j.jchromb.2009.02.012
    [88] Pei Y.C., Wang J.J., Wu K., Xuan X.P., Lu X.J., Ionic liquid-based aqueous two-phase extraction of selected proteins[J]. Separation and Purification Technology, 2009, 64(3): 288-295
    [89] Cheng D.H., Chen X.W., Shu Y., Wang J.H., Extraction of Cytochrome c by ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate[J]. Chinese Journal of Analytical Chemistry, 2008,36(9): 1187-1190
    [90] Cheng D.H., Chen X.W., Shu Y., Wang J.H., Selective extraction/isolation of hemoglobin with ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate[J]. Talanta, 2008, 75(5): 1270-1278
    [91] Wang J.L., Zhao D.S., Zhou E., Dong Z., Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. Journal of Fuel Chemistry and Technology, 2007, 35(3): 293-296
    [92] Chu X.M., Hu Y.F., LI J.G., Liang Q.Q., Liu Y.S., Zhang X.M., Peng X.M., Yue W.J., Desulfurization of diesel fuel by extraction with BF_4~--based ionic liquids[J]. Chinese Journal of Chemical Engineering, 2008, 16(6): 881-884
    [93] Peng J.F., Liu J.F., Hu X.L., Jiang G.B., Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid[J]. chromatographyJournal of Chromatography A, 2007, 1139(2): 165-170
    [94] Zhang W.Z., He L.J., Gu Y.L., Liu X., Jiang S.X., Effect of ionic liquids as mobile phase additives on retention of catecholamines in reversed-phase high-performance liquid chromatography[J]. Analytical Letters, 2003,36(4): 827-838
    [95] Planeta J., Roth M., Solute partitioning between the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and supercritical CO_2 from capillary-column chromatography[J]. The Journal of Physical Chemistry B, 2005, 109(31): 15165-15171
    [96] Revelli A.L., Mutelet F., Jaubert J.N., Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography [J]. Journal of Chromatography A, doi: 10.1016/j.chroma.2009.04.004
    [97] Fan Y.C., Chen M.L., Shentu C., El-Sepai F., Wang K.X., Zhu Y., Ye M.L., Ionic liquids extraction of para red and sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography[J]. Analytica Chimica Acta, doi:10.1016/j.aca.2009.03.025
    [98] Yao C., Anderson J.L., Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases[J]. Journal of Chromatography A, 2009, 1216(10): 1658-1712
    [99] Kozlova S.A., Verevkin S.P., Heintz A., Peppel T., Kockerling M., Activity coefficients at infinite dilution of hydrocarbons, alkylbenzenes, and alcohols in the paramagnetic ionic liquid 1-butyl-3-methyl-imidazolium tetrachloridoferrate(III) using gas-liquid chromatography [J]. The Journal of Chemical Thermodynamics, 2009,41(3): 330-333
    [100] Yao C, Pino V., Anderson J.L., Utilization of solid-phase microextraction-high-performance liquid chromatography in the determination of aromatic analyte partitioning to imidazolium-based ionic liquid micelles[J]. Journal of Chromatography A, 2009, 1216(6): 948-955
    [101] Washiro S., Yoshizawa M., Nakajima H., Ohno H., Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids[J]. Polymer, 2004,45(5): 1577-1582
    [102] Marwanta E., Mizumo T., Nakamura N., Ohno H., Improved ionic conductivity of nitrile rubber/ionic liquid composites[J]. Polymer, 2005,46(11): 3795-3800
    [103] Watanabe S., Mizumura T., Conductivity study on ionic liquid/polymer complexes[J]. Solid State Ionics, 1996, 86-88(1): 353-356
    [104]Pandey G.P., Hashmi S.A., Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte[J]. Journal of Power Sources, 2009, 187(2): 627-634
    [105]Pringle J.M., Ngamna O., Chen J., Wallace F.G.G, MacFarlane D.R., Conducting polymer nanoparticles synthesized in an ionic liquid by chemical polymerization[J]. Synthetic Metals, 2006, 156(14-15): 979-983
    [106] Xu J.J., Ye H., Huang J., Novel zinc ion conducting polymer gel electrolytes based on ionic liquids[J]. Electrochemistry Communications, 2005, 7(12): 1309-1317
    [107] Lu W., Fadeev A.G, Qi B., Mattes B.R., Stable conducting polymer electrochemical devices incorporating ionic liquids[J]. Synthetic Metals, 2003,135-136(4): 139-140
    [108] Yu G.Q., Zhou F., Liu W.M., Liang Y.M., Yan S.Q., Preparation of functional ionic liquids and tribological investigation of their ultra-thin films[J]. Wear, 2006, 260(9-10): 1076-1080
    [109] Murakami T., Kaneda K., Nakano M., Korenaga A., Mano H., Sasaki S., Tribological properties of Fe_7Mo_6-based alloy under two ionic liquid lubrications[J]. Tribology International, 2008, 41(11): 1083-1089
    [110]Tsioptsias C, Panayiotou C, Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions[J]. Carbohydrate Polymers, 2008,74(1): 99-105
    [111] Jin X.X., Yu L., Zeng X.Q., Enhancing the sensitivity of ionic liquid sensors for methane detection with polyaniline template[J]. Sensors and Actuators B: Chemical, 2008,133(2): 526-532
    [112]Oter O., Ertekin K., Derinkuyu S., Photophysical and optical oxygen sensing properties of tris(bipyridine)ruthenium(II) in ionic liquid modified sol-gel matrix[J]. Materials Chemistry and Physics, 2009,113(1): 322-328
    [1] Tomcik P., Banks C. E., Davies T. J., Compton R. G., A self-catalytic carbon paste electrode for the detection of vitamin B_(12)[J].Analytical Chemistry, 2004,76(1):161-165
    [2] Shi S.Y., Fang Z.H., Ni J.R., Electrochemistry of marmatite-carbon paste electrode in the presence of bacterial strains[J]. Bioelectrochemistry, 2006, 68(1):113-118
    [3] Li C.Y., Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element[J]. Colloids and Surfaces B: Biointerfaces,2007, 55(1): 77-83
    [4] Farghaly O.A., Taher M.A., Naggar A.H., El-Sayed A.Y., Square wave anodic stripping voltammetric determination of metoclopramide in tablet and urine at carbon paste electrode[J].Journal of Pharmaceutical and Biomedical Analysis, 2005, 38(1):14-20
    [5] Rittmannsberger A., Likussar W., Michelitsch A., Development of an enzyme-modified carbon paste electrode for determining inhibitors of lipoxygenase[J]. Biosensors and Bioelectronics, 2005, 21(4): 655-660
    [6] Liu L., Song J.F., Yu P.F., Cui B., Voltammetric determination of glucose based on reduction of copper(II)-glucose complex at lanthanum hydroxide nanowire modified carbon paste electrodes[J]. Talanta, 2007, 71(5): 1842-1848
    [7] Jamasbi E.S., Rouhollahi A., Shahrokhian S., Haghgoo S., Aghajani S., The electrocatalytic examination of cephalosporins at carbon paste electrode modified with Co salophen[J]. Talanta, 2007, 71(4): 1669-1674
    [8] Zhu S.Y., Fan L.H., Liu X.Q., Shi L.H., Li H.J., Han S, Xu G.B., Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode[J]. Electrochemistry Communications, 2008, 10(5): 695-698
    [9] Cao L.Y., Jia J.B., Wang Z.H., Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes[J]. Electrochimica Acta, 2008, 53(5): 2177-2182
    [10] El Mhammedi M.A., Achak M., Bakasse M., Chtaini A., Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: Application in river water samples[J]. Journal of Hazardous Materials, 2009,163(1): 323-328
    [11] Gligor D., Balaj F., Maicaneanu A., Gropeanu R., Grosu I., Muresan L., Popescu I.C., Carbon paste electrodes modified with a new phenothiazine derivative adsorbed on zeolite and on mineral clay for NADH oxidation[J]. Materials Chemistry and Physics, 2009, 113(1): 283-289
    [12] Davis J.H., Fox P.A., From curiosities to commodities: ionic liquids begin the transition[J]. Chemical Communications, 2003, 11, 1209-1212
    [13] Chary M.V., Keerthysri N.C., Vupallapati S.V.N., Lingaiah N., Kantevari S., Tetrabutylammonium bromide (TBAB) in isopropanol: An efficient, novel, neutral and recyclable catalytic system for the synthesis of 2,4,5-trisubstituted imidazoles[J]. Catalysis Communications, 2008, 9(10): 2013-2017
    [14] Sekiguchi K., Atobe M., Fuchigami T., Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid[J]. Electrochemistry Communications, 2002,4(11): 881-885
    [15] Ye H., Huang J., Xu J.J., Kodiweera N.K.A.C., Jayakody J.R.P., Greenbaum S.G., New membranes based on ionic liquids for PEM fuel cells at elevated temperatures[J]. Journal of Power Sources, 2008, 178(2): 651-660
    [16] Legeai S., Diliberto S., Stein N., Boulanger C, Estager J., Papaiconomou N., Draye M., Room-temperature ionic liquid for lanthanum electrodeposition[J]. Electrochemistry Communications, 2008,10(11): 1661-1664
    [17] Zheng J.P., Pettit C. M., Goonetilleke P.C., Zenger G.M., Roy D., D.C. voltammetry of ionic liquid-based capacitors: Effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO_4[J]. Talanta, doi:10.1016/j.talanta.2009.01.014
    [18] Chernyshov D.V., Shvedene N.V., Antipova E.R., Pletnev I.V., Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines[J]. Analytica Chimica Acta, 2008, 621(2): 178-184
    [19] Raoof J.B., Ojani R., Rashid-Nadimi S., Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films[J]. Electrochimica Acta, 2005, 50(24): 4694-4698
    [20] Zhang Y., Zheng J.B., Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode[J]. Electrochimica Acta, 2007, 52(25): 7210-7216
    [21] Zheng J.B., Zahng Y., Yang P.P., An ionic liquid-type carbon paste electrode for electrochemical investigation and determination of calcium dobesilate[J]. Talanta, 2007, 73(5): 920-925
    [22] Safavi A., Maleki N., Momeni S., Tajabadi F., Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: Application to the analysis of some real samples[J]. Analytica Chimica Acta, 2008,625(1): 8-12
    [23] Liu H.T., He P., Li Z.Y., Sun C.Y., Shi L.H., Liu Y., Zhu G.Y., Li J.H., An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties[J]. Electrochemistry Communications, 2005, 7(12): 1357-1363
    [24] Ding C.F., Zhao F., Ren R., Lin J.M., An electrochemical biosensor for α-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles[J]. Talanta, doi: 10.1016/j.talanta.2009.01.036
    [25] Shul G., Sirieix-Plenet J., Gaillon L., Opallo M., Ion transfer at carbon paste electrode based on ionic liquid[J]. Electrochemistry Communications, 2006,8(7): 1111-1114
    [26] Shipway A.N., Lahav M., Willner I., Nanostructured gold colloid electrodes[J]. Advanced Materials, 2000,12(13): 993-998
    [27] Wightman R.M., Amatorh C., Engstrom R.C., Hale P.D., Kristensen E.W., Kuhr W.G., May L.J., Real-time characterization of dopamine overflow and uptake in the rat striatum[J]. Neuroscience, 1988, 25(2): 513-523
    [28] Li M.R., Deng C.Y., Chen C., Peng L.M., Ning G. H., Xie Q.J., Yao S.Z., An amperometric hydrogen peroxide biosensor based on a hemoglobin-immobilized dopamine-oxidation polymer/prussian blue/Au electrode[J]. Electroanalysis, 2006,18(22): 2210-2217
    [29] Montenegro M.C.B.S.M., Sales M.G. F., Flow-injection analysis of dopamine in injections with a periodate-selective electrode[J].Journal of Pharmaceutical Sciences, 2000, 89(7): 876-884
    [30] Yao H., Sun Y.Y., Lin X.H., Cheng J.H., Huang L.Y., Flow-injection chemiluminescence determination of catecholamines based on their enhancing effects on the luminal-potassium priodate system[J]. Luminescence, 2006,21(2): 112-117
    [31] Li Q.M., Li J., Yang Z.J., Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent[J]. Analytica ChimicaActa,2007, 583(1):147-152
    [32] Codognoto L., Winter E., Paschoal J.A.R., Suffredini H.B., Cabral M.F., Machado S.A.S., Rath S.,Electrochemical behavior of dopamine at a 3,3'-dithiodipropionic acid self-assembled monolayers[J].Talanta, 2007,72(2):427-433
    [33] Yeh W.L., Kuo Y.R., Cheng S.H., Voltammetry and flow-injection amperometry for indirect determination of dopamine[J]. Electrochemistry Communications, 2008,10(1):66-70
    [34] Cao X.M., Luo L.Q., Ding Y.P., Zou X.L., Bian R.X., Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode[J]. Sensors and Actuators, B: Chemical, 2008,129(2): 941-946
    [35] Zhang M.N., Gong K.P., Zhang H.W.,Mao L.Q., Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid[J]. Biosensors Bioelectronics,2005,20(7):1270-1276
    [36] O'Neill R.D., Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo-a review[J]. Analyst, 1994,119(5): 767-779
    [37] Fukushima T.,Kosaka A., Ishimura Y., Yamamoto T., Takigawa T.,Ishii N., Aida T., Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 2003,300(5628): 2072-2074
    [38] Huddleston J.G., Rogers R.D., Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction. Chemical Communications, 1998,16,1765-1766
    [39] Billard I., Moutiers G., Labet A., Azzi A. E., Gaillard C, Mariet C, Lutzenkirchen K., Stability of divalent europium in an ionic liquid: spectroscopic investigations in 1-methyl-3-butylimidazolium hexafluorophosphate. Inorganic Chemistry, 2003,42(5): 1726-1733
    [40] 方东,施群荣,巩凯,刘祖亮,咪唑型室温离子液体的绿色合成研究.化学试剂,2007,29(1):4-6
    [1] Chary M.V., Keerthysri N.C., Vupallapati S.V.N., Lingaiah N., Kantevari S., Tetrabutylammonium bromide (TBAB) in isopropanol: an efficient, novel, neutral and recyclable catalytic system for the synthesis of 2,4,5-trisubstituted imidazoIes[J]. Catalysis Communications, 2008,9(10):2013-2017
    [2] Sekiguchi K., Atobe M., Fuchigami T., Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid[J].Electrochemistry Communications, 2002,4(11):881-885
    [3] Park M.J., Lee J.K.,Lee B.S., Lee Y.W., Choi I.S., Lee S., Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: effect of anions on solubility[J]. Chemistry Materals, 2006,18(6):1546-1551
    [4] Rozniecka E., Shul G.,Sirieix-Plenet J., Gaillon L., Opallo M., Electroactive ceramic carbon electrode modified with ionic liquid[J]. Electrochemistry Communications, 2005, 7(3): 299-304
    [5] Zhang L., Zhang Q., Li J.H., Electrochemical behaviors and spectral studies of ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) based sol-gel electrode[J]. Journal of Electroanalytical Chemistry, 2007,603(2): 243-248
    [6] Wang Q., Tang H., Xie Q.J., Tan L., Zhang Y.Y., Li B.M.,Yao S.Z., Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH[J]. Electrochimica Acta, 2007, 52(24): 6630-6637
    [7] 王红娟,周春梅,余皓,彭峰,方锦坤,多壁碳纳米管修饰玻碳电极用于过氧化氢的检测[J].电化学,2007,13(1):72-76
    [8] Xiao F., Zhao F.Q., Li J.W., Yan R., Yu J.J., Zeng B.Z., Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes[J]. Analytica Chimica Acta,2007,596(1):79-85
    [9] Liu L.Q., Zhao F.Q., Xiao F.,Zeng B.Z.,Improved voltammetric response of L-tyrosine on multiwalled carbon nanotubes-ionic liquid composite coated glassy electrodes in the presence of cupric ion[J]. Electroanalysis, 2008,20(19): 2148-2152
    [10] 谭学才,麦智彬,韦冬萍,邓光辉,黄在银,蔡沛祥,多壁碳纳米管-Nation复合膜修饰玻碳电极测定硝苯地平的研究[J].分析化学,2007,35(4):495-499
    [11] Liu Y., Liu L., Dong S.J., Electrochemical characteristics of glucose oxidase adsorbed at carbon nanotubes modified electrode with ionic liquid as binder[J]. Electroanalysis, 2007,19(1): 55-59
    [12] Lu X.B., Zhang Q., Zhang L., Li J.H., Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid[J]. Electrochemistry Communications,2006, 8(5): 874-878
    [13] Wightman R.M., Amatorh C, Engstrom R.C., Hale P.D.,Kristensen E.W.,Kuhr W.G., May L.J.,Real-time characterization of dopamine overflow and uptake in the rat striatum[J]. Neuroscience, 1988,25(2): 513-523
    [14] Shankaran D.R.,Iimura K., Kato T., Simultaneous determination of ascorbic acid and dopamine at a sol-gel composite electrode[J]. Sensors and Actuators, B: Chemical, 2003,94(1): 73-80
    [15] Wightman R.M., Robinson D.L., Transient changes in mesolimbic dopamine and their association with 'reward'[J]. Journal of neurochemistry, 2002, 82(4): 721-735
    [16] Mo J.W., Ogorevc B.I., Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(l,2-phenylenediamine)-coated carbon fiber[J]. Analytical Chemistry, 2001, 73(6):1196-1202
    [17] Wightman R.M., May L.J., Michael A.C., Detection of dopamine dynamics in the brain[J]. Analytical Chemistry, 1988,60(13): 769A-779A
    [18] Li M.R., Deng C.Y., Chen C, Peng L.M., Ning G.H., Xie Q.J., Yao S.Z., An amperometric hydrogen peroxide biosensor based on a hemoglobin-immobilized dopamine-oxidation polymer/prussian blue/Au electrode[J]. Electroanalysis, 2006,18(22): 2210-2217
    [19] Montenegro M.C.B.S.M., Sales M.G.F., Flow-Injection Analysis of Dopamine in Injections with a Periodate-Selective Electrode[J]. Journal of pharmaceutical sciences, 2000, 89(7): 876-884
    [20] Yao H., Sun Y. Y., Lin X. H., Cheng J. H., Huang L. Y., Flow-injection chemiluminescence determination of catecholamines based on their enhancing effects on the luminal-potassium priodate system[J]. Luminescence, 2006,21(2): 112-117
    [21] Li Q.M., Li J., Yang Z.J., Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent[J]. Analytica Chimica Acta, 2007, 583(1): 147-152
    [22] Codognoto L., Winter E., Paschoal J.A.R., Suffredini H.B., Cabral M.F., Machado S.A.S., Rath S., Electrochemical behavior of dopamine at a 3,3'-dithiodipropionic acid self-assembled monolayers[J]. Talanta, 2007, 72(2): 427-433
    [23] Yeh W.L., Kuo Y.R., Cheng S.H., Voltammetry and flow-injection amperometry for indirect determination of dopamine[J]. Electrochemistry Communications, 2008,10(1): 66-70
    [24] Cao X.M., Luo L.Q., Ding Y.P., Zou X.L., Bian R.X., Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2008,129(2): 941-946
    [25] Zhang M.N., Gong K.P., Zhang H.W., Mao L.Q., Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid[J]. Biosensors and Bioelectronics, 2005, 20(7): 1270-1276
    [26] Jin G.P., Lin X.Q., Gong J.M., Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid[J]. Journal of Electroanalytical Chemistry, 2004, 569(1): 135-142
    [27] Selvaraju T., Ramaraj R., Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode[J]. Electrochemistry Communications, 2003, 5(8): 667-672
    [28] Vasantha V.S., Chen S.M., Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes[J]. Journal of Electroanalytical Chemistry, 2006, 592(1): 77-87
    [29] Li Y.X., Lin X.Q., Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2006,115(1): 134-139
    [30] Liu A., Honma I., Zhou H.S., Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode[J]. Biosensors and Bioelectronics, 2007, 23(1): 74-80
    [31] Zhao Y.F., Gao Y.Q., Zhan D.P., Liu H., Zhao Q., Kou Y., Shao Y.H., Li M.X., Zhuang Q.K., Zhu Z.W., Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode[J]. Talanta, 2005,66(1): 51-57
    [32] Safavi A., Maleki N., Moradlou O., Tajabadi F., Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode[J]. Analytical Biochemistry, 2006, 359(2): 224-229
    [33] Lu L.P., Lin X.Q., Selective determination of uric acid with DNA doped polymers modified carbon fiber microelectrode[J]. Electrochemistry Communications, 2008,10(5): 704-708
    [34] Rubianes M.D., Rivas G.A., Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors[J]. Electrochemistry Communications, 2007, 9(3): 480-484
    [35] Liu Y., Zou X.Q., Dong S.J., Electrochemical characteristics of facile prepared carbon nanotubes-ionic liquid gel modified microelectrode and application in bioelectrochemistry[J]. Electrochemistry Communications, 2006,8(9): 1429-1434
    [36] Huddleston J.G., Willauer H.D., Swatloski R.P., Visser A.E., Rogers R.D., Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction[J]. chemical Communications, 1998, 16, 1765-1766
    [37] Zhang M.G., Smith A., Gorski W., Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes[J]. Analytical Chemistry, 2004, 76(17): 5045-5050
    [1] Shobha Jeykumari D.R., Sritnan Narayanan S., Functionalized carbon nanotube-bienzyme biocomposite for amperometric sensing[J]. Carbon, 2009,47(4): 957-966
    [2] Wang K.Q.,Yang H., Zhu L., Ma Z.S., Xing S.Y., Lv Q., Liao J.H., Liu C.P., Xing W., Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15[J]. Electrochimica Acta,doi:10.1016/j.msec.2009.03.008
    [3] Prakash P.A., Yogeswaran U., Chen S.M., Direct electrochemistry of catalase at multiwalled carbon nanotubes-nafion in presence of needle shaped DDAB for H_2O_2 sensor[J]. Talanta,doi:10.1016/j.talanta.2009.02.033
    [4] Wang S.F., Xie F., Liu G.D.,Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modified electrodes[J]. Talanta, 2009,77(4): 1343-1350
    [5] Lu Q., Li C.M., One-step co-electropolymerized conducting polymer-protein composite film for direct electrochemistry-based biosensors[J]. Biosensors and Bioelectronics, 2008,24(4): 767-772
    [6] Du P., Liu S.N., Wu P., Cai C.X., Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes[J]. Electrochimica Acta, 2007, 52(23): 6534-6547
    [7] Xu H., Xiong H.Y., Zeng Q.X., Jia L., Wang Y., Wang S.F., Direct electrochemistry and electrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids[J]. Electrochemistry Communications, 2009,11(2): 286-289
    [8] Xi F.N., Liu L.J., Wu Q., Lin X.F., One-step construction of biosensor based on chitosan-ionic liquid-horseradish peroxidase biocomposite formed by electrodeposition[J]. Biosensors and Bioelectronics, 2008,24(1): 29-34
    [9] Wang S.F., Chen T., Zhang Z.L., Pang D.W., Activity and stability of horseradish peroxidase in hydrophilic room temperature ionic liquid and its application in non-aqueous biosensing[J]. Electrochemistry Communications, 2007,9(6): 1337-1342
    [10] Zhang Y., Zheng J.B., Direct electrochemistry and electrocatalysis of Cytochrome c based on chitosan-room temperature ionic liquid-carbon nanotubes composite[J]. Electrochimica Acta, 2008, 54(2): 749-754
    [11] Zhang Y., Zheng J.B., Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film[J]. Electrochemistry Communications, 2008,10(9): 1400-1403
    [12] Xiong H.Y., Chen T., Zhang X.H., Wang S.F., Electrochemical property and analysis application of biosensors in miscible nonaqueous media-room-temperature ionic liquid[J]. Electrochemistry Communications, 2007,9(7): 1648-1654
    [13] Wan J., Bi J.L., Du P., Zhang S.S., Biosensor based on the biocatalysis of microperoxidase-11 in nanocomposite material of multiwalled carbon nanotubes/room temperature ionic liquid for amperometric determination of hydrogen peroxide[J]. Analytical Biochemistry, 2009,386(2): 256-261
    [14] Wen Y.L., Yang X.D., Hu G.H., Chen S.H., Jia N.Q., Direct electrochemistry and biocatalytic activity of hemoglobin entrapped into gellan gum and room temperature ionic liquid composite system[J]. Electrochimica Acta, 2008, 54(2): 744-748
    [15] Sun W., Li X.Q., Wang Y., Zhao R.J., Jiao K., Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF_4 as modifier[J]. Electrochimica Acta, doi:10.1016/j.electacta.2009.02.055
    [16] Kitazume T., Zulfiqar F., Tanaka G., Molten salts as a reusable medium for the preparation of Heterocyclic compounds[J]. Green Chemistry, 2000,2:133-136
    [17] Du Z., Deng Y., Synthesis and characterization of sulfonyl-functionalized ionic liquid[J]. Synthetic Communications, 2005, 35(10): 1343-1349
    [18] Shan D., Cheng G.X., Zhu D.B., Xue H.G., Cosnier S., Ding S.N., Direct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its catalysis to H_2O_2[J]. Sensors and Actuators B: Chemical, 2009, 137(1): 259-265
    [19] Xie Y., Hu N.F., Liu H.Y., Bioelectrocatalytic reactivity of myoglobin in layer-by-layer films assembled with triblock copolymer Pluronic F127[J]. Journal of Electroanalytical Chemistry, 2009, 10.1016/j.jelechem.2009.02.017
    [20] Qiao K., Hu N.F., Direct electron transfer and electrocatalysis of myoglobin loaded in layer-by-layer films assembled with nonionic poly(ethylene glycol) and ZrO_2 nanoparticles[J]. Bioelectrochemistry, 2009, 75(1): 71-76
    [21] Liu C.Y., Hu J.M., Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film[J]. Biosensors and Bioelectronics, 2009, 24(7): 2149-2154
    [22] Dai Z., Xiao Y, Yu X.Z., Mai Z.B., Zhao X.J., Zou X.Y., Direct electrochemistry of myoglobin based on ionic liquid-clay composite films[J]. Biosensors and Bioelectronics, doi:10.1016/j.bios.2008.08.032
    [23] Ding S.F., Xu M.Q., Zhao GC, Wei X.W., Direct electrochemical response of Myoglobin using a room temperature ionic liquid, 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, as supporting electrolyte[J]. Electrochemistry Communications, 2007,9(2): 216-220
    [24] Li Y.C., Yang W.W., Bai Y, Sun C.Q., Amperometric sensor for trichloroacetic acid based on myoglobin/colloidal gold nanoparticles immobilized in titania sol-gel matrix[J]. Electroanalysis, 2006, 18(5): 499-506
    [25] George P., Hanania G., A spectrophotometric study of ionizations in methaemoglobin[J]. Biochemical Journal, 1953, 55(2): 236-243
    
    [26] Murray R.W., Chemically modified electrodes[J]. Electroanalytical Chemistry, 1984,13,191-368
    [27] Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry, 1979, 101(1): 19-28
    [28] Ferapontova E.E., Direct peroxidase bioelectrocatalysis on a variety of electrode materials[J]. Electroanalysis, 2004, 16(13-14): 1101-1112
    [29] Nagaraju D.H., Pandey R.K., Lakshminarayanan V., Electrocatalytic studies of Cytochrome c functionalized single walled carbon nanotubes on self-assembled monolayer of 4-ATP on gold[J]. Journal of Electroanalytical Chemistry, 2009,627(1-2): 63-68
    [30] Balamurugan A., Chen S.M., Fabrication of Cytochrome c-poly(5-amino-2-napthalenesulfonic acid) electrode by one step procedure and direct electrochemistry of Cytochrome c[J]. Biosensors and Bioelectronics, 2008,24(4): 976-980
    [31] Zhang Z.Q., Xia S.Q., Leonard D., Jaffrezic-Renault N., Zhang J., Gabriela Almeida M., Silveira C. M., A novel nitrite biosensor based on conductometric electrode modified with Cytochrome c nitrite reductase composite membrane[J]. Biosensors and Bioelectronics, doi:10.1016/j.bios.2008.08.010
    [32] Chen Y., Yang X.J., Guo L.R., Jin B., Xia X.H., Zheng L.M., Direct electrochemistry of Cytochrome c on a phosphonic acid terminated self-assembled monolayers[J]. Talanta, 2009,78(1): 248-252
    [33] Zhu A., Tian Y., Liu H.Q., Luo Y.P., Nanoporous gold film encapsulating Cytochrome c for the fabrication of a H_2O_2 biosensor[J]. Biomaterials, doi:10.1016/j.biomaterials.2009.02.019
    [34] Moghaddam A.B., Ganjali M.R., Dinarvand R., Razavi T., Saboury A.A., Moosavi-Movahedi A.A., Norouzi P., Direct electrochemistry of Cytochrome c on electrodeposited nickel oxide nanoparticles[J]. Journal of Electroanalytical Chemistry, 2008, 614(1-2): 83-92
    [35] Zhang L., Zhang J., Zhang C.H., Electrochemical synthesis of polyaniline nano-network on α-alanine functionalized glassy carbon electrode and its application for the direct electrochemistry of horse heart Cytochrome c[J]. Biosensors and Bioelectronics, 2009, 24(7): 2085-2090
    [36] Chen X., Long H.Y., Wu W.L., Yang Z.S., Direct electrochemical behavior of Cytochrome c on sodium dodecyl sulfate modified electrode and its application to nitric oxide biosensor[J]. Thin Solid Films, 2009, 517(8): 2787-2791
    [37] Xu J.S., Zhao G.C., A third-generation biosensor based on the enzyme-like activity of Cytochrome c on a room temperature ionic liquid and gold nanoparticles composite film[J]. Journal of Electrochemical Science, 2008,3(4): 519-527
    [38] Xiang C.L., Zou Y.J., Sun L.X., Xu F., Direct electron transfer of Cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film[J]. Electrochemistry Communications, 2008,10(1): 38-41
    [39] Ding S.F., Wei W., Zhao G.C., Direct electrochemical response of Cytochrome c on a room temperature ionic liquid N-butylpyridinium tetrafluoroborate modified electrode[J]. Electrochemistry Communications, 2007, 9(9): 2202-2206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700