N-乙酰葡萄糖胺对皮肤角质形成细胞透明质酸合成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:透明质酸(Hyaluronic acid,HA)是天然存在于人体皮肤中的具有保水功能的聚合物,由葡糖醛酸和N-乙酰葡萄糖胺(又称N-乙酰氨基葡萄糖,N-Acetylglucosamine, NAG)组成直链高分子多糖,作为吸水的大分子位于细胞外基质(Extracellular matrix, ECM),广泛存在于脊椎动物结缔组织和某些细菌内。HA分子在溶液中高度伸展和随机卷曲构型使其占有很大区域,其流体动力学体积较未水化时所占空间大l0倍,而且分子链之间相互缠绕形成连续的网状结构,水分子通过极性键和氢键与其直接作用。使得HA像“分子海绵”一样,可以吸收和保持其自身重量上千倍的水分,是国际上公认的最好的保湿剂之一,具有维持细胞外间隙,并促进离子溶质和营养物质的运输。除此之外,HA还可与蛋白结合成为分子量更大的蛋白多糖分子,分布在结缔组织中的蛋白多糖,通过氨基多糖与水结合,这种HA-蛋白质-水形成的凝胶将细胞粘合在一起,发挥正常的细胞代谢作用及组织保水作用,并保护细胞不受病原菌侵害,防止感染,使皮肤具有一定的坚韧性和弹性。年青健康的皮肤与含水量高密切相关,随着年龄的增长,皮肤中水分减少,进而弹性下降,光泽消退,皮肤粗糙衰老。研究表明真皮组织含水量与HA含量有直接关系。皮肤HA的含量在机体的器官中最高,占人体全部HA含量的50%。随着对HA生理功能的深入研究,HA作为化妆品成分用于保养皮肤倍受重视。
     皮肤中的HA主要由皮肤角质形成细胞和成纤维细胞产生,而NAG为HA合成原料之一,故本实验以构成人表皮的主要细胞角质形成细胞(Human epidermal keratinocytes-adult, HEKa)作为切入点,研究外源性NAG对HEKa细胞HA合成的影响,及探讨NAG影响HEKa细胞HA合成的分子机制。
     方法:采用四甲基偶氮唑蓝(MTT)法检测不同浓度NAG对HEKa细胞增殖的影响;酶联免疫吸附试验(Enzyme linked immunosorbent assay, ELISA)检测不同浓度NAG对HEKa细胞HA合成的影响;逆转录聚合酶链反应(Reverse transcription-polymerase chain raction,RT-PCR)测定NAG对HEKa细胞透明质酸合成酶(Hyaluronic acid synthetase, HAS)mRNA的影响,包括HAS1、HAS2和HAS3 mRNA,研究其作用的分子机制。
     结果:MTT结果表明,低浓度的NAG(1mM/L、3mM/L和5mM/L)对HEKa细胞的增殖抑制无明显影响(P>0.05),而10 mM/L的NAG显著抑制HEKa细胞的增殖(P<0.05);ELISA结果显示,NAG呈剂量依赖性促进HEKa细胞HA的生成(P<0.01),最佳浓度为5mM/L;RT-PCR结果显示,NAG对细胞HAS1和HAS2mRNA的表达无明显作用,而1mM/L和5mM/LNAG上调HAS3mRNA的表达,10mM/L的NAG对HAS3mRNA的表达无明显影响。
     结论:(1)不同浓度NAG作用于HEKa,可促进HEKa细胞HA的合成和分泌。(2)高浓度NAG对HEKa细胞增殖具有抑制作用,而低浓度无影响,表明NAG不是通过促进细胞增殖而促进HEKa细胞HA的合成和分泌。其抑制作用有待于进一步研究。(3)NAG促进HEKa细胞HA合成,可能通过上调HAS3mRNA水平或增加HAS活性来增加HA合成,同时有可能作为原料增加而促进HA合成。(4)NAG作为化妆品的成分具有很好的开发前景。
Backgrounds and objectives: Hyaluronic acid (HA) is the linear chain giant molecular polycose composed of glucuronic Acid and N-Acetyl glucosamine (NAG), the polymer of keeping water which exists in the human skin. It is situated in extracellular matrix(ECM) as a water-absorbing macromolecule, and generally exists in vertebrate connective tissue and some bacteria. The strong extension and random curling of HA molecule result in tremendous domain, the hydrodynamics volume is ten times larger than the possessing space of its un-hydrated form. Further more, molecule chains twist between each other to form a consecutive reticular structure, which reacts with water molecule via polar bond and hydrogen bond. HA can absorb and keep water weighing up to thousand fold more than itself because of its structure like“molecule sponge”, and is one of the best internationally accepted moisturizers , keeping extracellular space and promoting ion disolving and transportation of nutrient substances. Besides, proteoglycan composed of HA and protein , has the large molecular weight. Proteoglycan binding to water through glucidamin, exists in connective tissue. The cells are binded by the gelatum composed of HA-protein-water, to run normally the functions of cell metabolism and tissue keeping water, to protect themselves from pathogenic bacteria and prevent infection, and to keep tenacity and elasticity of the skin. Youthful and healthy skin is closely related to its high moisture capacity, which decreased as the age increased. And then the skin elasticity decreases, the gloss fades away and the skin become rough and aging. The previous study indicated that the moisture capacity of corium is related to HA content. The content of skin HA, comprised 50% of the total content, is the highest in the body. With in-depth study on the physiologic function of HA, HA applyingin skin care has received wide attention as a cosmetic ingredient.
     HA is mainly produced by human epidermal keratinocytes and dermal fibroblasts in skin, and NAG is one of the materials for HA synthesis.The present experiment is focused on adult human epidermal keratinocytes (HEKa), in order to study the effects of exogenous NAG on HA production in HEKa cells and investigate the molecular mechanism of the HA synthesis in HEKa cells affected by NAG.
     Methods: The cell proliferation of HEKa cells affected by NAG were measured by MTT method. Effects of NAG at different concentrations on HA production in HEKa cells were measured by Enzyme linked immunosorbent assay (ELISA). Effects of NAG on Hyaluronic acid synthetase(HAS)mRNA in HEKa cells , including HAS1, HAS2 and HAS3 mRNA, were measured by Reverse transcription-polymerase chain raction (RT-PCR), in order to study the molecular mechanism of NAG.
     Results: The result of MTT indicated that NAG at 1mM/L, 3mM/L and 5mM/L had no effect on cell proliferation of HEKa cells(P>0.05), but NAG at 10 mM/L significantly inhibited the cell proliferation of HEKa cells (P<0.05). The result of ELISA showed that NAG promoting HA production in HEKa cells in dose dependence(P<0.01),and the best concentration was 5mM/L. The result of RT-PCR showed that NAG had no effect on the expression of HAS1 and HAS2 mRNA in HEKa cells, however, NAG at 1mM/L and 5mM/L upregulated the expression of HAS3 mRNA. NAG at 10mM/L had no effect on the expression of HAS3mRNA.
     Conclusions:(1)NAG at different concentrations can promoting HA production and secretion.(2)NAG at high concentration inhibits the cell proliferation of HEKa cells, but there are no effect at lower concentrations, which show that the effect of promoting HA production and secretion is not through cell proliferation. However, the inhibitive effect needs further study.(3)NAG may up-regulate the level of HAS3 mRNA and increase the activity, and may act as material to promoting HA production in HEKa cells. (4)There is good development prospect of NAG as a cosmetic ingredient.
引文
1. Laurent TC, Fraser JR. Hyaluronan. FASEB J, 1992; 6:2397–2404.
    2. Manuskiatti W, Maibach HI. Hyaluronic acid and skin: wound healing and aging. Int J Dermatol, 1996;35:539–544.
    3. Turley EA, Bowman P, Kytryk MA. Effects of hyaluronate and hyaluronate binding proteins on cell motile and contact behaviour. J Cell Sci, 1985; 78: 133– 145.
    4. Alho AM, Underhill CB. The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol, 1989; 108: 1557– 1565.
    5. Toole BP, Jackson G, Gross J. Hyaluronate in morphogenesis: Inhibition of chondrogenesis in vitro. Proc Natl Acad Sci USA , 1972; 69:1384–1386.
    6. Brecht M, Mayer U, Schlosser E, et al. Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem J, 1986; 239:445–450.
    7. Dube B, Luke HJ, Aumailley M, et al. Hyaluronan reduces migration and proliferationin CHO cells. Biochim Biophys Acta, 2001; 1538:283–289.
    8. Cowman MK, Li M, Balazs EA. Tapping mode atomic force microscopy of hyaluronan: Extended and intramolecularly interacting chains. Biophys J, 1998; 75: 2030-2037.
    9. Greco RM, Iocono JA, Ehrlich HP. Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J Cell Physiol, 1998; 177: 465-473.
    10. Culty M, Nguyen HA, Underhill CB. The hyaluronan receptor (CD44) partici- pates in the uptake and degradation of hyaluronan. J Cell Biol, 1992; 116: 1055- 1062.
    11. Heldin P, Laurent TC, Heldin CH. Effect of growth factors on hyaluronan synth- esis in cultured human fibroblasts. Biochem J. 1989; 258:919-922.
    12. Longas MO, Russell CS, He XY: Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging. Carbohydr Res 1987;159:127–136.
    13. Ghersetich I, Lotti T, Campanile G, et al. Hyaluronic acid in cutaneous intrinsic- aging. Int J Dermatol, 1994; 33:119–122.
    14. Sayo T,Sakai S, Inoue S. Synergistic effect of N-Acetylglucosamine and retinoids on hyaluronan production in human keratinocytes. Skin Pharmacol Physiol, 2004; 17:77-83.
    15. Sakai S, Sayo T, Kodama S, et al. N-Methyl-L-serine stimulates hyaluronanproduction in human skin fibroblasts. Skin Pharmacol Appl Skin Physiol, 1999; 12:276–283.
    16. Tammi R, Ripellino JA, Margolis RU, et al. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J Invest Dermatol, 1988;90:412–414.
    17. Sakai S, Yasuda R, Sayo T, et al. Hyaluronan exists in the normal stratum corneum.J Invest Dermatol, 2000;114:1184–1187.
    18. Itano N, Kimata K. Expression cloning and molecular characterization of HAS protein, a eukaryotic hyaluronan synthase. J Biol Chem,1996;271:9875–9878.
    19. Spicer AP, Augustine ML, McDonald JA. Molecular cloning and characterization of a putative mouse hyaluronan synthase. J Biol Chem, 1996;271:23400–23406.
    20. Watanabe K, Yamaguchi Y. Identification of a putative human hyaluronan synth- ase. J Biol Chem, 1996; 271:22945–22948.
    21. Nishida Y, Knudson CB, Nietfeld JJ, et al. Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. J Biol Chem, 1999; 274:21893– 21899.
    22. Spicer AP, Olson ML, McDonald JA. Molecular cloning and characterization of a cDNA encoding the third putative mammalian hyaluronan synthase. J Biol Chem, 1997; 272:8957–8961.
    23. Pummil E, KempnerS, DeAngelis I. Functional Molecular Mass of a Vertebrate Hyaluronan synthase as Determined by Radiation Inactivation Analysis.J Biol Chem, 2001; 276:39832-39841.
    24. Inoue S. Skin hyaluronan(its metabolism and roles in skin physiology). Conne- ctive Tissue, 2001; 33:235–243.
    25. Sayo T, Sugiyama Y, Takahashi Y, et al. Hyaluronan synthase 3 regulates hyalur- onan synthesis in cultured human keratinocytes. J Invest Dermatol, 2002; 118: 43–48.
    26. Weiss JS, Ellis CN, Headington JT, et al. Topical tretinoin improves photoaged skin. A double-blind vehicle-controlled study. JAMA , 1988;259:527–532.
    27. Bryce GF, Bogdan NJ, Brown CC. Retinoic acids promote the repair of the dermal damage and the effacement of wrinkles in the UVBirradiated hairless mouse. J Invest Dermatol, 1988; 91:175–180.
    28. Kligman AM, Dogadkina D, Lavker RM. Effects of topical tretinoin on non-sun-exposed protected skin of the elderly. J Am Acad Dermatol, 1993;29:25–33.
    29. Fritsch P, Sidoroff A. Safety of retinoids and indications for use. Curr Opin Dermatol, 1993; 207–213.
    30. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functi- ons and turnover. J Intern Med, 1997; 242:27-33.
    31. Juhlin L. Hyaluronan in skin. J Intern Med, 1997; 242:61-66.
    32. Moseley R, Leaver M, Walker M, et al. Comparison of the antioxidant properties
    33. Aronson NN Jr, Kuranda MJ. Lysosomal degradation of Asn-linked glycoproteins. FASEB J, 1989;3:2615-2622.
    34. Winterbourne DJ, Barnaby RJ, Kent PW, et al. Incorporation of N-fluoroacetyl -D-glucosamine into hyaluronate by rabbit tracheal explants in organ culture. Biochem J,1979; 182:707-716.
    35. Hinderlich S, Berger M, Schwarzkopf M, et al. Molecular cloning and charact- erization of murine and human N-acetylglucosamine kinase. Eur J Biochem, 2000; 267:3301-3308.
    36. Chou TY, Dang CV, Hart GW. Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA, 1995;92:4417–4421.
    37. Karvinen S, Pasonen-Sepp?nen S, Hyttinen JM, et al. Keratinocyte Growth Factor Stimulates Migration and Hyaluronan Synthesis in the Epidermis by Activation of Keratinocyte Hyaluronan Synthases 2 and 3. J Biol Chem, 2003; 278:49495- 49504.
    1.Lapcik L Jr, Lapcik L, Smedt SD, et al. Hyaluronan: Preparation, Structure, Prope- rties and Applications. Chem Rev, 1998; 98:2663-2684.
    2.Laurent TC, Fraser JR. Hyaluronan. FASEB J, 1992;6:2397–2404.
    3. Cowman MK, Li M, Balazs EA. Tapping mode atomic force microscopy of hyaluronan: extended and intramolecularly interacting chains. Biophys J, 1998; 75: 2030-2037.
    4.Greco RM, Iocono JA, Ehrlich HP. Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J Cell Physiol, 1998; 177: 465-473.
    5.Culty M, Nguyen HA, Underhill CB. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol, 1992; 116:1055-1062.
    6. Heldin P, Laurent TC, Heldin CH. Effect of growth factors on hyaluronan synthesis in cultured human fibroblasts. Biochem J, 1989; 258: 919-922.
    7.Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem, 1934; 107:629-634.
    8.徐凯怡.透明质酸.化学教育,2004;12:10-11.
    9. Evered D,Whelan J.The biology of hyaluronan.Ciba foundation symposium, 1989;143:6-l5.
    10.Scott JE, Cummings C, Brass A, et a1. Secondary and tertiary structures of hyaluronan in aqueous solution , investigated by rotary shadowing-electron microscopy and computer simulation.Biochem J, 199l; 274:699-705.
    11.吴东需主编.糖类的生物化学.北京:高等教育出版社, 1987;627.
    12 . Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med, 1997; 242:27-33.
    13.Itano N, Kimata K. Expression cloning and molecular characterization of HAS protein, a eukaryotic hyaluronan synthase. J Biol Chem, 1996; 271:9875–9878.
    14.Spicer AP, Augustine ML, McDonald JA. Molecular cloning and characterization of a putative mouse hyaluronan synthase. J Biol Chem, 1996; 271:23400–23406.
    15. Watanabe K, Yamaguchi Y. Identification of a putative human hyaluronan synthase. J Biol Chem, 1996; 271:22945–22948.
    16.Nishida Y, Knudson CB, Nietfeld JJ, et al. Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. J Biol Chem, 1999; 274:21893– 21899.
    17.Spicer AP, Olson ML, McDonald JA. Molecular cloning and characterization of a cDNA encoding the third putative mammalian hyaluronan synthase. J Biol Chem, 1997;272:8957–8961.
    18. Sayo T, Sakai S, Inoue S. Synergistic effect of N-Acetylglucosamine and retino- ids on hyaluronan production in human keratinocytes. Skin Pharmacol Physiol, 2004; 17:77-83.
    19. Sayo T, Sugiyama Y, Takahashi Y, et al. Hyaluronan synthase3 regulates hyalu- ronan synthesis in cultured human keratinocytes. J Invest Dermatol, 2002; 118: 43–48.
    20. Karvinen S, Pasonen-Sepp?nen S, Hyttinen JM, et al. Keratinocyte Growth Factor Stimulates Migration and Hyaluronan Synthesis in the Epidermis by Activation of Keratinocyte Hyaluronan Synthases 2 and 3. J Biol Chem, 2003; 278:49495- 49504.
    21.Manuskiatti W, Maibach HI. Hyaluronic acid and skin: Wound healing and aging. Int J Dermatol, 1996; 35:539–544.
    22.Turley EA, Bowman P, Kytryk MA. Effects of hyaluronate and hyaluronate binding proteins on cell motile and contact behaviour. J Cell Sci, 1985; 78: 133– 145.
    23.Alho AM, Underhill CB. The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol, 1989;108:1557– 1565.
    24.Toole BP, Jackson G, Gross J. Hyaluronate in morphogenesis: Inhibition of chondrogenesis in vitro. Proc Natl Acad Sci USA, 1972; 69:1384–1386.
    25. Brecht M, Mayer U, Schlosser E, et al. Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem J, 1986; 239:445–450.
    26. Dube B, Luke HJ, Aumailley M, et al. Hyaluronan reduces migration and proliferationin CHO cells. Biochim Biophys Acta, 2001;1538:283–289.
    27.Okasala O, Salo T, Tammi R, et al. Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem, 1995; 43: 125–135.
    28.Underhill CB, Nguyen HA, Shizari M, et al. CD44 positive macrophages take up hyaluronan during lung development. Dev Biol, 1993; 155:324–336.
    29.Bartolazzi A, Peach R, Aruffo A, et al. Interaction between CD44 and hyaluro- nate is directly implicated in the regulation of tumor development. J Exp Med, 1994; 180:53–66.
    30.Swann DA, Radin EL, Nazimiec M, et al. Role of hyaluronic acid in jointlubrication. Ann Rheum Dis, 1974; 33:318–326.
    31.Lee JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol, 2000; 12:581-586.
    32 . Laugier JP, Shuster S, Rosdy M, et al. Topical hyaluronidase decreases hyaluronic acid and CD44 in human skin and in reconstituted human epidermis: evidence that hyaluronidase can permeate the stratum corneum. Br J Dermatol. 2000; 142:226-33.
    33.Sugiyama Y, Shimada A, Sayo T, et al. Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-beta upregulates their expression in cultured human skin cells. J Invest Dermatol, 1998; 110:116-121.
    34.Sakai S, Yasuda R, Sayo T, et al. Hyaluronan exists in the normal stratum corneum. J Invest Dermatol, 2000; 114:1184–1187.
    35.Sakai S, Sayo T, Kodama S, et al. N-Methyl-L-serine stimulates hyaluronan production in human skin fibroblasts. Skin Pharmacol Appl Skin Physiol, 1999; 12:276–283.
    36.Tammi R, Ripellino JA, Margolis RU, et al. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J Invest Dermatol, 1988; 90:412–414.
    37.Juhlin L. Hyaluronan in skin. J Intern Med, 1997; 242:61-66.
    38.Meyer LJM, Stern R. Age-dependent changes of hyaluronan in human skin. J Invest Dermatol, 1994;102:385-389.
    39.Torvard CL,Robert EF.Repair of DNA containing O6-alkylguanine FASEB J, 1992;6:2307-2310.
    40.Tan SW, Johns MR, Greenfield PF. Hyaluronic acid--a versatile biopolymer. Austral J Biotech, 1990; 4:38-43.
    41.Miller D, Stegmann R, Healon A .Guide to its Use in Ophthalmic Surgery. New York:Wiley. 1963;38:.
    42.Cavallini GM,Campi L,Delvecchio G,et a1.Comparison of the clinical perform ance of Healon 5 and Healon in phacoemulsification.Eur J Ophthalmol, 2002; 12:205-2l1.
    43.Butler J, Rydell NW,Balazs EA. Hyaluronic acid in synovial fluid. VI. Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of arthritis in track horses. Acta Vet Scand, 1970; 11:139-155.
    44.Engstrom LA.Unusually stable helix formation in short alanine-based peptidesCiba Foundation Symposium, 1989;143:233-241.
    45.Adams DH, Wang L, Hubscher SG, et al.Hepatic endothelial cells. Targets in liver allograft rejection? Transplantation, 1989; 47:479-482.
    46.王敬旭 .透明质酸及透明质酸酶在肿瘤诊断中的研究进展.国外医学肿瘤分册,2004;31:752—754。
    47.Bergeret G C,Latouche X,Illouz Y G.The value of a fill ermaterial in corrective and cosmetics urgery:Derma Live and Derma Deep.Aesthetic Plast Surg, 2001; 25: 249-255.
    48.Collawn SS. New product for treating facial wrinkles. FDAConsumer,2004;38:2.
    49 . Yamamoto H . Antiaging and cosmetic effects of dietary hyaluronie acid (extracellular matrix extract).New Food lnd, 1998;40:33-41.
    50.马振友等.皮肤美容化妆品制剂手册. 中医古籍出版社, 2004,512-620。
    51.Moseley R, Leaver M, Walker M, et al. Comparison of the antioxidant properties of HYAFF-11p75, AQUACEL and hyaluronan towards reactive oxygen species in vitro. Biomaterials, 2002; 23:2255-2264.
    52.Iordanov I, Bainova A, Chipilska L. A hygienic study of new raw materials for cosmetic agents and household chemical preparations. Probl Khig, 1990; 15: 30-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700