YAG单晶和陶瓷的制备与激光损伤形貌特征及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用传统的提拉法制备了YAG晶体以及采用固相反应法制备了YAG透明陶瓷,并对YAG晶体和陶瓷的性能进行了表征,为了研究YAG晶体材料的激光损伤性能,采用毫秒、纳秒、飞秒三种特征脉宽的激光对YAG材料进行损伤试验,分析了三种情况的激光损伤YAG材料的形貌及其损伤机理。
     在YAG单晶制备方面,研究结果表明:采用传统晶体生长的方法-提拉法制备了YAG晶体,能够保证晶体的质量,经加工制备的YAG单晶试样,在空气和真空热处理条件下进行性能对比,采用XPS、透过率、XRD半峰高宽表征手段进行表征,确定影响YAG单晶试样光学质量的影响因素。
     在YAG透明陶瓷制备方面,研究结果表明:采用高纯的Y_2O_3、Al_2O_3粉或Y_2O_3粉、Al粉固相反应两种途径制备了YAG粉体,研究表明采用Y_2O_3粉、Al粉在固相反应制备出YAG粉体比Y_2O_3、Al_2O_3粉制备生成温度低,能够在1200℃煅烧制备出YAG粉体,而高纯Y_2O_3、Al_2O_3粉体能够烧结合成YAG透明陶瓷,Y_2O_3粉体、Al粉体烧结的YAG陶瓷性能不理想。
     本文采用毫秒激光损伤YAG单晶,详细研究了毫秒级脉宽单脉冲激光损伤过程及其机理。研究结果表明:YAG晶体或透明陶瓷在毫秒激光损伤条件下是以熔融为主的破坏机理,表面形成锥形熔坑,其深度与激光能量的线性度较好。以激光对YAG单晶的热传导、熔融、汽化、电离四个过程为基础建立数学模型模拟激光损伤,并与实验值对比,具有较好的吻合度。同时还分析了毫秒激光切割YAG晶体的断口形貌,并从理论上加以解释。
     通过使用纳秒激光对YAG单晶和透明陶瓷损伤形貌及机理进行了详细的研究。研究表明:纳秒激光对YAG产生面损伤时,是以表面蒸发和体蒸发为主要损伤机理;纳秒激光对YAG产生体损伤时,是以热爆炸为主要损伤机理,晶体内部被激光融化,产生膨胀,表面产生了隆起,当激光脉冲能量足够大时,晶体开裂;YAG陶瓷损伤与YAG单晶损伤机理基本相似。
     本文还研究了飞秒级超短脉宽激光损伤形貌及其机理。研究表明:YAG晶体的飞秒激光面损伤是强电场剥离表面原子机理损伤为主,实验采用的极大值法确定的不同热处理后的YAG烧蚀阈值,采用Robert Eason的介电材料烧蚀阈值计算法计算YAG晶体的烧蚀阈值,两者较接近。采用Betis的电场临界阈值计算法和Bulgakova的库仑爆炸理论的计算法对YAG材料的临界电场进行分析比较,计算结果相近,从机理上解释了表面强电场剥离表面原子。基于飞秒激光对YAG单晶和透明陶瓷产生的原子发射光谱进行了对比,分析出飞秒激光损伤YAG材料产生了Y、Al、Y离子、Al离子、YO分子、AlO分子的发射谱线。
YAG crystal was prepared by traditional Czochrolski Method and YAG transparent ceramics was prepared by solid-state reaction method, and the performances of YAG crystal and ceramics were characterized. In order to investigate laser-induced damage of YAG material, millisecond, nanosecond and femtosecond pulsewidth laser were used to induce damage of YAG, three kinds of damage mechanism for YAG by laser were analyzed.
     For preparation of YAG crystal, the experimental results show that: YAG crystal was prepared by Czochrolski Method-a kind of traditional crystal methods, which guarantee the quality of YAG crystal. To compare the characterization of YAG crystal specimen by heat treatment under vacuum or air with as prepared, XPS, transimittance, FWHM of XRD were used, trying to determine the effect factors of optical quality for YAG crystal.
     For preparation of YAG transparent ceramic, study results show that:YAG powder could be synthesized by high-purity Y_2O_3, Al_2O_3 powder or Y_2O_3,Al powder by solid-state reaction method. The temperature of YAG powder synthesized by latter method is lower than former one, and YAG powder could be synthesized at 1200℃, YAG transparent ceramics could be prepared by Y_2O_3 ,Al_2O_3 powder and could not by Y_2O_3, Al powder.
     In this paper, ms laser was used to induce damage for YAG crystal, and the single pulse ms laser induced damage and its mechanism was studied in detail. The results show that: the main mechanism of ms laser damage for YAG crystals or transparent ceramic is melting, cone-shaped keyhole is formed on the surface, and its depth is near linear to laser energy. Laser induced damage to YAG based on heat conduction, melting, vaporization, ionization four processes, a mathematical model is established and results agree well with experimental data. At the same time cutting kerf of YAG crystal by ms laser is analyzed and explained by theory.
     YAG crystal and transparent ceramics damaged morphology and mechanism by laser is of a detailed study. Research result shows that: For surface damaged YAG by ns laser, surface evaporation and bulk evaporation are the main damage mechanism; For bulk damaged YAG by ns laser, thermal explosion is the main damaged mechanism, crystal is melt by laser inside, then expanded, surface uplift, crystal will be crack while the laser pulse energy sufficiently large; The damage mechanism of YAG ceramic is similar to that of YAG crystal.
     Ultrashort pulse fs laser induced damage morphology and its mechanism is also studied in detail. Result shows that: main mechanism of crystal damage by laser is strong electric field strip the surface atom. Ablation threshold of different treatment of YAG is determined by maximum value method and it is very near to the value computed by dielectric abalation threshold by Robert Eason, the result is similar between Betis’critical electric field threshold with Bulgakova’Coulomb explosion theory, Strong electric field stripping the atom on the surface is analyzed from theory, Y atom, Al atom, Atom emission spectra of Y ion, Al ion, YO molecule, AlO molecule appear for YAG by fs laser induced damage.
引文
1. D.C. Harris, L. F. Johnson. Navy Mechanical Test Results from the Sapphire Statistical Characterization and Risk Reduction Program. Proceedings of SPIE. 1999, 3705:44~50
    2. G.S. Corman.Creep of Yttrium Aluminium Garnet Single Crystals. Journal of Materials Science Letters. 1993, 12(6):379~382
    3. M. J.Melendo and H. Haneda. Ytterbium Cation Diffusion in Yttrium Aluminum Garnet (YAG)-Implications for Creep Mechanisms. Journal of the American Ceramic Society. 2001, 84(10):2356~2360
    4. D.C. Harris.Durable 3-5μm Transmitting Infrared Window Materials. Infrared Physics & Technology. 1998, 39(1):185~201
    5. D.C. Harris. Durable 3-5μm Transmitting Infrared Window Materials. Infrared Physics & Technology. 1998, 39(1):185~201
    6. http://www.cas.ac.cn. 2006
    7.李世涛,乔学亮,陈建国,梅冰.卫星多功能激光防护膜层的研究.激光杂志. 2005, 26(4):9~10.
    8.李晓溪,贾天卿,冯东海,徐至展.超短脉冲激光照射下氧化铝的烧蚀机理.物理学报. 2004,53(7):2154~2158
    9. Http:// www.vloc.com.Yttrium Aluminum Garnet Laser Materials. 2002
    10.陆学善.激光基质钇铝石榴石的发展.北京:科学出版社. 1972:35~56
    11.干福禧,邓佩珍.激光材料.上海:科学技术出版社.1996:169~175
    12. E.Kanchanavaleerat, D. Cochet-Muchy,J. Stone-Sundberg et al. Crystal growth of high doped Nd:YAG. Optical Materials. 2004, 26(4): 337~341
    13. M.J.-Melendo, A. H.,H. Nozawa. Ytterbium Cation Diffusion in Yttrium Aluminum Garnet (YAG)-Implications for Creep Mechanisms. Journal of American Ceraimcs of Society. 2001, 84(10):2356~2360
    14. Ashot G. Petrosian, U. Abovyana, Erevan,K. S. Bagdasarov. Single-Crystal Material Based on Aluminium Garnets. US Patent Number. 4525460, 1985
    15. L.I.Kazakova, G.M.Kuz’micheva, Suchkova and E .Suchkova. Growth of Y3Al5O12 crystals for Jewelry. Inorganic Materials. 2003, 39(9):959~970
    16. G. Bayer. The Thermal Expansion Anisotropy of Oxide CompoundsProceeding of British Ceramics of Society. 1973, 22:39~53
    17. C.W.Lan. Three-dimensional simulation of floating-zone crystal growth of oxide crystals. Journal of crystal growth. 2003, 247(3):597~612
    18. P. A. Giesting,A. M. Hofmeister. Thermal conductivity of disordered garnets from infrared spectroscopy. Physical Review B. 2002, 65(14):144305
    19. J. K. Richard Weber, Shankar Krishnan, Stuart Ansell, April D. Hixson et al. Structure of Liquid Y3Al5O12(YAG). Physical Review Letters. 2000, 84(16):3622~3625
    20. Xiaodong Xu, Zhiwei Zhao, Jun Xu,Peizhen Deng. Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05,0.1 and 0.25) single crystals. Solid State Communications. 2004, 130:529~532
    21. Jun Dong, Ken-ichi Ueda, Akira Shirakawa, Hideki Yagi et al. Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers. Optics Express. 2007, 15(22):14516~14523
    22. Akio I, Kiichiro K, Kunio Y. Effects of Neodymium concentration on optical characteristics of polycrystalline Nd YAG laser materials. Journal of American ceramics Society. 1996, 79(7):1921~1926
    23. I. Akio, K.Toshiyuki,K. Kiichiro et al. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. Journal of American Ceraimcs of Society. 1995,78(4):1033~1040
    24. S.M.Kaczmarek, D.J.Sugak, A.O.Matkovskii, Z.Moroz et al. Radiation induced recharging of cerium ions in Nd,Ce:Y3Al5O12 single crystals. Nuclear Instruments and Methods in Physics Research B. 1997, 132(4):647~652
    25. S. M. Kaczmarek, G. Domianiak-Dzik,W. Ryba-Romanowski, et al. Changes in Optical Properties of Ce:YAG Crystals under Annealing and Irradiation Processing. Crystal Research and Technology. 1999, 34(8):1031~1036
    26. A.O.Matkovskii, D.Yu.Sugak, A.N.Durygin, S.Kaczmareket al. Effect of ionizing radiation on optical and lasing properties of Y3Al5O12 single crystals doped with Nd, Er, Ho, Tm, Cr ions. Optical Materials. 1996, 6(4):353~358.
    27. A. Golubovic, S. Nikolic, R. Gajic et al. The growth of Nd: YAG single crystals. Journal of the Serbian Chemical Society. 2002, 67(4):291~300
    28. R.C.Linares. Growth of Garnet Laser Crystals. Solid State Communications.1964, 2(8):229~231
    29. P. Hintza, D. Schwabea,H. Wilke. Convection in a Czochralski Crucible-Part 1: on-Rotating Crystal. Journal of Crystal Growth. 2001, 222:343~355.
    30. X. H. Niu, G. Q. Lu,W. L. Zhang. Dislocation of Cz-Sapphire Substrate for GaN Growth by Chemical Etching Method. Transactions of Nonferrous Metals Society of China. 2006, 16(S1):s187~s190
    31. G. Jacob. A Novel Crystal Growth Method for GaAs: the Liquid Encapsulated Kyropoulos Method. Journal of Crystal Growth. 1982, 58(2):455~459
    32. B. S. Ahern, S. Bachowski. Magnetically Stabilized Kyropoulos Growth of Undoped InP. Materials Letters. 1989, 8(11-12):486~488
    33. B.M. Epelbaum, A. Yoshikawa, K. Shimamura, T. Fukuda et al. Microstructure of Al2O3/Y3Al5O12 eutectic fibers grown byμ-PD method. Journal of Crystal Growth. 1999, 198/199:471~475
    34. B.M. Epelbaum, G. Schierning, A.Winnacker. Modification of the micro-pulling-down method for high temperature solution growth of miniature bulk crystals. Journal of Crystal Growth. 2005, 275(1-2):867~870
    35. V.I.Chani, A. Yoshikawa, Y. Kuwano et al. Growth of Y3Al5O12:Nd fiber crystals by micro-pulling-down technique. Journal of Crystal Growth. 1999, 204:155~162
    36. V.I.Chani, A. Yoshikawa, H. Machida, T. Fukuda. (Tb,Yb)3Al5O12 garnet:crystal-chemistry and fiber growth by micro-pulling-down technique. Materials Science and Engineering B. 2000, 75(1):53~60
    37. C.A.Burruset. Room-temperature 1.3μm CW Operation of a glass-clad Nd:YAG single crystal fiber laser end pumped with a single LED. Electronics Letters. 1976, 12(22):600~602
    38. C.A.Burrus, J.Stone. Single-crystal fiber optical devices:A Nd:YAG fiber laser. Applied Physics Letters. 1975, 26(6):318~322
    39.戴中勇.掺钕钇铝石榴石晶体光纤镭射之研制.国立中山大学硕士论文学位论文. 2001: 18~44
    40. K.S.Bagdasarov, N. P. Ilin, Jury Alexandrovich starostin. Apparatus for growing single crystals of high-melting oxides. US patent number. 4013421, 1977
    41. H. S. Lee. Bridgman Growth and Characterization of Single Crystals of Strontium Barium Niobate and Related Materials. Doctor of Philosophy Dissertation of Stanford University. 2000: 32~45
    42. Kh.S.Bagdasarov, S V Lingart, E E Khazzrnov Ju K. Temperature fields during sapphire crystal growth. Journal of crystal growth. 1981, 52:417.
    43. O. Pavloff, R Minchev I Karlovski, Yh Lingart,N Tichonova. Horizontal zone melting Nd3+:YAG crystal growth :comparison of predicted interface relocation with operating data. Crystal properties and preparation. 1991, 36-38:204~208
    44. Http//:www.mrs.org/meetings/fall2001/program/symposia/H.html
    45.Х.С.Багдасаров,Л.А.Горяинов.ТепловыеПроцессыВыращиванияМонокристаллоаЛейкосапфираГоризонтальнойНаправленнойКри-сталлизацией.ПерспективныеМатериалы. 2001, 6:45~50
    46. Kh.S.Bagdasarov, Okinshevich V.,Kholov A. On the Theory of Capture of Gas Babble by a Crystal Growing from the Melt. physica status solidi A. 1980:317~322
    47. A. Horowitz, S. Biderman,G. Ben Amar. Growth of Single Crystals of Optical Materials via the Gradient Solidification Method. Journal of Crystal Growth. 1987, 85:215~222
    48.С.В.Бодячевския,Л.А.Аввакумова.РазроботкаМетодовиОборудованиядляПолученияКрупногабаритныхКристаллов.НеорганическиеМатериалы. 2005, 13(3):56~59
    49.周永宗.一种耐高温的温梯法晶体生长装置.专利证书号. 85100534.9, 1985
    50.周永宗.中性、惰性气氛中晶体的退火处理方法.专利证书号. 10028670.5 2005
    51.周永宗.双加热温梯法晶体生长装置.专利证书号. 200420082546, 2005
    52.徐军,周国清,邓佩珍,司继良等.温梯法蓝宝石(Al2O3)晶体的脱碳去色退火研究.无机材料学报. 2005, 20(5):1095~1098
    53. De With G.,and Van Dijk H J A. Translucent Y3Al5O12 ceramics. Materials Research Bulletin. 1984, 29(12):1669~1674
    54. A. Ikesue, I. Frusta,and K. Kamata. Fabrication of Polycrystalline,transparent YAG ceramics by a solid-state reaction method. Journal of AmericanCeraimcs of Society. 1995, 78(1):225~228
    55.王宏志,高濂, Hirokazu Kawaoka, Tohru Sekino et al.多晶YAG陶瓷的制备及力学性能.硅酸盐学报. 2001, 29(1):35~38
    56. J.G. Li, V. Ikegami,and J.H. Lee. Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives. Journal of American Ceraimcs of Society. 2000, 83(4):961~963
    57. Wen Lei, Sun Xudong,Xiu Zhimeng. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics. Journal of the European Ceramic Society. 2004, 24(9):2681~2688
    58. E. Zych, C. Brecher, A.J. Wojtowicz, H. Lingertat. Luminescence properties of Ce-activated YAG optical ceramic scintillator materials. Journal of Luminescence. 1997, 75:193~203
    59. E. Zych, C. Brecher,H. Lingertat. Depletion of high-energy carriers in YAG optical ceramic materials. Spectrochimica Acta Part A. 1998, 54:1771~1777.
    60. E. Zych, C. Brecher. Temperature dependence of Ce-emission kinetics in YAG:Ce optical ceramic. Journal of Alloys and Compounds. 2000, 300-301:495~499
    61. I. Akio,and K.Kiichiro. Microstructure and optical properties of Hot Isostatically Pressed Nd:YAG ceramics. Journal of American Ceramics Society. 1996, 79(7):1927~1933
    62. R. Chaim, R. Marder-Jaeckel, and J.Z. Shen. Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering. Materials Science and Engineering: A. 2006, 429(1-2):74~78
    63.周维军.激光辐照短波通截止膜的温升规律和损伤效应研究.中国工程物理研究院硕士论文. 2007:1~18
    64.陈飞,孟绍贤.光学材料破坏机理.物理学进展. 1998, 18(2):187~206
    65. Du Detao.Laser-induced electric breakdown in optical materials with pulse widths ranging from 55fs to 7ns. Thesis of Ph.D of University of Michigan. 1996:2~11
    66. R. A. Whalen. Numerical Modeling of Microscale Heat Transfer Effects in Thermally Stimulated Nonlinear Optical Materials. Thesis of Ph.D of University of Northeasten University. 1999:1~13
    67.孙承伟.激光辐照效应.北京:国防工业出版社, 2002:20~60
    68.孙承伟.激光辐照效应.北京:国防工业出版社, 2002:20~35
    69.刘强,林理彬,甘荣兵,唐方元等.高反射膜激光零几率损伤阈值的实验研究.强激光与粒子束. 2003, 15(6):538~542
    70. C. W. Carr. Experimental studies of laser-induced breakdown in transparent dielectrics. Thesis of Ph.D of University of California. 2003:30~40
    71.李仲伢,程雷,李成富.熔石英玻璃和白宝石晶体激光损伤的研究.中国激光A. 2002, 29(10):920~92
    72. S. Wang, Y. Yang, Z. Sun, and D. D. Dlott. Fast spectroscopy of energy release in nanometric explosives. Chemical Physics Letters. 2002, 368(1-2):189~194
    73. Y. Yang, Z. Sun, S. Wang,D. D. Dlott. Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials. Journal of physical chemistry B. 2003, 107(19):4485~4493
    74. J M Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes. optics letters. 1982 7(5):196~198
    75. X.C. Wang, G.C. Lim, H.Y. Zheng, F.L. Ng et al. Femtosecond pulse laser ablation of sapphire in ambient air. Applied Surface Science. 2004, 228:221~226
    76. A Starke, A. Bernhardt. Laser Damage Threshold Measurement According to ISO11254 Experimental Realisation at 1064 nm. SPIE. 1994, 2114:212~219
    77. J. Becker, A. Bernhardt. ISO11254, an international standard for the determination of the laser induced damage threshold. SPIE. 1994, 2114:703~713
    78.夏晋军,龚辉,程雷,李成富.光学材料连续波激光热-力破坏效应.光学学报. 1997, 17(1):20~23
    79.郭少锋,陆启生,程湘爱,江厚满等.连续激光辐照下光学材料损伤阈值的光斑效应.光学学报. 2002, 22(9):1055~1058
    80. H. Horisawa, H. Emura, N. Yasunaga. Surface machining characteristics of sapphire with fifth harmonic YAG laser pulses. Vacuum. 2004, 73: 661~666
    81. J. F. Bredt. Laser machining of ceramics and metals: development of a laser lathe. Thesis of Ph D. of Massachusettes Institute of Technology. 1987:44~67
    82. W.M.Steen. Laser material processing.3th edition.London: Springer Verlag.1991:70~94
    83. Sh. N. Luo, Pedro D. Peralta, Chi Ma,Dennis L. Paisley et al. Sapphire (0001) surface modifications induced by long-pulse 1054 nm laser irradiation. Applied Surface Science. 2007, 253:9457~9466
    84. J.F. Bisson, Y. Feng, A.Shirakawa et al. Laser Damage Threshold of Ceramic YAG. Jpn J Appl Phys Part 2. 2003, 42(8):L1025~L1027
    85. E.Joshua, Rothenberg,and Gad Koren. Laser produced plasma in crystalline a-Al2O3 and aluminum metal. Applied Physics Letters. 1984, 44(7): 664~666.
    86. R. W. Dreyfus,Roger Kelly and R. E.. Walkup R. W. Laser-induced fluorescence studies of excimer laser ablation of Al2O3. Applied Physics Letters. 1986, 49(21):1478~1480
    87. S. I. Dolgaev, A A Lyalin, A V Simakin,G A Shafeev. Fast etching of sapphire by a visible range quasi-cw laser radiation. Applied Surface Science. 1996, 96-98:491~195
    88. T.V. Kononenk, S.V. Garnov,S.M. Klimentov et al. Laser ablation of metals and ceramics in picosecond-nanosecond pulsewidth in the presence of different ambient atmospheres. Applied Surface Science. 1997, 109/110:48~51
    89.夏晋军,程雷,龚辉,李仲伢等.光学材料的多脉冲激光损伤研究.光学学报. 1997, 17(2):231~236
    90.李晓溪.飞秒激光作用下透明材料的烧蚀机理及其超快动力学研究.中国科学院上海光机械所博士论文. 2005:2~18
    91.蒋成勇.激光、γ射线及中子对高温氧化物晶体辐照效应的研究.中国科学院上海光机械所博士论文. 2004:1~21
    92. M.S.B. Darby, T.C. May-Smith, T. Donnelly R.W. Eason, J.G. Lunney, K.D. Rogers. A comparative study of gadolinium gallium garnet growth by femtosecond and nanosecond pulsed laser deposition. Applied Surface Science. 2008, 254:3364~3369
    93. D. Ashkenasi, R. Stoian, A. Rosenfeld. Single and multiple ultrashort laser pulse ablation threshold of Al2O3(corundum) at different etch phases. Applied Surface Science 2000, 154-155 40~46
    94. Sh.zh. Xu, J.r.g Qiu, T.q. Jia et al. Femtosecond laser ablation of crystals SiO2 and YAG. Optics Communications. 2007, 274:163~166
    95. W. Perrie, A. Rushton,et al M. Gill. Femtosecond laser micro-structuring of alumina ceramic. Applied Surface Science. 2005, 248:213~217
    96.张问辉.高功率激光诱导光学元件损伤场效应及阈值测定研究.四川大学硕士学位论文. 2005:45~60
    97.赵强.光学薄膜的激光损伤研究与薄膜特性的光热测量.中国科学院上海光机所博士论文. 1999:43~78
    98.激光晶体编写组.激光晶体.第1版.上海:人民出版社.1976:164~170
    99. C.Belouet. About the crystalline perfection of Nd doped YAG single crystals. Journal of Crystal Growth. 1972, 15(3):188~194
    100. W.T.Stacy. Dislocations, facet regions and growth striations in garnet substrates and layers. Journal of Crystal Growth 1974, 24/25:137~143
    101.闵乃本,杨永顺.直拉法YAG的小面生长和邻位面生长.物理学报. 1979 28(3): 285~296
    102.姜腾雨,张华.优质大尺寸Nd: YAG晶体生长技术的研究.人工晶体学报. 1996 25(3 ):205~211
    103. T.Yao,J.C.Han,H.B.Zuo et al. Effect of the shouldering angle on distribution of thermal stress in sapphire single crystal growth using improved Kyropoulos. Journal of Rare Earths. 2006, 24:233~236
    104.陈远帆. (YxYb1-x)3Al5O12晶体的生长与物理性质研究.国立中山大学物理研究所博士论文.2004:55~70
    105. Q. Xiao, J. J. Derby. Heat transfer and interface inversion during the Czochralski growth of yttrium aluminum garnet and gadolinium gallium garnet Journal of crystal growth. 1994, 139(1-2):147~157
    106. K.n Lal, R.V. Anantha Murthy,Ashutosh Choubey et al. Crystal Growth Technology.New york: William Andrew Inc., 2003:22~45
    107. H. J. Scheel,T. Fukuda. Crystal Growth Technology.Sussex: John Wiley & Sons, Ltd. , 2003:96~98
    108. E.r Savrun, C. Toy, D. William et al. Is Sapphire Inherently Weak in Compression at High Temperatures? SPIE. 1999, 3705:12~16
    109.裴光文,钟维烈,岳书彬.单晶,多晶和非晶物质的X射线衍射.济南:山东大学出版社. 1989:33~50
    110.徐景阳,谭淞生,许顺生. X射线双晶衍射技术.半导体学报. 1996, 17(1):42~44
    111. B.D.Cullity. Elements of X-Ray Diffraction.Massachusetts: Addison-Wesley Publishing Company.INC.. 1978:50~88
    112.麦振洪,贺楚光,崔树范. X射线双晶衍射摇摆曲线本征半峰宽的理论计算.物理学报. 1990, 39(5):782~787
    113. Tai-Il Mah and Triplicane A parthasrathy. Effects of temperature, Environment, and Orientation on the fracture toughness of single-crystal YAG. Journal of the American Ceramic Society. 1997, 80(10):2730~2734
    114. Tai-Il Mah,and Triplicane A parthasrathy. Fracture toughness of single crystal YAG. Scripta Metallurgica et Materialia. 1993, 28 (11):1383~1385
    115. S. Karato, Z. W ang, K Fujinno. High-temperature creep of yttrium-aluminium garnet single crystals. Journal of Materials Science Letters. 1994, 29(24):6458~6462
    116. J. Chen, D.Q.Chen, and J.L.Zhang. Molecular dynamics simulation of thermodynamic properties of YAG. Chinese Physics. 2007, 16(9):2779~2785
    117. H.Haneda, Y.Miyazawa and S.Shirasaki. Oxygen diffusion in single crystal yttrium aluminum garnet. Journal of crystal growth. 1984, 68(22):581~583
    118. S.R.Rotman,C.Warde, H.L.Tufer and J.Haggerty. Defect-property correlations in garnet crystals.V. Energy transfer in luminencent yttrium aluminum-yttrium iron garnet solid solutions. Journal of Applied Physics. 1999, 66(7):3207~3211
    119. I.Akio, Y. Kunio, K.Kiichiro. Transparent Cr4+ doped YAG ceramics for tunable lasers. Journal of American Ceramics Society. 1996, 79(2):507~509
    120. M.M Kuklja. Defects in Yttrium Aluminium Perovskite and Garnet Crystals: Atomistic Study. Journalof Physics: Condensed Matter. 2000, 12(13):2953~2967
    121. D.A.Pawlak. ESCA Studies of Yttrium Aluminum Garnets. Journal of Physical Chemistry B. 1999, 103(9):1454~1461
    122. M. Kruczek, E. Talik, H.Sakowska et al. X-ray photoelectron spectroscopy investigations of Y3Al5O12Yb. Crystal Research and Technology. 2005, 40(45):439~443
    123. T.L.Barr, S.Seal, K.Wozniak and J.Klinowski. ESCA studies of the coordination state of aluminium in oxide environments. Journal of the Chemical Society. Faraday Transactions. 1997, 93(1):181~186.
    124.刘世宏,王当憨,潘承黄.X射线光电子能谱分析.北京:科学出版社, 1988:133~167
    125. I.Matsubara,M.Paranthaman, M.R.Cates et al. Preparation of Cr-doped Y3Al5O12 Phosphors by Heterogeneous Precipitation Methods and Their Luminescent Properties. Materials Research Bulletin. 2000, 35(2):217~224
    126. SN Patankar, D. Zhang, G. Adam et al. Processing of yttrium–aluminum garnets under non-equilibrium conditions. Journal of Alloys and Compounds. 2003, 353(1-2):307~309
    127. L.B.Kong, J.Ma,H. Huang.Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process. Materials Letters. 2002, 56(3):344~348
    128. A Ikesue, T Kinoshita,K Yoshida K Kamata. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. Journal of the American Ceramic Society.1995,78(4): 1033~1040
    129. M.T.A. Saif, S. Zhang, A. Haque, K.. Hsia. Effect of native Al2O3 on the elastic response of nanoscale aluminum films. Acta Materialia.2002, 50(11):2779~2786
    130. B.Ealet, MH Elyakhloufi,E. Gillet and M. Ricci. Electronic and crystallographic structure ofγ-alumina thin films. Thin Solid Films. 1994, 250(1-2):92~100
    131.王盘鑫.粉末冶金学.北京:冶金工业出版社.1996:118~120
    132.王盘鑫.粉末冶金学.北京:冶金工业出版社.1996:181~190
    133. N. J. Hess, G. D. Maupin, D. S. Sunberg L. A. Chick, D. E. McCreedy and T. R. Armstrong. Synthesis and crystallization of yttrium-aluminum garnet and related compound.Journal of materials science letters.1994, 29(7):1873~1878
    134. Wang S, Yamamoto F, Tanabe Y Akatsu T, Yasuda E. Metastable precipition of YAlO3 in isothermally solidified YAG/Al2O3-rich spinel composites. Journal of Materials Science Letters. 1998, 33(21):5157~5162
    135. I-Ching Lin, Alexandra Navrotsky, Nordine P C J.K.Richard Weber. Thermodynamics of glass formation and metastable solidifacation of molten Y3Al5O12. Joural of Non-Crystalline Solids. 1999, 243(2-3):273~276
    136.李俊昌.激光的衍射与热作用的计算.北京:科学出版社. 2002:215~240
    137. Y.F.Lu, T.E.Loh, H.G. Soh and T.S.Low. Laser-induced temperature rise in Gaussian-shaped holes. Applied Surface Science. 1995, 90(2):217~225
    138. W. M.Steen. Laser material processing.3th edition.London: Springer Verlag, 1991:113~120
    139. U. Dilthey, A Goumeniouk, V Lopota and G Turichin. Kinetic description of keyhole plasma in laser welding. Journal of Physics D: Appllied Physics. 2000, 33:2747~2753
    140. A. Kar,J. Mazumder. Mathematical modeling of key-hole laser wvelding. Journal of Appllied Physics. 1995, 78(11):6353~6360
    141. Y. Lawrence Yao, Hongqiang Chen, Wenwu Zhang. Time scale effects in laser material removal: a review. The International Journal of Advanced Manufacturing Technology. 2005, 26:598~609
    142. Y. Nakada and M. A. Giles. X-Ray and Scanning Electron Microscope Studies of Laser-Drilled Holes in A12O3 Substrates. Journal of The American Ceramic Society. 1971, 54(7):354~356
    143. B. Cockyne and B. Lent. A complexity in the solidification behaviour of molten Y3Al5O12. Journal of crystal growth. 1979, 46(3):371-378.
    144. I Black,K L Chua. Laser cutting of thick ceramic tile. Optics and laser Technolgoy. 1997, 29(4):193~205
    145. J. Pascual-Cosp, A.J. Ramirez del Valle, J. Garcia-Fortea and P.J. Sanchez-Soto.Laser cutting of high-vitrified ceramic materials: development of a method using a Nd:YAG laser to avoid catastrophic breakdown. Materials Letters. 2002, 55(4):274~280
    146. Ch.H. Tsai, Ch.J. Chen. Application of iterative path revision technique for laser cutting with controlled fracture. Optics and Lasers in Engineering. 2004, 41(4):189~204
    147. Sh.j. Lv, Y. Wang. An investigation of pulsed laser cutting of titanium alloy sheet. Optics and Lasers in Engineering.2006, 44(10):1067~1077
    148. A. Miotello, R. Kelly. Critical assessment of thermal models for laser sputtering at high fluences. Applied Physical Letters. 67(24):3535~3537
    149. E.G. Gamaly, S. Juodkazis, K. Nishimura et al. Laser-matter interaction in the bulk of a transparent solid:Confined microexplosion and void formation.Physical Review B. 2006, 73(21):214101
    150. E.N.Glezer and E. Mazura. Ultrafast-laser driven micro-explosions in transparent materials. Applied Physical Letters. 1997, 71(7):882~884
    151. A. Salleo. High-Power Laser Damage in Fused Silica.Berkeley: Thesis of Ph.D. of University California. 2001:130~175
    152. J. Ihlemann,B. Wolff-Rottke. Excimer laser micro machining of inorganic dielectrics. Applied Surface Science. 1996, 106:282~286
    153. W.Pome, H.-A.Bahr, G.Kirchhooff I.Pflugbeil, P.Langmeier, H .Wweiss. Laser induced creep and fracture in ceramics. Materials Science and Engineering A. 1997, 23:167~175
    154. M.A.Schildbach, A.V.Hamza. Sapphire (1120) surface Structure and laser induced desorption of aluminum. Physical Review B. 1992, 45(11): 6197~6206
    155. J.F. Bisson, Y. Feng, H. Yoneda et al. Laser Damage Threshold of Ceramic YAG. Japanese Journal of Applied Physics Part 2. 2003, 42(8B):L1025~L1027
    156.程昌钧,王颖坚,李家仁马文华.弹性力学.北京:高等教育出版社. 1999:508~520
    157. P.Rudolph, W. Kautek. Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation. Thin Solid Films. 2004, 453-454:537~541
    158. J. kruger, W. Kautek. Femtosecond-pulse visible laser processing of transparent Materials. Applied Surface Science. 1996, 96-98:430~438
    159. S.Z. Xu, T.Q. Jia,C.B. Li H.Y. Sun, X.X. Li, D.H. Feng, J.R. Qiu, Z.Z. Xu. Mechanisms of femtosecond laser-induced breakdown and damage in MgO. Optics Communications. 2006, 259:274~280
    160. R. Stoian, H. Varel,A. Rosenfeld,et al.Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3. Applied Surface Science. 2000, 165:44~55
    161. O.Ayed Nassef, Hani E. Elsayed-Ali. Spark discharge assisted laser induced breakdown spectroscopy. Spectrochimica Acta Part B. 2005, 60:1564~1572.
    162.李静,张鉴秋,孟祥儒.激光烧蚀硬铝产生等离子体温度和力学效应测量.强激光与粒子束. 2007, 19(2):249~252
    163. http://physics.nist.gov
    164. C. W. Carr. Experimental studies of laser-induced breakdown in transparent dielectrics. Thesis of Ph.D of University of California. 2003:1~20
    165. A.Kar and J.Mazumder. Two-dimensional model for melting and vaporization during optical trepanning. Journal of Applied Physics. 1990, 68:3884~3891
    166. D. Zeng, W. P. Latham,A. Kara. Two-dimensional model for melting and vaporization during optical trepanning. Journal of Applied Physics. 2005, 97:104912~104917
    167. M. J.Mohanty P S and K. A. Mathematical Modelling of Laser Materials Processing. International Journal of Materials and Product Technology. 1996,11(3/4):193~251
    168. L.Schlessinger, J.Wrght. Inverse-bremsstrahlung absorption rate in an intense laser field. Physical Review A. 1979, 20:1924~1945
    169. M. Ostertag, James T McKinley, David M Harris Lou Reinlsch, Norman H Tolk. Laser Ablation as a Function of the Primary Absorber in Dentin. Lasers in surgery and Medicine. 1997, 21(4):384~394
    170. L.Laska D.Margarone, L Torrisi, S.Gammino, J.Krasa, E.Krousky, et al. Studies of craters' dimension for long-pulse laser ablation of metal targets at various experimental conditions. Applied Surface Science. 2008, 254(9):2797~2803
    171. J. Duan, H. C. Man and T. M. Yue. Modelling the laser fusion cutting process: I. Mathematical modelling of the cut kerf geometry for laser fusion cutting of thick metal. Journal of Physics D: Applied Physics. 2001, 34:2127~2134
    172. B.S. Yilbas. Laser cutting quality assessment and thermal efficiency analysis.Journal of Materials Processing Technology.2004,155-156:2106~2115
    173. P.R. Stoddart, P.E. Ngoepe,J. D. Comins et al. High-temperature elastic constants of yttrium aluminum garnet. Journal of Appllied Physics. 1993, 73(11):7298~7301
    174. J.H. Yoo, S.H. Jeong, R. Greif et al. Explosive change in crater propertiesduring high power nanosecond laser ablation of silicon. Journal of Applied Physics. 2000, 88:1638~1649
    175. R.Kelly,A.Miotello. Comments on explosive mechanisms of laser sputtering. Applied Surface Science. 1996, 96-98:205~215
    176. E.Hacker, H.Lauth and P.Weibbrodt. Femtosecond multiphoton generation of the self-trapped excitonin quartz. Proceeding of SPIE. 1996, 2714:316~321
    177. A.Ch. Tien, S.Backus, M. Murnane et al. Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration. Physical Review Letters. 1999, 82(19):3883~3886
    178. R. Niedrig and O. Bostanjoglo. Imaging and modeling of pulse laser induced evaporation of metal films. Journal of Applied Physics. 1997, 81(1):480~485
    179. N.Kuzuu, K.Yoshida, Y.T.Kanyoshi Ochi, et al. Laser-Induced Bulk Damage of Various Types of Silica Glasses at 532 and 355 nm. Japanese Journal of Applied Physics.2004, 43:2547~2548
    180. O Krupych, Ya Dyachok,I and Vlokh Smaga, R. Anisotropy of Laser-Induced Bulk Damage of Single Crystals. Ukrain Journal of Physical Optics. 2005, 6:50~54
    181. S.Tinten, J. Bialkowski, A. Cavalleri et al.Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Physical Review B.1998, 58(18):R11805~11815
    182. J.L. Ocana, M. Morales, C. Molpeceres and J. Torres. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments. Applied Surface Science. 2004, 238:242~248
    183. G.Callies,P.Berger and H.Hugel. Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation. Journal of Physics D: Applied Physics. 1995, 28:794~806
    184. http://www.meteoritestudies.com/protected el nakh1.htm
    185. V.G.Govorkov, N.N.Voinova, Kh.S.Bagdasarov and E.A.Stepantsov. Plasticity of single crystals of yttrium-aluminum garnet. Kristallografiya. 1975, 20(55):974~977
    186. R.Stoian, A. Rosenfeld, I. V. Hertel et al.Surface Charging and ImpulsiveIon Ejection during Ultrashort Pulsed Laser Ablation. Physical Review Letters.2002, 88(9):097603-(1~4)
    187. H. Niino and A.Yabe. Laser Ablation of Transparent Materials by UV fs-Laser Irradiation. Journal of Photopolymer Science and Technology. 2001, 14(2):197~202
    188. R. Eason. Pulsed laser deposition of thin films.Hoboken, New Jersey: Wiley-Interscience A John Wiley & Sons, inc. . 2007:80~140
    189. R. Stoian, D. Ashkenasi, A. Rosenfeld et al. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Physical Review B. 2000, 62(19):13167~13173
    190. SamuelS.Mao. Experimental and Theoretical Studies of Picosecond Laser Interactions with Electronic Materials-Laser Ablation. Thesis of Ph.D of University of California. 2000:40~78
    191. J. R. Bettis. Correlation between the laser-induced breakdown threshold in solids,liquids, and gases.SPIE, 1990:521~535
    192. N.M.Bulgakova, R. Stoian, L.V. Hertel A.Rosenfeld, W. Marine and E.E.B. Campbell. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion. Applied Physics A. 2005, 81:345~356
    193. T.Kobayashi, T.Sekine. Laser ablation of yttrium-containing oxides in various ambient gases studied by time-resolved emission spectroscopy. Chemical Physics Letters. 2006, 424:54~57
    194. H.Suzuki, H.Nishikawa and I-Yin Sandy Lee. Laser-induced breakdown spectroscopy at metal–water interfaces. Physical Chemistry Communication. 2002, 5(13):88~90
    195. C. Zenouda, P. Blottiau,G. Chambaud and P. Rosmus. Theoretical study of the electronic states of AlO and AlO-1. Journal of Molecular Structure (Theochem). 1999, 458 61~72
    196. M M Chaudhari, C T Londhe and S H Behere. Determination of rotational temperature of AlO from the B2Σ+-X2Σ+ system. PRAMANA - Journal of physics. 2006, 66(3):597~600
    197. G. R. Hebert, C.Linton, R.W.Nicholls. Absolute band strengths for the AlO blue-green (B2Σ+-X2Σ+) band system. J. Quant. Spectrosc. Radiat. Transfer.1980, 23(299):229 ~235
    198. H. F. Sakeek, T. Morrow, W. G. Graham and D. G. Walmsley. Emission studies of the plume produced during YBa2Cu3O7 film production by laser ablation. Journal of Applied Physics. 1994, 75(2):1138~1144
    199. D. Fried, G. P. Reck, T.Kushida et al. Time-resolved emission spectra following the 193nm photoablation of CuO, BaO2, Y2O3, and YBa2Cu3O7-x in vacuum and oxygen. Journal of Applied Physics 1991, 70(4):2337~2342
    200. X.J. Yang, Y.x.Tang, X.N. Liu et al. Spatially and Temporally Resolved Absorption Studies of YO in the Plume of Laser-Ablated Y2O3. Applied Spectroscopy. 1999, 53(3):278~282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700