各向异性压电板非线性高频振动方程及其求解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石英晶体板的厚度剪切振动作为压电谐振器的主要工作模态在频率控制和传感器等领域都有着极为广泛的应用。传统的高阶板理论例如Mindlin板理论和Lee板理论都可以有效地分析线性压电板的高频振动,其结果对压电谐振器设计有着重要意义。随着谐振器工作频率和精度要求的不断提高以及谐振器的微型化,各种非线性现象日益突出并最终会对谐振器的频率稳定性带来显著影响。本文建立了考虑几何和材料非线性的石英晶体板高频振动的二维方程,接着利用解析法对获得的非线性方程进行了变换和求解,最后分析了各种非线性效应对石英晶体谐振器工作频率以及相关电路参数的影响。
     作为石英晶体板非线性高频振动分析的基础,本文利用自然修正的线性Mindlin三阶板方程,获得了基频和三阶泛音厚度剪切振动的精确截止频率。为了研究厚度剪切模态和寄生模态的耦合情况,我们计算了基频和三阶泛音厚度剪切振动的频谱关系。计算结果表明在一定长厚比情况下厚度剪切模态和弯曲模态存在强烈耦合,而频谱关系可以用于确定石英晶片的最佳尺寸并以此来减弱和避免这种强烈耦合。
     我们建立了无限大各向同性板单一厚度剪切振动的非线性方程,并利用伽辽金法将该非线性方程转化为关于时间变量的非线性常微分方程。接着分别用摄动法和同伦分析法对这个方程进行了解析求解,获得了非线性厚度剪切振动的频幅关系。我们发现非线性振动的频率不仅依赖于板的厚度而且与振幅存在密切关系。数值计算结果表明相比于摄动解,同伦分析解能更快地收敛到精确解,同时该方法提供了一个辅助参数来调节收敛区域和收敛速度。
     本文建立了考虑几何和材料非线性的石英晶体板高频振动的非线性二维方程,特别包括了强烈耦合的厚度剪切模态和弯曲模态。由于所建立的非线性二维方程十分复杂,直接求解非常困难。基于长厚度剪切波假设和厚度剪切近似理论,本文利用伽辽金法将厚度剪切振动的非线性控制方程转化为关于时间变量的常微分方程。通过摄动法和同伦分析法的解析求解,获得了石英晶体板非线性厚度剪切振动的频幅关系。计算结果表明由几何和材料非线性引起的频率漂移并不明显,这促使我们考察电场效应的影响。
     我们建立了考虑强电场作用下石英晶体板高频振动的非线性二维方程。同样基于长厚度剪切波假设和厚度剪切近似理论,本文用伽辽金法将控制厚度剪切振动的非线性方程转化为关于时间变量的常微分方程。接着用逐次近似法获得了非线性厚度剪切振动的频率响应关系,并绘制了不同振幅比和不同电压下的频率响应曲线图。数值计算结果表明由电场引起的频率漂移十分明显,需要引起足够的重视。然后计算了AT切石英晶体谐振器的部分电路参数,讨论了非线性效应对电路参数的影响。最后利用伽辽金法将强烈耦合的厚度剪切模态和弯曲模态的控制方程组都转化为关于时间变量的非线性常微分方程组,并用逐次近似法对该非线性方程组进行了解析求解,获得了两种模态强烈耦合情况下的频率响应曲线。
     考虑几何和材料非线性的石英晶体板的非线性高频振动方程的建立和求解是石英晶体谐振器非线性分析的基础,也可以用于有限元分析和即将开展的偏场效应的解析求解。本文得到的结果为石英晶体谐振器的精确设计和分析提供了有效指导。
Thickness-shear vibration of a quartz crystal plate is one of the most widely used functioning modes of piezoelectric resonators with broad applications for frequency control and detection. The classical plate theories, including Mindlin and Lee plate theories, are linear systems and have been successfully used for linear analysis of high frequency vibrations of piezoelectric plates and yielded important results for the design of piezoelectric resonators. With the growing demands for higher and more precise frequency and miniaturization of piezoelectric structures, the nonlinear phenomena have emerged and eventually caused frequency instability of resonators. In order to study the frequency shifts due to the nonlinear effects, we have established nonlinear two-dimensional equations of high frequency vibrations of quartz crystal plate with the consideration of kinematic and material nonlinearities. We further employed analytical methods to transform and solve these complicated nonlinear equations and investigated the different effects of nonlinearities of quartz crystal resonators on its frequency and corresponding circuit parameters.
     We have utilized the linear third-order Mindlin plate equations with natural correction and obtained exact cut-off frequencies of the fundamental and third-order thickness-shear modes as the foundation of nonlinear analysis. In order to study the couplings and interactions between thickness-shear and spurious modes, we have calculated frequency spectra in the vicinity of fundamental thickness-shear and third-order overtone modes. From frequency spectra, we have found that the coupling between thickness-shear and flexural modes depends strongly on the aspect ratios (length/thickness) and frequency spectra is the most basic tool to obtain optimal aspect ratios for decreasing and avoiding this coupling.
     The nonlinear equation of simple thickness-shear vibrations of an infinite and isotropic plate has been established and transformed into a nonlinear ordinary differential equation by Galerkin approximation. Then we solved this nonlinear equation by the perturbation method and homotopy analysis method, respectively. The amplitude-frequency relation we obtained showed the nonlinear frequency not only depends on amplitude but also related to the thickness of plate. Compared with results from perturbation method, our analytical solutions converge faster while homotopy analysis method provides an auxiliary parameter to control convergence region and speed.
     The nonlinear two-dimensional equations of high frequency vibrations of a quartz crystal plate for strongly coupled thickness-shear and flexural modes with the consideration of kinematic and material nonlinearities have been established. These equations are too complicated to solve directly. Based on the assumption of long thickness-shear waves and thickness-shear approximation, the nonlinear equation of thickness-shear modes has been transformed into an ordinary differential equation depends on time by Galerkin approximation. The amplitude-frequency relations of thickness-shear vibration have been obtained by perturbation and homotopy analysis methods. Numerical results showed neither kinematic nor material nonlinearities are the main factors of frequency shifts which suggest us to examine the effect of electrical field.
     The two-dimensional equations of high frequency vibration of a quartz crystal plate under a strong electric field have been established. Also based on the assumption of long thickness-shear waves and thickness-shear approximation, we utilized Galerkin approximation to transform the nonlinear partial differential equation of thickness-shear vibrations into an ordinary differential equation depending only on time. By successive approximation method, we obtained electrical current frequency-response relation and plotted nonlinear frequency-response curves for different amplitude ratios and driving voltages. Numerical results showed that frequency shift caused by the electrical field is significant and should be treated as the primary cause of frequency instability. We further computed some circuit parameters of AT-cut quartz crystal plates as simple resonators, and investigated the effect of nonlinearities on circuit parameters. The strongly coupled equations of vibrations of the thickness-shear and flexural modes have all been transformed into a system of nonlinear ordinary equations. By successive approximation method, we obtained frequency-response relations with the consideration of strong coupling between vibrations modes.
     The two-dimensional equations of high frequency vibrations of a quartz crystal plate with the consideration of material and kinematic nonlinearities we established and solved lay a firm theoretical foundation for nonlinear analysis of quartz crystal resonators, which also can be used for the finite element analysis and further analytical studies of nonlinear effects of bias fields on quartz crystal resonators. The results we obtained provide guidance for the precise analysis and design of quartz crystal resonators.
引文
[1]赵声衡.石英晶体振荡器[M].长沙:湖南大学出版社,1997.
    [2]M. E. Frerking(杜丽冰,詹汉强译).晶体振荡器设计及温度补偿[M].北京:人民邮电出版社,1985.
    [3]刘明亮.振荡器的原理与应用[M].北京:高等教育出版社,1983.
    [4]秦自楷.压电石英晶体[M].北京:国防工业出版社,1980.
    [5]王矜奉,姜祖桐,石瑞大.压电振动[M].北京:科学出版社,1989.
    [6]张福学,王丽坤.现代压电学(上册)[M].北京:国防工业出版社,1983.
    [7]冯冠平.谐振传感理论及器件[M].北京:清华大学出版社,2008.
    [8]J. S. Yang. An introduction to the theory of piezoelectricity [M]. Springer, Berlin,2005.
    [9]J. S. Yang. The mechanics of piezoelectric structures [M]. World Scientific, Singapore,2006.
    [10]J. S. Yang. Analysis of piezoelectric devices [M]. World Scientific, Singapore,2006.
    [11]K.-Y. Hashimoto(王景山等译).声表面波器件模拟与仿真[M].北京:国防工业出版社,2002.
    [12]日本电子材料工业会编(许昌昆等译).声表面波器件及其应用[M].北京:科学出版社,1984.
    [13]T. Pastureaud, R. Lardat, S. Chamaly, L. Penavaire and S. Ballandras. Prediction of the thermal sensitivity of surface acoustic waves excited under a periodic grating of electrodes [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,52(8),1378-1383,2005.
    [14]M. Hofer, N. Finger, G. Kovacs, J. Schoberl, S. Zaglmayr, U. Langer and R. Lerch. Finite-element simulation of wave propagation in periodic piezoelectric SAW structures [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,53(6),1192-1201,2006.
    [15]J. Wang and K.-Y. Hashimoto. A two-dimensional theory for the analysis of surface acoustic waves in finite elastic solids [J]. Journal of Sound and Vibration,295,838-855,2006.
    [16]J. Wang and J. B. Lin. A two-dimensional theory for surface acoustic wave analysis in finite piezoelectric solids [J]. Journal of Intelligent Material Systems and Structures,16(7-8),623-629,2005.
    [17]J. Wang, J. B. Lin, Y. P. Wan and Z. Zhong. A two-dimensional analysis of surface acoustic waves in finite solids with considerations of electrodes [J]. International Journal of Applied Electromagnetics and Mechanics,22,53-68,2005.
    [18]J. Wang, J. K. Du, Z. Li and J. B. Lin. Two-dimensional analysis of the effect of an electrode layer on surface acoustic waves in a finite anisotropic plate [J]. Ultrasonics,44(Supplement1),935-939,2006.
    [19]J. Wang, J. K. Du, W. Q. Lu and H. M. Mao. Exact and approximate analysis of surface acoustic waves in an infinite elastic plate with a thin metal layer [J]. Ultrasonics,44,941-945,2006.
    [20]王骥,杜建科,潘俏俏.基于特征解的有限弹性板中声表面波的二维分析[J].中国科学G辑,37(1),89-105,2007.
    [21]R. D. Mindlin (edited by J. S. Yang). An introduction to the mathematical theory of vibrations of elastic plates [M]. World Scientific, Singapore,2007.
    [22]R. D. Mindlin. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates [J]. Journal of Applied Mechanics,18,31-38,1951.
    [23]R. D. Mindlin. Wave and vibrations in isotropic, elastic plates [C]. Proceedings of the First Symposium on Naval Structural Mechanic, Pergamon Press, New York,199-232,1960.
    [24]R. D. Mindlin. Forced thickness-shear and flexural vibrations of piezoelectric crystal plates [J]. Journal of Applied Physics,23,83-88,1952.
    [25]H. F. Tiersten and R. D. Mindlin. Forced vibrations of piezoelectric crystal plates [J]. Quarterly of Applied Mathematics,22,107-109,1962.
    [26]J. L. Bleustein and H. F. Tiersten. Forced thickness-shear vibrations of discontinuously plated piezoelectric plates [J]. The Journal of the Acoustical Society of America,43(6),1311-1318,1968.
    [27]R. D. Mindlin. High frequency vibrations of crystal plates [J]. Quarterly of Applied Mathematics,19(1),51-61,1961.
    [28]R. D. Mindlin and P. C. Y. Lee. Thickness-shear and flexural vibrations of partially plated, crystal plates [J]. International Journal of Solids and Structures,2(1),125-139,1966.
    [29]R. D. Mindlin. High frequency vibrations of piezoelectric crystal plates [J]. International Journal of Solids and Structures,8(7),895-906,1972.
    [30]P. C. Y. Lee and Z. Nikodem. An approximate theory for high frequency vibrations of elastic plates [J]. International Journal of Solids and Structures,8(5),581-612,1972.
    [31]P. C. Y. Lee, S. Syngellakis and J. P. Hou. A two-dimensional theory for high frequency vibrations of piezoelectric crystal plates with or without electrodes [J]. Journal of Applied Physics,61(4),1249-1262,1987.
    [32]P. C. Y. Lee, J. D. Yu and W. S. Lin. A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces [J]. Journal of Applied Physics,83(3),1213-1223,1998.
    [33]R. C. Peach. A normal mode expansion for the piezoelectric plates and certain of its applications [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,35,593-611,1988.
    [34]R. K. Kaul and R. D. Mindlin. Frequency spectrum of a monoclinic crystal plate [J]. Journal of the Acoustical Society of America,34(12),1902-1910,1962.
    [35]I. Koga. Radio-frequency vibrations of rectangular AT-cut quartz plates [J]. Journal of Applied Physics,34,2357-2365,1963.
    [36]J. Wang, J. D. Yu and Y.-K. Yong. On the correction of the higher-order Mindlin plate theory [J]. International Journal of Applied Electromagnetics and Mechanics,22,83-96,2005.
    [37]R. D. Mindlin. Equations of high frequency vibrations of thermopiezoelectric crystal plates [J]. International Journal of Solids and Structures,10(6),625-637,1974.
    [38]H. F. Tiersten. Linear piezoelectric plate vibrations [M]. Plenum Press, New York,1969.
    [39]P. C. Y. Lee, M. Nakazawa and J. P. Hou. Extensional vibrations of rectangular crystal plates [J]. Journal of Applied Physics,53(6),4081-4087,1982.
    [40]R. D. Mindlin. Third-order overtone quartz resonator [J]. International Journal of Solids and Structures,18(9),809-817,1982.
    [41]R. Huang, P. C. Y. Lee, W. S. Lin and J. D. Yu. Extensional, thickness-stretch, and symmetric thickness-shear vibrations of piezoelectric ceramic disks [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,49,1507-1515,2002.
    [42]J. Wang and J. S. Yang. Higher-order theories of piezoelectric plates and applications [J]. Applied Mechanics Review,53(4),87-99,2000.
    [43]N. Bugdayci and D. B. Bogy. A two-dimensional theory for piezoelectric layers used in electro-mechanical transducers-1:derivation [J]. International Journal of Solids and Structures,17(12),1159-1178,1981.
    [44]H. F. Tiersten. Equations for the extension and flexure of relatively thin electrostatic plates undergoing larger electric fields [J]. In:Mechanics of Electromagnetic Materials and Structures (edited by J. S. Lee, G. A. Maugin and Y. Shindo). AMD-161/MD-42, American Society of Magazine Editors, New York,21-34,1993.
    [45]P. C. Y. Lee and Y.-K. Yong. Frequency-temperature behavior of thickness vibrations of doubly rotated quartz plates affected by plate dimensions and orientations [J]. Journal of Applied Physics,60,2327-2341,1986.
    [46]Y.-K. Yong, J. Wang and T. Imai. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT-and SC-cut quartz plates [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,46,1-13,1999.
    [47]Y.-K. Yong, M. S. Patel and M. Tanaka. Effects of thermal stresses on the frequency-temperature behavior of piezoelectric resonators [J]. Journal of Thermal Stresses,30,639-661,2007.
    [48]J. Wang, J. D. Yu, Y.-K. Yong and T. Imai. A finite element analysis of frequency-temperature relations of AT-cut quartz crystal resonators with higher-order Mndlin plate theory [J]. Acta Mechanica,199,117-130,2008.
    [49]P. C. Y. Lee and J. Wang. Frequency-temperature relations of thickness-shear and flexural vibrations of contoured quartz resonators [J]. Journal of Applied Physics,80(6),3457-3465,1996.
    [50]J. Wang. The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,46(4),1042-1046,1999.
    [51]J. Wang and L. J. Shen. Exact thickness-shear resonance frequency of electroded piezoelectric crystal plates [J]. Journal of Zhejiang University Science A,6(9),980-985,2005.
    [52]J. Wang, L. J. Shen and J. S. Yang. Effects of electrodes with continuously varying thickness on energy trapping in thickness-shear mode quartz resonators [J]. Ultrasonics,48(2),150-154,2008.
    [53]J. S. Yang, H. G. Zhou and W. P. Zhang. Thickness-shear vibration of rotated Y-cut quartz plates with relatively thick electrode of unequal thickness [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,52(5),918-922,2005.
    [54]黄显核.能陷理论与体波晶体谐振器寄生抑制[J].压电与声光,26(1),39-41,2004.
    [55]J. S. Yang and J. Wang. Energy trapping in quartz crystal resonators [J].宁波大学学报(理工版),17(增刊),128-134,2004.
    [56]J. S. Yang, Z. G. Chen and Y. T. Hu. Vibration of a thickness-twist mode piezoelectric resonator with asymmetric nonuniform electrodes [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,55(4),841-848,2008.
    [57]J. Wang. Consideration of stiffness and mass effects of relatively thicker electrodes with Mindlin plate theory [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,53(6),1218-1221,2006.
    [58]J. Wang. Thickness-shear and flexural vibrations of contoured AT-cut quartz resonator [D]. Ph. D. Dissertation, Princeton University,1996.
    [59]J. Wang and W. H. Zhao. The determination of the optimal length of crystal blanks in quartz crystal resonators [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,52,2023-2030,2005.
    [60]公勋,章德.矩形AT切割石英晶体谐振器的振动分析与设计[J].南京大学学报(自然科学版),36(3),336-341,2000.
    [61]王为标.AT切石英晶体谐振器的理论研究[D].硕士学位论文,南京大学,2001.
    [62]赵文华.考虑材料耗散的石英晶体谐振器电路参数的计算[D].硕士学位论文,宁波大学,2005.
    [63]J. Wang, W. H. Zhao and J. K. Du. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation [J]. Ultrasonics,(44),869-873,2006.
    [64]J. Wang, W. H. Zhao, J. K. Du and Y. T. Hu. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity [J]. Ultrasonics,51(1),65-70,2011.
    [65]H. Ekstein. High frequency vibrations of thin crystal plates [J]. Physical Review,68,11-23,1945.
    [66]J. Wang, R. X. Wu, J. K. Du and H. M. Wang. The analysis of the third-order thickness-shear overtone vibrations of quartz crystal plates with Mindlin plate theory [C]. Proceedings of2008IEEE International Ultrasonics Symposium,2173-2176,2008.
    [67]阳丽君.考虑压电效应的石英晶体板高频泛音振动分析[D].硕士学位论文,宁波大学,2011.
    [68]王骥,阳丽君,潘俏俏,赵岷江,杜建科.矩形石英晶体板厚度剪切振动的频率函数研究[J].声学技术,29(4),427-430,2010.
    [69]J. Wang, L. J. Yang, N. S. Sun, R. X. Wu, J. K. Du and D. J. Huang. The fifth-order overtone vibrations of quartz crystal plates with higher-order Mindlin plate equations [C]. Proceedings of2009IEEE International Frequency Control Symposium,455-459,2009.
    [70]J. Wang, L. J. Yang and J. K. Du. The dispersion relations and vibration modes of infinite quartz crystal plates at higher frequencies [C]. Proceedings of the2009Symposium on Piezoelectricity, Acoustic Waves, and Device Applications,494-499,2009.
    [71]J. Wang, L. J. Yang, J. K. Du and D. J. Huang. The fifth-order overtone vibrations of crystal plates with corrected higher-order Mindlin plate equations[C]. Proceedings of2010IEEE International Frequency Control Symposium,596-601,2010.
    [72]J. Wang, L. J. Yang, J. K. Du and D. J. Huang. The calculation of electrical parameters of overtone thickness-shear quartz crystal resonators with the higher-order Mindlin plate equations [C]. Proceedings of2010IEEE International Ultrasonics Symposium,408-411,2010.
    [73]J. Wang, Q. Q. Pan, L. J. Yang and M. J. Chao. Design of quartz crystal resonators with an analytical procedure based on the Mindlin plate theory [C]. Proceedings of2010IEEE International Ultrasonics Symposium,1246-1249,2010.
    [74]王为标,章德.矩形AT切石英谐振器寄生振动模式的有限元分析[J].南京大学学报(自然科学版),38(2),234-240,2002.
    [75]刘竞业.关于矩形电极AT切石英谐振器寄生振动的抑制分析[J].北京化工大学学报(自然科学版),23(1),75-83,1996.
    [76]R. A. Toupin. The elastic dielectric [J]. Journal of Rational Mechanics and Analysis,5,849-915,1956.
    [77]A. C. Eringen. On the foundation of electroelastostatic [J]. International Journal of Engineering Science,1,127-153,1963.
    [78]H. F. Tiersten. On the nonlinear equations of thermoelectroelasticity [J]. International Journal of Engineering Science,9,587-604,1971.
    [79]D. F. Nelson. Electric, optic, and acoustic interactions in dielectrics [M]. John Wiley and Sons Inc, New York,1979.
    [80]Y. T. Hu, J. S. Yang and Q. Jiang. Electroelastic structures under biasing fields [C]. Proceedings of the4th International Conference on Nonlinear Mechanics,596-600,2002.
    [81]H. F. Tiersten. Analysis of intermodulation in thickness-shear and trapped energy resonators [J]. Journal of the Acoustical Society of America,57,667-681,1975.
    [82]H. F. Tiersten. Electroelastic interactions and the piezoelectric equations [J]. Journal of the Acoustical Society of America,70(6),1567-1576,1981.
    [83]H. F. Tiersten and A. Ballato. An analysis of nonlinear resonance in contoured-quartz resonators [J]. Journal of the Acoustical Society of America,80(4),2022-2033,1986.
    [84]H. F. Tiersten. Electroelastic equations for electroded thin plates subject to larger driving voltages [J]. Journal of Applied Physics,74(5),3389-3393,1993.
    [85]H. F. Tiersten and D. V. Shick. On the normal acceleration sensitivity of ST-cut quartz surface wave resonators supported along rectangular edges [J]. Journal of Applied Physics,64(9),4334-4341,1988.
    [86]Y. S. Zhou and H. F. Tiersten. On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports [J]. Journal of Applied Physics,69(5),2862-2870,1991.
    [87]H. F. Tiersten and Y. S. Zhou. The increase in the in-plane acceleration sensitivity of the plano-convex resonator resulting from its thickness asymmetry [J]. Journal of Applied Physics,71(10),4684-4692,1992.
    [88]J. S. Yang. On the notations of the nonlinear theory of electroelasticity [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,54(12),2702-2704,2007.
    [89]J. S. Yang and Y. T. Hu. Mechanics of electroelastic bodies under biasing fields [J]. Applied Mechanics Review,57(3),173-189,2004.
    [90]杨嘉实,胡元太,杨新华.电弹性体力学中的偏场方法及其应用[J].力学进展,34(3),408-426,2004.
    [91]J. S. Yang. Equations for the extension and flexure of electroelastic plates under strong electric fields [J]. International Journal of Solids and Structures,36,3171-3192,1999.
    [92]J. S. Yang, X. M. Yang, J. A. Turner, J. A. Kosinski and R. A. Pastore. Two-dimensional equations for electroelastic plates with relatively large shear deformations [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,50(7),765-772,2003.
    [93]J. S. Yang, X. M. Yang and J. A. Turner. Nonlinear vibrations of electroelastic shells with relatively large shear deformations [J]. Science in China Series G:Physics, Mechanics&Astronomy,49(6),660-670,2009.
    [94]J. S. Yang. Nonlinear torsional vibration of a circular cylindrical piezoelectric rod with relatively large shear deformation [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,54(7),1482-1485,2007.
    [95]J. S. Yang and X. C. Shen. Coupling to extension in a thickness-shear resonator due to relatively large thickness-shear deformation [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,55(3),726-729,2008.
    [96]Z. T. Yang, Y. T. Hu, J. Wang and J. S. Yang. Nonlinear coupling between thickness-shear and thickness-stretch modes in a rotated Y-cut quartz resonator [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,56(1),220-224,2009.
    [97]P. C. Y. Lee, Y. S. Wang and X. Markenscoff. Elastic waves and vibrations in deformed crystal plate [C]. Proceedings of1973IEEE International Frequency Control Symposium,1-6,1973.
    [98]M. S. Patel. Nonlinear behavior in quartz resonators and its stability [D]. Ph. D. Dissertation, Rutgers University,2008.
    [99]X. M. Yang. Effects on biasing fields on piezoelectric resonators [D]. Ph. D. Dissertation, Nebraska University,2007.
    [100]Q. M. Wang, B. M. Xu, V. D. Kugel and L. E. Corss. Characteristics of shear mode piezoelectric actuators [C]. Proceedings of the10th IEEE International Symposium on Applications of Ferroelectric,767-770,1996.
    [101]陈炎.压电矩形板非线性静动态力学特性研究[D].博士学位论文,南京航空航天大学,2004.
    [102]张佳敏,吴荣兴,柳建松.晶体材料不同切型弹性常数计算的程序设计[J].福建电脑,3,9-10,2010.(http://piezo.nbu. edu. cn/piezo/Chinese/Software.htm)
    [103]J. Wang, R. X Wu, J. M. Xu, X. F. Zheng, J. K. Du, M. C. Chao and D. J. Huang. The analysis of thickness-shear vibrations of the third-order overt one mode of quartz crystal plates with Mindlin plate theory [C]. Proceedings of the IEEE2007International Ultrasonics Symposium,138-141,2007.
    [104]J, Wang, R. X. Wu, L. M. Gao and J. K. Du. Correction facetors for Mindlin high-order plate theory with the consideration of electrodes [C]. Proceedings of the IEEE2007International Frequency Control Symposium,203-207,2007.
    [105]N. Napaneni and N. Rao(周建华,游佰强译).工程电磁学基础[M].北京:机械工业出版社,2006.
    [106]王竹溪.热力学[M].北京:北京大学出版社,2005.
    [107]汪志诚.热力学-统计物理[M].北京:高等教育出版社,2000.
    [108]郑海山,张中杰,杨宝俊.固体中非线性纵波一维数值模拟[J].地震学报,26(1),77-83,2004.
    [109]K. R. McCall and R. A. Guyer. Equations of state and wave propagation in hysteretic nonlinear elastic materials [J]. Journal of Geophysical Research,99(B12),23887-23897,1994.
    [110]钱祖文.非线性声学(第2版)[M].北京:科学出版社,2009.
    [111]王兆国.固体介质中非线性波传播特点与岩性分析[D].硕士学位论文,吉林大学,2006.
    [112]A. H. Nayfeh. Introduction to perturbation techniques [M]. Wiley Inter-science, New York,1981.
    [113]闻邦春,李以农,韩清凯.非线性振动理论中的解析方法及工程应用[M].沈阳:东北大学出版社,2001.
    [114]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [115]E. A. Frieman. On a new method in the theory of irreversible processes [J]. Journal of Mathematical Physics,4,410-418,1963.
    [116]J. D. Cole and J. Kevorkian. Uniformly valid asymptotic approximations for certain nonlinear differential equations [C]. Proceedings of1963International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics,113-120,1963.
    [117]J. A. Cochran. Problems in singular perturbation theory [D]. Ph. D. Dissertation, Stanford University,1962.
    [118]李鹏松.求解大振幅非线性振动问题的若干解析逼近方法[D].博士学位论文,吉林大学,2004.
    [119]B. Van Der Pol. A theory of the amplitude of free and forced triode vibration [J]. Radio Review,1,701-725,1920.
    [120]R. A. Struble. Nonlinear differential equations [M]. McGraw-Hill, New York,1962.
    [121]N. N. Bogliubov and Y. A. Mitropolsky. Asymptotic methods in the theory of nonlinear oscillations [M]. Gordon and Breach, New York,1961.
    [122]C. Piccardi. Harmonic balance analysis of codimention-2bifurcation in periodic system [J]. IEEE Transactions on Circuits and System-1: Fundamental Theory and Applications,43(12),1015-1018,1996.
    [123]H. G. Kwatny and G. E. Piper. Frequency domain analysis of hopf bifurcation in electric power networks [J]. IEEE Transactions on Circuits and System-1:Fundamental Theory and Applications,31(10),1317-1321,1990.
    [124]S. J. Liao. The proposed homotopy analysis techniques for the solution of nonlinear problems [D]. Ph. D. dissertation, Shanghai Jiao Tong University,1992.
    [125]S. J. Liao. A kind of approximate solution technique which does not depend upon small parameters:a special example [J]. International Journal of Non-Linear Mechanics,30,371-380,1995.
    [126]S. J. Liao. A kind of approximate solution technique which does not depend upon small parameters Ⅱ:an application in fluid mechanics [J]. International Journal of Non-Linear Mechanics,32,815-822,1997.
    [127]S. J. Liao. Beyond perturbation-introduction to the homotopy analysis method [M]. Chapman&Hall/CRC, Boca Raton,2003.
    [128]廖世俊.超越摄动:同伦分析方法导论[M].北京:科学出版社,2007.
    [129]S. J. Liao. An analytic approximation of the drag coefficient for the viscous flow past a sphere [J]. International Journal of Non-Linear Mechanics,37,1-18,2002.
    [130]汪淳.同伦分析方法在流体力学的应用[D].博士学位论文,上海交通大学,2003.
    [131]徐航.同伦分析方法在流体力学和海洋工程中的应用[D].博士学位论文,上海交通大学,2006.
    [132]谭越.应用同伦分析方法求解流体力学中若干非线性问题[D].博士学位论文,上海交通大学,2006.
    [133]成钧.同伦分析法在非线性力学和金融学中的应用[D].博士学位论文,上海交通大学,2008.
    [134]K.Hina.同伦分析方法在非线性力学和数学生物学中的应用[D].博士学位论文,上海交通大学,2008.
    [135]J. Cheng, S. J. Liao, R.N. Mohapatra and K. Vajravelu. Series solutions of nano-boundary-layer flows by means of the homotopy analysis method [J]. Journal of Mathematical Analysis and Applications,343(1),233-245,2008.
    [136]廖世俊.超越摄动:同伦分析方法及其应用[J].力学进展,153(1),1-34,2008.
    [137]S. J. Liao. Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method [J]. Nonlinear Analysis,10,2455-2470,2009.
    [138]S. J. Liao. An optimal homotopy-analysis approach for strongly nonlinear differential equations [J]. Communications in Nonlinear Science and Numerical Simulation,15(8),2003-2016,2010.
    [139]石玉仁.函数展开法及同伦分析法在求解非线性演化方程中的应用[D].博士学位论文,兰州大学,2007.
    [140]诸骏.索、梁及其组合结构的线性及非线性动力分析.博士学位论文[D],浙江大学,2007.
    [141]高立名.功能梯度材料板中声波面波传播的分析.博士学位论文[D],同济大学,2007.
    [142]邹丽.某些非线性水波问题的同伦分析方法研究.博士学位论文[D],大连理工大学,2008.
    [143]刘明姬.同伦方法求解非线性微分方程边值问题.博士学位论文[D],吉林大学,2009.
    [144]J. Wang, J. K. Chen and S. J. Liao. An explicit solution of the large deformation of a cantilever beam under point load at the free tip [J]. Journal of Computational and Applied Mathematics,212,320-330,2008.
    [145]徐伟,孙中奎,杨晓丽.基于参数展开的同伦分析法在强非线性随机动力系统中的应用[J].物理学报,54(11),5069-5076,2005.
    [146]宋毅,郑连存,张欣欣.用同伦分析方法求解具有抽吸喷注的运动延伸表面上流动问题[J].北京科技大学学报,28(8),782-784,2006.
    [147]Y. P. Liu and Z. B. Li. The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation [J]. Chaos, Solitions and Fractals,39(1),1-8,2009.
    [148]L. Song and H. Q. Zhang. Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation [J]. Physics Letter A,367,88-94,2007.
    [149]L. B. Tao, H. Song and S. Chakrabarti. Nonlinear progressive waves in water of finite depth-an analytic approximation [J]. Coastal Engineering,54(11),825-834,2007.
    [150]S. P. Zhu. A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield [J]. Journal of the Australian&New Zealand Industrial and Applied Mathematics,47,477-494,2006.
    [151]S. P. Zhu. An exact and explicit solution for the valuation of American put options [J]. Quantitative Finance,6,229-242,2006,
    [152]M. Yamashita, K. Yabushita and K. Tsuboi. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method [J]. Journal of Physics A,40,8403-8416,2007.
    [153]S. Abbashandy. The application of the homotopy analysis method to nonlinear equation arising in heat transfer [J]. Physics letter A,360,109-113,2006.
    [154]T. Hayat and M. Sajid. On analytical solution for thin film flow of a forth grade fluid down a vertical cylinder [J]. Physics letter A,361,316-322,2007.
    [155]J. W. Thomas. Numerical partial differential equations:finite difference methods [M]. Springer, Berlin,1995.
    [156]张文生.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社,2006.
    [157]R. X. Wu, J. Wang, J. K. Du, D. J. Huang and Y. T. Hu. Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method [J]. Numerical Algorithms, in press.(DOI:10.1007/s11075-011-9485-2)
    [158]A. Abd-alla and G. A. Maugin. Nonlinear phenomena in magnetostrictive elastic resonators [J]. International Journal of Engineering Science,27(12),1613-1619,1989.
    [159]J. Wang, R. X. Wu, J. K. Du. The nonlinear thickness-shear vibrations of an infinite and isotropic elastic plate [C]. Proceedings of the2009Symposium on piezoelectricity, Acoustic Wave, and Applications,365-369,2009.
    [160]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007.
    [161]史俊.复杂结构的有限元计算[D].硕士学位论文,宁波大学,2011.
    [162]J. Wang, L. P. Chen, J. K. Du, Y. T. Hu and G. Q. Li. Finite element analysis of nonlinear thickness-shear vibrations of AT-cut quartz crystal plates [C]. Proceedings of2010IEEE International Frequency Control Symposium,392-396,2010.
    [163]J. Wang, L. P. Chen, R. X. Wu, J. K. Du, Y.-K. Yong and L. H. Wang. The finite element analysis of quartz crystal resonators with nonlinear plate equations [C]. Proceedings of2009IEEE international Ultrasonics Symopsium,1092-1095,2009.
    [164]J. Wang, R. X. Wu, Y.-K. Yong, J. K. Du and D. J. Huang. An analysis of vibrations of quartz crystal plates with nonlinear Mindlin plate equations [C]. Proceeding of the Joint Conference of2009IEEE International Frequency Control Symposium and the European Frequency and Time Forum,450-454,2009.
    [165]J. Wang, L. J. Yang, Q. Q. Pan, M. C. Chao and J. K. Du. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,58(5),1102-1107,2011.
    [166]J. S. Yang. Analysis of ceramic thickness-shear piezoelectric gyroscopes [J]. Journal of the Acoustical Society of America,102,3542-3548,1997.
    [167]H. F. Tiersten. Nonlinear electroelastic equations cubic in the small field variables [J]. Journal of the Acoustical Society of America,57(3),660-666,1975.
    [168]R. X. Wu, J. Wang, J. K. Du, D. J. Huang and Y. T. Hu. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, submitted.
    [169]周纪卿,朱因远.非线性振动[M].西安:西安交通大学出版社,2001.
    [170]A. C. Eringen. Mechanics of continua [M]. Krieger, New York,1980.
    [171]R. X. Wu, J. S. Yang, J. K. Du and J. Wang. Electrically forced thickness-shear vibrations of a quartz plate with nonlinear coupling to extension [J]. Acta Mechanica Solida Sinica,21(6),555-563,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700