可重构电路系统设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可重构技术能够使系统在运行过程中动态地重构软件和硬件系统,具有资源利用率高、功耗低、灵活性强和功能自适应等优点,在多种领域具有广泛的应用前景。目前,基于数字系统的可重构计算是可重构技术中研究的热点之一,而针对特定应用领域的可重构电路与系统设计和实现研究较少、可行性较差。
     本文针对数字、模拟、生物芯片和射频通信系统等不同领域电路系统中的技术难点问题,将可重构技术应用于相关领域,提出了可重构电路与系统的设计实现方法。主要工作和创新点如下:
     1.在PipeRench架构基础上,提出了一种新的流水线可重构体系结构,及基于该架构的流水线可重构系统设计方法,提高了流水线硬件的执行速度和效率;将可重构技术应用于进化硬件,提出了一种基于流水线可重构体系结构的硬件进化路由策略。该路由策略可提高硬件进化的适应和选择速度。
     2.将可重构技术应用于数模混合电路设计领域,提出一种用于流水线型ADC中和输入信号相关的动态可重构Dither电路结构。该结构使得Dither的设计和加入更加灵活,不仅显著提高了ADC的动态性能,而且降低了Dither硬件资源和功耗。
     3.将可重构技术应用于生物医学芯片电路设计,提出了一种低电压、超低功耗、带宽和增益可重构的生物电信号采集模拟前端电路,与适合生物电信号采集的量程可重构逐次逼近ADC。该生物电信号采集接口芯片采用1V低电压供电,功耗仅为36μW,可实现对不同生物和神经信号的自适应采集需要。
     4.针对脉冲无线电超宽带通信领域,提出了一种在实际复杂的传输环境下不同天线系统传输性能的分析方法,以及在不同传输环境下天线系统的选择策略,为超宽带通信系统射频前端重构提供了一种天线系统传输性能的实时评估方法。提出了一种用于射频前端可重构的CMOS开关电路,该开关电路在超宽带工作频率高达35GHz情况下插入损耗低于1dB,隔离度高达40dB,与同类开关电路相比,具有高的性能指标。
Reconfigurable technology can realize dynamical reconfiguration of hardware and software while system works. It has such advantages as high resource utilization, low power consumption and function adaptive reconstruction, thus having an extensive application prospect in various areas. Currently, one of the hot studies on reconfigurable technology mainly focuses on the reconfigurable computation based on digital system platforms. Not many studies are found on reconfigurable circuit and system design and realization methods aiming at the special application area. Usually they are of low feasibility.
     This research aims at the technological difficulties of such distinct areas as digital, analogue, biological chips and communication system. The design and implementation methods of reconfigurable circuit and system are proposed. Here are the innovative points of this research:
     1. The structure of PipeRench pipelined reconfigurable system is improved, and its design method is proposed based on improved structure. It enhances the running efficiency of pipeline hardware. By applying the reconfigurable technology into evolving hardware, a routing evolving strategy of pipeline-based reconfigurable system has been proposed. It can enhance the adaption and selecting speed of hardware evolvement.
     2. Apply reconfigurable technology into digital and analog mixed-circuit and propose a dynamic reconfigurable Dither circuit related to input signals. This circuit is employed in pipelined ADC and can produce Dither more flexibly. Meanwhile, it reduces Dither hardware resources and power consumption when raising SFDR of ADC significantly.
     3. Apply reconfigurable technology into biomedical chip design. A front-end of low-voltage, superlow-power, bio- and neuro-signal interface whose bandwidth and gain are reconfigurable has been proposed in this research. Also, the ADC is designed for rail-to-rail operation and the input full-scale is also reconfigurable so that the resolution requirement can be relaxed. The whole interface IC consumes only 36μW from a single 1-V supply, making it suitable for a wide range of low-voltage and low-power bio- and neuro-chip platforms.
     4. In the area of antenna and impulse radio UWB systems, an antenna selection strategy for different propagation environments has been proposed as well as the evaluation methods of systematic transmission performance in time domains. Moreover, an innovative CMOS switch circuit applied in configurable RF front-ends has been proposed. This switch circuit can exhibit lower than 1-dB insertion loss and higher than 40-dB isolation when working frequency reaches up to 35GHz.
引文
[1] Estrin G, Bussel B, et al. Parallel processing in a restructurable computer system [J]. IEEE Trans. Elect. Comput., 1963. 747-755.
    [2]段然,樊晓娅,高德远,等.可重构计算技术及其发展趋势.计算机应用研究, 2004, 21(8):14 - 17.
    [3] Arnold Jeffrey M, Buell Duncan A, Hoang Dzung T, et al. VLSI in Computers and Processors, Proceedings - IEEE International Conference on Computer Design, 1993, 482 - 485,
    [4] Yeong-Kang Lai, Lien-Fei Chen, Jian-Chou Chen, et al. A SIMD-based Reconfigurable Computing Architecture with Two-Way Pipelined Reconfiguration for Multimedia Applications. 9th International Workshop on Cellular Neural Networks and Their Applications, 2005, 261 - 264.
    [5] Wiatr K. Pipeline Architecture of Specialized Reconfigurable Processors in FPGA Structures for Real-time Image Pre-processing. 24th Euromicro Conference, 1998, 1(1): 25 - 27.
    [6] Itani M, Diab H. Reconfigurable Computing for RC6 Cryptography. The IEEE/ACS International Conference on Pervasive Services, 2004, 121 - 127.
    [7] Sidhu R P, Mei A and Prasanna V K. Genetic Programming Using Self-reeonfigurable Fpgas. In International Workshop on Field Progranunable Logic and applications, 1999.
    [8] Brad L, Hutchings, et al. Implementation Approaches for Reconfigurable Logic Application. 5th Intl Workshop on Field Programmable Logic and Applications, 1995.
    [9] Sutton R A, Srini V R, Rabaey J M. A Multiproeessor DSP System Using PADDI-2. Design Automation Conferenee, 1998, 62 - 65.
    [10] Ebeling C, Cronquist D, Franklin P. RaPID-Reeonfigurable Pipelined DataPath. Proceedings of Intemational Workshop on FieldProgrammable Logic and Applications, 1996.
    [11] Mirsky E, Dehon A. A Reeonfigurable Computing Architeeture with Configurable Instruetion Distribution and Deployable Resources. FPGAs for Custom Computing Maehines, 1996, 157 - 166.
    [12] Goldstein S C, Schmit H, Budiu M, et al. PipeReneh: A Reconfigurable Architecture and Compiler. Computer, 2000, 33(4): 70 - 77.
    [13] Lu H, Singh M., Lee N, et al. The MorphoSys: Parallel Reconfigurable System. Proceedings of Euro-Par’99, 1999, 1685: 727 - 734.
    [14] Hartenstein R, Herz M, Hofmann T, et al. KressArray Xplorer: A New CAD Environment toOptimize Reconfigurable Datapath Array Achitectures. Proceedings of Asia South Paeific Design Automation Conference, 2000, 163-168.
    [15] Hartenstein R. A Decade of Reeonfigurble Computing: a Visionary Retrospective, Design, Automation and Test in Euorpe, 200l. Conerfence and Exhibition 2001 Proeeedings, 2001, 13(16): 642 - 649.
    [16]周学海.可重构多核片上系统软硬件功能划分与协同技术研究.合肥:中国科学技术大学, 2009, 11.
    [17] Kalavade Asawaree, Othmer Joe, Ackland Bryan, et al. Software Environment for a Multiprocessor DSP. Proceedings - Design Automation Conference, 1999, 827 - 830.
    [18] Han Cheng-Zong, Zhu Shan-An. Software Design on DSP Side of an On-vehicle Multimedia Processing Platform on OMAP. Dianzi Qijian/Journal of Electron Devices, 2006, 29(3): 951-954.
    [19] Andersson M, Norling K, Dreyfert A, et al. A reconfigurable pipelined ADC in 0.18 um CMOS. IEEE Symposium on VLSI Circuits, 2005, 326 - 329.
    [20] Audoglio W, Zuffetti E, Cesura G, et al. A 6-10 Bits Reconfigurable 20MS/s Digitally Enhanced Pipelined ADC for Multi-standard Wireless Terminals. Proceeding of 32nd ESSCIRC, 2006, 496-499.
    [21] Iizuka K, Matsui H, Ueda M, et al. A 14-bit Digitally Self-calibrated Pipelined ADC with Adaptive Bias Optimization for Arbitrary Speeds up to 40 MS/s. IEEE JSSC, vol. 41, 2006, 883 - 890.
    [22] Liu H, Hassoun M. A 9-b 40-MSample/s Reconfigurable Pipeline Analog-to-digital Converter, IEEE Trans. On Circuits and Systems II: Analog and Digital Signal Processing, 2002, 49(7): 449 - 456,.
    [23] Salwa Mostafa, Wenchao Qu, Syed K Islam. A Calibration Circuit for Reconfigurable Smart ADC for Biomedical Signal Processing. 2010 IEEE Annual Symposium on VLSI, 2010, 749(7): 185 - 189.
    [24] Fu C T, Ko C L, Kuo C N. A 2.4 to 5.4 GHz Low Power CMOS Reconfigurable LNA for Multistandard Wireless Receiver. IEEE on RFIC Symposium, 2007, 65 - 68.
    [25] Yang Y C, Lee P W, Chiu H W, et al. Reconfigurable SiGe Low-noise Amplifier withVariable Miller Capacitance. IEEE Transactions Regular Papers on Circuits and Systems I, 2006, 53(12): 2567 - 2577.
    [26] Satoshi Fukuda, Daisuke Kawazoe, Kenichi Okada, et al. Reconfigurable CMOS Low Noise Amplifier Using Variable Bias Circuit for Self Compensation. ASP-DAC '07 Proceedings of the 2007 Asia and South Pacific Design Automation Conference, 2007, 104 - 105.
    [27] Franklin Bien, Hyoungsoo Kim. A 10-Gb/s Reconfigurable CMOS Equalizer Employing a Transition Detector-Based Output Monitoring Technique for Band-Limited Serial Links. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4538 - 4547.
    [28] Masaki Kitsunezuka, Shinichi Hori, Tadashi Maeda. A Widely-Tunable Reconfigurable CMOS Analog Baseband IC for Software-Defined Radio. IEEE Journal of Solid-state Circuits, 2009, 44( 9): 2496 - 2502.
    [29] Alfred Grau, Hamid Jafarkhani, Franco De Flaviis. A Reconfigurable Multiple-Input Multiple-Output Communication System. IEEE Transactions on Wireless Communications, 2008, 7(5): 1719 - 1733.
    [30] Lecointre A, Dragomirescu D, Plana R. Largely reconfigurable impulse radio UWB transceiver. Electronics Letters, 2010, 46(6): 453 - 455.
    [31] Verhelst M, Ryckaert J, Vanderperren Y, et al. A Lowpower Reconfigurable IR-UWB System. IEEE Int. Conf. on Communications (ICC 2008). 2008, 3770 - 3774.
    [32] Kawazoe Daisuke, Sugawara Hirotaka, Ito Takeshi, et al. A reconfigurable RF circuit architecture for dynamic power reduction. IEEE Region 10 Annual International Conference, Proceedings/TENCON, v 2007, 2007
    [33] Okada Kenichi, Matsuzawa Akira. Reconfigurable RF CMOS circuit design for cognitive radios. 2009 International SoC Design Conference, ISOCC. 2009, 96-99.
    [34] Wiranto, Adiseno G, Soegandi, T.M.S. A low-cost CMOS reconfigurable receiver for WiMAX applications. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE. 2006, 346-351.
    [35] V?h?-Heikkil? Tauno, Rantakari Pekka. Reconfigurable circuits and architectures for wireless systems. Asia-Pacific Microwave Conference Proceedings, APMC, 2007
    [36] Kim Jina, Ha Dong Sam, Reed Jeffrey H. A new reconfigurable modem architecture for 3g multi-standard wireless communication systems. Proceedings - IEEE International Symposium on Circuits and Systems, 2005, 1051-1054.
    [37] Kitsunezuka Masaki, Tokairin Takashi, Maeda Tadashi, et al. A low-IF/Zero-IFreconfigurable analog baseband ic with an I/Q imbalance cancellation scheme. IEEE Journal of Solid-State Circuits, 2011, 46 (3) 572-582.
    [38] Okada K., Yoshihara Y., Sugawara H, et al. A dynamic reconfigurable RF circuit architecture . Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific. 2005, 2: 683-686.
    [39] Morgado Alonso, Del Río Rocío, De La Rosa, et al. Design of a 130-nm CMOS reconfigurable cascadeΣΔmodulator for GSM/UMTS/Bluetooth. IEEE International Symposium on Circuits and Systems, 2007, 725-728.
    [40] Silva Artur, Guilherme Jorge, Horta, Nuno. Reconfigurable multi-mode sigma-delta modulator for 4G mobile terminals. Integration, the VLSI Journal, 2001, 42 (1): 34-46.
    [41] Oruklu Erdal, Saniie, Jafar. Dynamically reconfigurable architecture design for ultrasonic imaging. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (8):2856-2866.
    [42] Lee Gwo-Giun, Yang Wei-Chiao, Wu Min-Shan. Reconfigurable architecture design of motion compensation for multi-standard video coding. 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 2010, 2003-2006.
    [43] Fathy Aly E, Rosen Arye, Owen Henry S. Silicon-based reconfigurable antennas - Concepts, analysis, implementation, and feasibility. IEEE Transactions on Microwave Theory and Techniques, 2003, 51 (6):1650-1660.
    [44] Hu Z.H., Song, C.T.P., Kelly, J., et al. Wide tunable dual-band reconfigurable antenna. Electronics Letters, 2009, 45(22): 1109-1110.
    [45] Edward K F Lee. Reconfigurable Analog Integrated Circuit Architecture Based on Switched-Capacit or Techniques. Eighth Annual IEEE International Conference on Innovative Systems in Silicon, 1996, 148 - 158.
    [46] Cadambi S, Weener J, Goldstein S.C, et al. Managing Pipeline-Reconfigurable FPGAs. Proceedings of 6th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 1998, 55-64.
    [47] Budiu M, Goldstein S C. Fast Compilation for Pipeline Reconfigurable Fabrics. Proceedings of 7th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 1999, 195 - 205.
    [48] Yuan Chou, Pillai P, Schmit H, et al. PipeRench Implementation of the Instruction Path Coprocessor. Proceedings of 33rd annual IEEE/ACM International Symposium on Microarchitecture, 2000, 147 - 158.
    [49] Goldstein S C, Schmit H, Budiu M, et al. PipeRench: a Reconfigurable Architecture and Compiler. IEEE Computer, 2000, 33(4): 70 - 77.
    [50] Kotturi D, Seong Moo Yoo, Blizzard J. AES Crypto Chip Utilizing High-Speed Parallel Pipelined Architecture. Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium, vol. 5, 2005, 4653 - 4656.
    [51] Liberatori M, Otero F, Bonadero J C. AES-128 Cipher High Speed Low Cost FPGA Implementation. SPL '07 3rd Southern Conference on Programmable Logic, 2007, 195 - 198.
    [52]覃祥菊,朱明程,张太镒等. FPGA动态可重构技术原理及实现方法分析.电子器件, 2004, 27(2): 277 - 282.
    [53]姚睿,王友仁,于盛林,等.使用可进化核在线进化算法级数字硬件系统.小型微型计算机系统, 2009, (1):188-192.
    [54] Moreno Arostegui J M, Sanchez E, Cabestany J. An In-System Routing Strategy for Evolvable Hardware Programmable Platforms. IEEE Computer Society, 2001, 157 - 166.
    [55]刘洋,李广军.基于函数级原型的流水线可重构结构的研究.小型微型计算机系统, 2009, 130(6): 1237 - 1239.
    [56] Michinishi Hiroyuki et al. A Test Methodology for Interconnect Structures of LUT-Based FPGAs. 1996 Proceedings of the 5th Asian Test Symposium, Hsinchu, Taiwan, 1996. IEEE CNF, 1996, 68 - 74.
    [57]孙金铎. 12-Bits 50MHz Pipelined ADC设计与实现.北京:北京大学, 2008.
    [58] Kelly D, Yang W, Mehr I, et al. A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input[J]. IEEE Journal of Solid-State Circuits, 2001, 36(12): 1931-1936.
    [59] Siragursa E and Galton I. A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC[J]. IEEE J. Solid-State Circuits, 2004, 39(12): 2126 - 2138.
    [60] Leon Melkonian. Improving A/D Converter Performance Using DITHER. National Semiconductor Application note 804, 1992.
    [61] Shu Yun-Shiang, Song Bang-Sup. A 15-bit Linear 20-MSs Pipelined ADC Digitally Calibrated With Signal-Dependent Dithering[J]. IEEE Journal of Solid-state Circuits, 2008, 43(2): 342 - 350.
    [62] Anna Domanska. A-D Conversion with DITHER Signal-Possiblities and Limitations. Measurement Science Review, 2001, 1(1): 75 - 78.
    [63] Mahmoud Fawzy Wagdy. Validity of Uniform Quantization Error Model for SinusoidalSignals without and With DITHER. IEEE Transaction on Instrumentation and Measurement, 1989, 38(3): 718 - 722.
    [64] Zames G, Shneydor N A. Dithering in Nonlinear Systems. IEEE Transaction on Automatic Control, 1997, 21(5): 660 - 667.
    [65]杨赟秀.适用于10bit100MSPS流水线ADC的sub_ADC的研究与设计[D].成都:电子科技大学, 2006.
    [66] WAGDY Z, FAWZY Mahmoud. Effect of Additive Dither on the Resolution of ADC's with Single-Bit or Multibit Errors[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2): 610 - 615.
    [67]宁宁.基于功耗优化的pipeline ADC系统结构设计与关键单元研究,成都:电子科技大学, 2007.
    [68] Johnny Bjmsen, Trond Yrterda. Behavioral Modeling and Simulation of High-Speed Analog-to-digital Converters Using SystemC. IEEE International Symposium on Circuit and Systems, 2003, 906 - 909.
    [69] Eduardo Peralias, Antonio J Acosta. VHDL-based Behavioural Description of Pipeline ADCs. IEEE International Symposium on Circuits and Systems, 2000, 681 - 684.
    [70] Erkan Bilhan, Pedro C Estrada. Behavioral Model of Pipeline ADC by using Simulink. Southwest Symposium on Mixed-signal Design, 2001, 147 - 151.
    [71]王伟.开关电流电路行为级模型方法研究,上海:复旦大学, 2002.
    [72] Edward Liu, Georges Gielen, Henry Chang. Behavioral Modeling and SIMULATION of Data Converters. IEEE International Symposium on Circuit and Systems, 1992, 2144 - 2147.
    [73] DIAS Pereira, SILVA Girao, CRUZ Serra. Dithering performance of oversampled ADC systems affected by hysteresis. Journal of the International Measurement Confederation, 2002, 32(1): 51 - 59.
    [74] SURESH Babu, WOLLMAN H.B. Testing an ADC linearized with pseudorandom dither. IEEE Transactions on Instrumentation and Measurement, 1998, 47(4): 839 - 848.
    [75] BLESSER B, LOCANTIHI B. The Application of Narrowband DITHER Operating at The Nyquist Frequency Indigital Systems to Provide Improved Signal to Noise Ratio over Conventional DITHERing. Audio Eng, 1987, 35(6): 446 - 454.
    [76] Kikkert C.J, A.Bigdeli. Hardware Additive Dither for Analigue to Digital Converters. 14th Australian Microelectronics Conference, 1997, 43(1): 156 - 161.
    [77] ANNA Domanska. A-D Conversion with DITHER Signal-possiblities and Limitations,Measurement Science Review, 2001, 1(1): 75 - 78.
    [78] Yazicioglu R, Merken P, Puers R, et al. A 200 uW Eight-Channel Acquisistion ASIC for Ambulatory EEG Systems. IEEE International Solid-State Circuits Conference, 2007, 164 - 165.
    [79] Harrison R R, Charles C. A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications. IEEE Journal of Solid-State Circuits, 2003, 38(6): 958 - 965.
    [80] Ng K A, Chan P K. A CMOS Analog Front-end IC for Portable EEG/ECG Monitoring Applications. IEEE Transactions Circuits System I, 2005, 52(11): 2335 - 2347.
    [81] Naveen Verma, Ali Shoeb, Jose Bohorquez, et al. A Micro-Power EEG Acquisition SoC with Integrated Feature Extraction Processor for a Chronic Seizure Detection System. IEEE Journal of Solid-State Circuits, 2010, 45(4): 804 - 816.
    [82] R. F. Yazicioglu, P. Merken, and C. Van Hoof, Integrated Low-Power 24-channel EEG Front-End, IEE Electronics Letters, 2005, 41(8): 457 - 458.
    [83] Denison T, Consoer K, Santa W, et al. A 2 uW 100 nV/rtHz Chopper-Stabilized Instrumentation Aamplifier for Chronic Measurement of Beural Field Potentials. IEEE Journal of Solid-State Circuits, 2007, 42(12): 2934 - 2945.
    [84] Wu H, Xu Y P. A 1V 2.3 ?W Biomedical Signal Acquisition IC. IEEE International Solid-State Circuits Conference (ISSCC 2006). 2006, 58 - 59.
    [85] Yu-Pin Hsu, Chun-Hao Chen, Hsiao-Chin Chen, et al. Low-Noise Wide-Dynamic-Range CMOS Analog Front-End IC for Portable Biomedical Applications. Asia-Pacific Microwave Conference (APMC 2008), 2008, 1 - 5.
    [86] Xiaodan Zou, Wen-Sin Liew, Libin Yao, et al. A 1V 22μW 32-Channel Implantable EEG Recording IC, IEEE International Solid-State Circuits Conference (ISSCC 2010). 2010, 126 - 127.
    [87] T Denison, K Consoer, A Kelly, et al. A 2.2μW 94nV/√Hz Chopper-Stabilized Instrumentation Amplifier for EEG Detection in Chronic Implants. IEEE International Solid-State Circuits Conference (ISSCC 2007). 2007, 162 - 163.
    [88] Xu X Y, Zou X D, Yao L B, et al. A 1-V 450-nW Fully Integrated Biomedical Sensor Interface System. 2008 IEEE Symposium on VLSI Circuits, 2008, 78 - 79.
    [89] P. Mohseni, K. Najafi, S. J. Eliades, et al. Wireless multi-channel biopotential recording using an integrated FM telemetry cir-cuit, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, 2005: 263–271.
    [90] Yazicioglu R F, Merken P, Puers R, et al. A 60 ?W 60 nV /Hz Readout Front-end for Portable Biopotential Acquisition Systems. IEEE International Solid-State Circuits Conference (ISSCC2006). 2006, 56 - 57.
    [91] Yazicioglu R F, Merken P, Puers R, et al. Low-power Low-Noise 8-Channel EEG Front-end ASIC for Ambulatory Acquisition Systems. European Solid-State Circuits Conf. (ESSCIRC2006). 2006: 247 - 250.
    [92] Shojaei-Baghini M, Lal R K, Sharma D K. A Low-Power and Compact Analog CMOS Processing Chip for Portable ECG Recorders. IEEE Asian Solid-State Circuits Conf. (ASSCC2005). 2005, 473 - 476.
    [93] Razavi B, Wooley B A. Design Techniques for High-Speed, High-Resolution Comparators. IEEE Journal of Solid-State Circuits, 1992, 27(12): 1916 - 1926.
    [94] Harrison R R, Watkins P T, Kier R J, et al. A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE Journal of Solid-State Circuits, 2007, 42(1): 123–133.
    [95] Tung-Chien Chen, Kuanfu Chen, Zhi Yang, et al. A Biomedical Multiprocessor SoC for Closed-Loop Neuroprosthetic Applications. IEEE International Solid-State Circuits Conference (ISSCC2009). 2009, 434 - 435.
    [96] Yazicioglu R F, Kim S, Torfs T, et al. A 30μW Analog Signal Processor ASIC for biomedical signal monitoring. IEEE International Solid-State Circuits Conference (ISSCC2010). 2010, 124 - 125.
    [97] Yazicioglu R F, Merken P, Puers R, et al. A 200μW Eight-Channel Acquisition ASIC for Ambulatory EEG Systems. IEEE International Solid-State Circuits Conference (ISSCC2008). 2008, 164 - 165.
    [98] Mollazadeh M, Murari K, Cauwenberghs G, et al. Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials. IEEE Trans. Biomed. Circuits Syst., 2009, 3(1): 1 - 10.
    [99] E Sackinger, W Guggenbuhl. A Versatile Building Block: The CMOS Differential Difference Amplifier. IEEE J. Solid-State Circuits, 1987, SC-22(4): 287 - 294.
    [100] C Enz, G Temes. Cireuit Techniques for Reducing the Effects of Op-amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization. Proceedings of the IEEE, 1996, 84(11): 1584 - 1614.
    [101] C Menolfi, Q Huang. A fully Integrated, Untrimmed CMOS Insttumentation Amplifier withSubmicrovolt Offset. Solid-State Cireuits, IEEE Journal of, 1999, 34(3): 415 - 420.
    [102] Tim Denison, Kelly Consoer, Wesley Santa, et al. a 2 uW 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials. IEEE J. Solid-State Circuits, 2007, 42(12).
    [103] Refet Firat Yazicioglo, Patrick Merken, Chris Van Hoof. Effect of Electrode Offset On the CMRR of the Current Balancing Instrumentation Amplifiers. Research in Microelectronics and Electronics, Vol.1.2005, 35 - 38.
    [104] M S J Steyaert, W M C Sansen, C Zhongyuan. A Micropower Low-Noise Monolithic Instrumentation Amplifier for Medical Purposes. IEEE J. Solid-State Circuits, vol. SC-22.1987, 1163 -1168.
    [105] J.Sauerbrey, D. Schimitt-Landsiedel, R. Thewes. A 0.5 V, 1W Successive Approximation ADC. IEEE European Solid State Circuits Conference (ESSCIRC), 2002 ,: 247-250,.
    [106] Jens Sauerbrey, Doris Schmitt-Landsiedel, Roland Thewes. A 0.5-V 1-uW Successive Approximation ADC. IEEE Journal of Solid-State Circuits, 2003, 38(7): 1261 - 1265.
    [107] Takeshi Yoshida, Miho Akagi, Mamoru Sasaki et al. A 1V Supply Successive Approximation ADC with Rail-to-Rail Input Voltage Range. IEEE, 2005, 192-195
    [108] Brian P Ginsburg, Anantha P Chandrakasan. An Energy-Efficient Charge Recycling Approach for a SAR Converter with Capacitive DAC. IEEE, 2005, 184 - 187.
    [109] S Mortezapour, E K F Lee. A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process. IEEE J. Solid-State Circuits, 2000, 35(4): 642 - 646.
    [110] G Promitzer. 12-b Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1MS/s. IEEE J. Solid-State Circuits, 2001, 36(7): 1138 - 1143.
    [111] Zheng Lin, Ouyang Shan. TH2PPM Demodulation Performance Analysis for Multipath and Multiple Access Fading in UWB System. Systems Engineering and Electronics, 2005, 10: 1676 -1680.
    [112] Tomas O Erseghe. Capacity of UWB impulse radio with single user reception in G aussian noise and dense multipath. IEEE transactions on communications, 2005, 53 (8): 1257 - 1262.
    [113] Win M Z, Scholtz R A. Ultra-wide Bandwidth Time-Hopping Spread Spectrum Impulse Radio for Wireless Multiple-Access Communications. IEEE Trans. on Communications, 2000, 48 (4): 679 - 691.
    [114] R A Scholtz, M Z Win. Impulse Radio: How It Works. IEEE Commun. Lett., vol. 2.1988, 36- 38.
    [115] Qiu R C, Liu H, Shen X. Ultra-wideband for multiple access communications. IEEE communications magazine, 2005, 43(2): 80~87.
    [116] Jianqiang Li, Songnian Fu, Kun Xu, et al. Photonic ultra-wideband monocycle pulse generation using a single electro-optic modulator. Optics Letters, 2008,33(3): 288-290.
    [117] J Foerste, E Green, S Somayazulu, et al. Ultra-Wideband Technology for Short- or Medium-Range Wireless Communications. Intel Technol. Journal Q2, 2001.
    [118] R A Scholtz, R Weaver, E Homier, et al. UWB Deployment Challenges. In Proc. 2000 IEEE PIMRC, vol. 1. 2000, 620 - 625.
    [119] R A Scholtz. Multiple Access with Time-Hopping Impulse Modulation. In Proc. 1993 IEEE MILCOM, vol. 2. 1993, 447 - 450.
    [120] G R Aiello. Challenges for Ultra-Wideband (UWB) CMOS Integration. In Proc. 2003 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2003, 497 - 500.
    [121] S-Y J Y-P Hong, H-Y Song. Coded N-ary PPM UWB Impulse Radio with Chaotic Time Hopping and Polarity Randomisation. IET Electron. Lett., 2008, 44(19): 1146 - 1147.
    [122] R W Brodersen. Issues in CMOS Implementation of UWB Radios. In 2003 IEEE RFIC Symp. UWB Workshop, 2003.
    [123] Y Saito, Y Sanada. Effect of Clock Offset on an Impulse Radio Ultra Wideband Ranging System with Comparators. IET Commun., 2009, 3(6): 1024 - 1029.
    [124] B Hu, N C Beaulieu. Comparison of Direct-Sequence Impulse Radio and Direct-Sequence Ultra-Wide Bandwidth in Multi-User Interference. IET Commun., 2008, 2(2): 266 - 271.
    [125] D D A Lecointre, R Plana. Methodology to Design Advanced MR-IR-UWB Communication System. IET Electron. Lett., 2008, 44(24): 1412– 1413.
    [126] A Ghasemi, S Nader-Esfahani. Nonlinear Pulse Combining in Impulse Radio UWB Systems. IET Commun., 2007, 1(6): 1289 - 1295.
    [127] Qiang Li. Performance Analysis and Integrated Circuit Design for CMOS Ultra-Wideband Transceiver. PhD Thesis, Nanyang Technological University, Singapore, 2007.
    [128] R Liu, J Elmirghani. Performance of Impulse Radio Direct Sequence Ultra-Wideband System with Variable-Length Lpreading Sequences. IET Commun., 2007,1(4): 597 - 603.
    [129] X Chen, S Kiaei. Monocycle Shapes for Ultra Wideband System. In Proc. 2002 IEEE Int. Symp. Circuits and Systems, vol. 1. 2002, 597 - 600.
    [130] D M Pozar. Waveform Optimizations for Ultra-Wideband Radio Systems. IEEE Trans.Antennas Propagat., 2003, 51(9): 2335 - 2345.
    [131] S N Makarov. Antenna and EM Modeling with MATLAB. New York: Willy-Interscience, 2002.
    [132] Y P Zhang. Integrated Circuit Ceramic Ball Grid Array Package Antenna. IEEE Trans. Antennas Propagat., 2004, 52(10): 2538 - 2544.
    [133] Y Chen Y P Zhang. A Planar Antenna in LTCC for Single-Package UWB Radio. IEEE Trans. Antennas Propagat., 2005, 53(9): 3089 - 3093.
    [134] Y Chen, G Y Li, Y P Zhang. An LTCC Planar Ultra-Wideband Antenna. Microwave Optical Technol. Lett., 2004, 42(3): 220 - 222.
    [135] Y Chen, Y P Zhang. Integration of Ultra-Wideband Slot Antenna on LTCC Substrate. IEE Electron. Lett., 2004, 40(11): 645 - 646.
    [136] H L Bertoni. Radio Propagation for Modern Wireless Systems. Upper Saddle River, NJ: Prentice Hall PTR, 1999.
    [137] Y P Zhang. Novel Model for Propagation Loss Prediction in Tunnels. IEEE Trans. Veh. Technol., 2003, 52(5): 1308 - 1314.
    [138] W Honcharenko, H Bertoni, J Dailing. Mechanisms Governing Propagation between Different Floors in Buildings. IEEE Trans. Antennas Propagat., 1993, 41(6): 787 - 790 .
    [139] Y P Zhang, J J Wang, Q Li, et al. Antenna-in-Package and Transmit-Receive Switch for Single-Chip Radio Transceivers of Differential Architecture. IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 55. 2008, 3564 - 3570.
    [140] K Yamamoto, T Heima, A Furukawa, et al. A 2.4-GHz-band 1.8-V Operation Single-Chip Si-CMOS T/R-MMIC Front-End with a Low Insertion Loss Switch. IEEE J. of Solid-State Circuits, vol. 36. 2001, 1186 - 1197.
    [141] Zhenbiao Li, Hyun Yoon, Feng-Jung Huang, et al. 5.8-GHz CMOS T/R Switches With High and Low Substrate Resistances in a 0.18μm CMOS Process. IEEE Microwave and Wireless Components Letters, 2003, 13(1): 1 - 3.
    [142] Q Li, Y P Zhang, K S Yeo et al. 16.6- and 28-GHz Fully Integrated CMOS RF Switches with Improved Body Floating. IEEE Trans. on Microwave Theory and Tech., vol. 56. 2008, 339-345.
    [143] B-W Min, G M Rebeiz. Ka-Band Low-Loss and High-Isolation Switch Design in 0.13-mm CMOS. IEEE Trans. on Microwave Theory and Tech., vol. 56. 2008, 1364 - 1371.
    [144] Q Li and Y P Zhang. CMOS T/R Switch Design: Towards Ultra-Wideband and HigherFrequency. IEEE J. Solid-State Circuits, 2007, 42(3): 563-570.
    [145] Y P Zhang, Q Li, W Fan, et al. A Differential CMOS T/R Switch for Multi-Standard Applications. IEEE Trans. Circuit Syst. II, Exp. Briefs, 2006 53(8): 782 - 786.
    [146] Z Li, H Yoon, F-J Huang, et al. 5.8-GHz CMOS T/R Switches with High and Low Substrate Resistance in a 0.18-um CMOS Process. IEEE Microw. Wireless Compon. Lett., 2003 13(1): 1 - 3.
    [147] A Poh, Z Yue Ping. Design and Analysis of Transmit/Receive Switch in Triple-Well CMOS for MIMO Wireless Systems. IEEE Trans. on Microwave Theory and Tech., vol. 55. 2007, 458– 466.
    [148] Mai Siti M H, Azmi I M, Rasidah S, et al. A 0.18um CMOS T/R Switch for 900MHZ Wireless Application. IEEE I.RF and Microwave Conference (RFM 2008). 2008, 176 - 179.
    [149] X J Li, Y P Zhang. An Overview of Recent Advances in CMOS T/R Switches Designs. Asia Pacific Microwave Conference (APMC 2009). 2009, 1747 - 1750.
    [150] Z li, K O. 15-GHz Tully Integrated nMOS Switches in a 0.13-um CMOS Process. IEEE J. Solid-State Circuit, 2005, 40(11): 2323 - 2328.
    [151] M C Yeh, Z M Tsai, R C Liu, et al. Design and Analysis for a Miniature CMOS SPDT Switch Using Body-Floating Technique to Improve Power Performance. IEEE Trans. Microw. Theory Tech, 2006, 54(1): 31 - 39.
    [152] Piljae Park, H S Dong, J JPekarik,et al. A High-Linearity, LC-Tuned, 24-GHz T/R Switch in 90-nm CMOS. IEEE.Radio Frequency Integrated Circuits Symposium (RFIC 2008). 2008, 369 - 372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700