一种高精度逐次逼近模数转换器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字信号具有抗干扰能力强、易于集成、功耗小、成本低的综合优势,因此越来越多的模拟信号处理逐渐被数字信号技术所取代。然而,自然界的光、热、声、电、磁等信号都是模拟量,为了使这些模拟信号能够被计算机处理,需要将这些在时间幅度上连续的模拟信号转换为离散的数字信号,模数转换器(ADC)就是实现这样功能的模块。逐次逼近(SAR)模数转换器具有中等转换速度、中等精度、低功耗和低成本的综合优势,它在便携式仪表、工业控制等领域得到了非常广泛的应用。
     本论文以中速、高精度逐次逼近结构(SAR)模数转换器的分析和设计为研究方向,从逐次逼近ADC原理入手,分析比较SAR ADC的典型结构,最终确定采用分段电容阵列结构来实现该设计。由于实现高精度SAR ADC的难点在于电容、电阻之间匹配误差以及比较器固有的失调误差,所以本文重点讨论了高精度比较器的失调误差消除技术以及电容失配误差的自校准技术。
     本论文基于华虹NEC 0.35 ?m工艺,设计了一个电源电压为5 V,转换精度为16位,采样率为294K SP/s的中速、高精度、全差分逐次逼近模数转换器。仿真结果表明,在输入缓慢变化的-10mV~10mV的斜坡电压信号时,输出数字码信号重建后没有遗漏码,并且DNL小于1/2LSB。在输入141kHz正弦信号时,测得整个系统的信噪失真比SNR为86dB,信噪失真比SNDR为83dB,有效位数ENOB为13.59位。
Digital signal processing has the multi advantage of strong noise tolerance ability, easy to integrate, low power consumption, low cost, so more and more signal processing uses digital signal instead of analog signal. But most of the signals in the nature are analog such as light, heat, electrical, magnetic. To process these signals in computer, we need to translate these continuous time analog signals into discrete time digital signals. Analog to digital converter (ADC) is the module to realize this function. Successive approximation register analog to digital converter is very popular in the portable instruments, industry controlling and medical instruments because it has the characteristics of medium speed, medium resolution, low power consumption and low cost.
     This thesis is focus on the research and design of medium speed and high resolution successive approximation register analog to digital converter. After comparing several typical kinds of SAR ADC architecture, the segmented capacitor array architecture is used. The most challenge difficulties in high resolution SAR ADC are the capacitors and resistors mismatch and the inherent offset voltage of comparator. So the offset cancellation technique for comparator and self calibration technique for capacitor mismatch are discussed separately.
     Based on the Huahong NEC 0.35 ?m technology, a 16bit, 294kSP/s fully differential successive approximation register ADC with 5V power supply is designed. The simulation results show that it has no missing code and DNL is small than 1/2LSB when -10mV to 10mV ramp signal is input. At the 141 kHz sin wave input, it achieves the signal to noise ratio (SNR) 86dB, signal to distortion and noise ratio (SNDR) 83dB and effective number of bits (ENOB) 13.59 bit.
引文
[1] XIE Q G, ZHU J, WANG X, et al. An investigation of digital signal processing for shaped pulses for all-digital PET - art. no. 691341B [J]. Medical Imaging 2008: Physics of Medical Imaging, Pts 1-3, 2008, 6913(B1341-B2081).
    [2] MARTINEZ J D, BENLLOCH J M, CERDA J, et al. High-speed data acquisition and digital signal processing system for PET imaging techniques applied to mammography [J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 407-12.
    [3] ZHANG Q, LI Y Q, LI Y D. Development of data acquisition and analysis system based on TMS320F240S DSP [J]. Istm/2003: 5th International Symposium on Test and Measurement, Vols 1-6, Conference Proceedings, 2003, 562-564.
    [4] GORDON. 11-bit, 20kSPS vacuum tube successive approximation ADC [Patent]. 1955.
    [5] KIM H, MIN Y, KIM Y, et al. A Low Power Consumption 10-bit Rail-to-Rail SAR ADC Using a C-2C Capacitor Array [J]. Edssc: 2008 IEEE International Conference on Electron Devices and Solid-State Circuits, 2008, 359-362.
    [6] DEVENUTO D, CASTRO D T, PONOMAREV Y, et al. Low Power 12-bit SAR ADC for Autonomous Wireless Sensors Network Interface [J]. 2009 3rd International Workshop on Advances in Sensors and Interfaces, 2009, 109-114.
    [7] VERMAN, CHANDRAKASAN A P. An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes [J]. IEEE Journal of Solid-State Circuits, 2007, 42(6): 1196-1205.
    [8] Allen P E, Holberg D R.CMOS Analog Circuit Design[M].北京:电子工业出版社,2002.
    [9] CHANG Y K, WANG C S, WANG C K. A 8-bit 500-KS/s low power SAR ADC for bio-medical applications [J]. 2007 IEEE Asian Solid-State Circuits Conference, Proceedings of Technical Papers, 2007, 228-231.
    [10] CRANINCKX J, PLAS V D. A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS [J]. IEEE, 2007, 43(26): 475.
    [11] OGAWA T, KOBAYASHI H, HOTTA M, et al. SAR ADC Algorithm with Redundancy [J]. 2008 IEEE Asia Pacific Conference on Circuits and Systems (Apccas 2008), Vols 1-4, 2008, 268-271.
    [12] GINSBURG B P, CHANDRAKASAN A P. Highly Interleaved 5-bit, 250-MSample/s, 1.2-mW ADC with Redundant Channels in 65-nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 2641-2650.
    [13] DONDI S, VECCHI D, BONI A, et al. A 6-bit, 1.2 GHz interleaved SAR ADC in 90nm CMOS [J]. Prime 2006: 2nd Conference on PHD Research in Microelectronic and Electronics, Proceedings, 2006, 301-304.
    [14] DRAXELMAYR D. A 6b 600MHz 10mW ADC array in digital 90nm CMOS [J]. 2004 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2004, 47(264-265).
    [15] John J A, Martin K. Analog integrated circuit design [M].New York: John Wiley & Sons,Inc.1997.
    [16] GAMAD R S, MISHRA D K. Gain error, offset error and ENOB estimation of an A/D converterusing histogram technique [J]. Measurement, 2009, 42(4): 570-576.
    [17] FLEISCHMANN T, MULLANE B. A Dynamic ADC Test Processor for Built-in-Self-Test of ADCs [J]. Proceedings of the 12th Wseas International Conference on Circuits, 2008, 456-461.
    [18] LIEN Y C, LIN Y Z, CHANG S J. A 6-bit 1GS/s Low-Power Flash ADC [J]. 2009 International Symposium on VLSI Design, Automation and Test (VLSI-Dat), Proceedings of Technical Program, 2009, 211-214.
    [19] LIEW W S, YAO L B, LIAN Y. A Moving Binary Search SAR-ADC for Low Power Biomedical Data Acquisition System [J]. 2008 IEEE Asia Pacific Conference on Circuits and Systems (Apccas 2008), Vols 1-4, 2008, 646-649.
    [20] TREICHLER J, HUANG Q T, BURGER T. A 10-bit ENOB 50-MS/s pipeline ADC in 130-nm CMOS at 1.2 V supply [J]. ESSCIRC 2006: Proceedings of the 32nd European Solid-State Circuits Conference, 2006, 552-555.
    [21] LEE S C, JEON Y D, KWON J K, et al. A 10-bit 205-MS/s 1.0-mm(2) 90-nm CMOS pipeline ADC for flat panel display applications [J]. IEEE Journal of Solid-State Circuits, 2007, 42(12): 2688-2695.
    [22] AGAH A, VLEUGELS K, GRIFFIN P B, et al. A high-resolution low-power oversampling ADC with extended-range for bio-sensor Arrays [J]. 2007 Symposium on VLSI Circuits, Digest of Technical Papers, 2007, 244-245.
    [23] McCreary.J.L, Gray.P.R and Hodges.D.A. All MOS charge redistribution analog to digital conversion techniques -Part 1[J].IEEE.J .Solid State circuits, vol. 10,1975,371-379.
    [24] Eugenio Culurciello. An 8-Bit, 1MW Successive Approximation ADC in SOI CMOS [J] .IEEE Journal of Solid -State Circuits, 2003, 17(3):301-304.
    [25] YOO S, SONG Y, JUNG J, et al. A 12-bit segmented resistor-capacitor digital-to-analog converter for a display driver IC of a large TFT-LCD panel system [J]. Journal of the Society for Information Display, 2009, 17(3): 213-220.
    [26] KATYAL V, GEIGER R L, CHEN D G J. A new high precision low offset dynamic comparator for high resolution high speed ADCs [J]. 2006 IEEE Asia Pacific Conference on Circuits and Systems, 2006.
    [27] BANIHASHEMI M. A high-speed high-resolution comparator [J]. 2004 47th Midwest Symposium on Circuits and Systems, Vol I, Conference Proceedings, 2004, 81-84.
    [28] WANG R Y, LI K H, ZHANG J Q, et al. A high-speed high-resolution latch comparator for pipeline analog-to-digital converters [J]. 2007 International Workshop on Anti-counterfeiting, Security, and Identification, 2007, 28-31.
    [29] WANG T, CHEN L, DINH A, et al. Single-Event-Transient Tolerant Comparators with Auto-Zeroing Techniques [J]. 2008 1st Microsystems and Nanoelectronics Research Conference, 2008, 13-16.
    [30] LEE H-S. A Self-Calibrating 15 Bit CMOS A/D Converter [J]. IEEE, 1984, 19(6): 813.
    [31] XU Y P, RIGBY G, STARR M. Effect of switch charge injection on Sigma Delta modulator [J]. 1995 IEEE Tencon - Asia-Pacific Microelectronics 2000, Proceedings, 1995, 131-134.
    [32] SAKURAI H, SUGIMOTO Y. The realization of an area-efficient CMOS bandgap reference circuit with less than 1.25 V of output voltage using a fractional V-BE amplification scheme [J]. IEEETransactions on Electronics, 2007, E90c(2): 499-506.
    [33] PEASE R A. The Design of Band-Gap Reference Circuits - Trials and Tribulations [J]. Proceedings of the 1990 Bipolar Circuits and Technology Meeting, 1990, 214-218.
    [34] JIANG Y M, LEE E K F. Design of low-voltage bandgap reference using transimpedance amplifier [J]. IEEE Transactions on Circuits and Systems Ii-Express Briefs, 2000, 47(6): 552-555.
    [35] RAMASAMY S, VENKATARAMANI B, MEENATCHISUNDARAM P. A low power CMOS voltage reference circuit with subthreshold MOSFETs [J]. Iced: 2008 International Conference on Electronic Design, Vols 1 and 2, 2008, 512-517.
    [36] SOMVANSHI S. A Sub-1 Volt CMOS Bandgap Reference with high Power Supply Rejection [J]. 2008 IEEE Asia Pacific Conference on Circuits and Systems (Apccas 2008), Vols 1-4, 2008, 666-667.
    [37] KWON Y J, BONG J H, KIM D H, et al. Sub-1-V-Output CMOS bandgap reference circuit with small area and low power consumption [J]. IEEE Electronics Express, 2009, 6(3): 161-6.
    [38] KINGET P, VEZYRTZIS C, CHIANG E, et al. Voltage References for Ultra-Low Supply Voltages [J]. Proceedings of the IEEE 2008 Custom Integrated Circuits Conference, 2008, 715-720.
    [39] ASHRAFI S F, ATARODI S M, CHAHARDORI M. A New Low Voltage, High PSRR, CMOS Bandgap Voltage Reference [J]. IEEE International Soc Conference, Proceedings, 2008, 345-348.
    [40] WADHWA S K. A low voltage CMOS bandgap reference circuit [J]. Proceedings of 2008 IEEE International Symposium on Circuits and Systems, Vols 1-10, 2008, 2693-2696.
    [41] AKSIN D, AL-SHYOUKH M A, MALOBERTI F. An 11 bit sub-ranging SAR ADC with input signal range of twice supply voltage [J]. 2007 IEEE International Symposium on Circuits and Systems, Vols 1-11, 2007, 1717-1720.
    [42] PARK J, PARK H J, KIM J W, et al. A 1mW 10-bit 500KSPS SAR A/D converter [J]. Iscas 2000: IEEE International Symposium on Circuits and Systems - Proceedings, Vol V, 2000, 581-584.
    [43] JAMES L.MCCREARY, P. R. GRAY, HODGES D A. All-MOS charge redistribution analog-to-digital conversion techniques–partⅱ[J]. IEEE, 1975, 42(32): 579-88.
    [44]周文婷,郭炜.数字CMOS工艺下10位580kSps逐次逼近型模数转换器设计[D].硕士毕业论文, 2007,
    [45] CHEN J E, LUO P W, WEY C L. Yield Evaluation of Analog Placement with Arbitrary Capacitor Ratio [J]. Isqed 2009: Proceedings 10th International Symposium on Quality Electronic Design, Vols 1 and 2, 2009, 179-184.
    [46] SAYED D, DESSOUKY M. Automatic generation of common-centroid capacitor arrays with arbitrary capacitor ratio [J]. Design, Automation and Test in Europe Conference and Exhibition, 2002 Proceedings, 2002, 576-580.
    [47] KERAMAT M, TAO Z. A capacitor mismatch and gain insensitive 1.5-bit/stage pipelined A/D converter [J]. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Vols I-III, 2000, 48-51.
    [48] ADENIRAN O A, DEMOSTHENOUS A. Constant-Resistance CMOS Input Sampling Switch for GSM/WCDMA High Dynamic Range Delta Sigma Modulators [J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2008, 55(10): 3234-3245.
    [49] ADENIRAN O A, DEMOSTHENOUS A. A 14-mW, 153.6-MHz clock-rate Delta Sigma modulatorfor WCDMA with 77-dB SFDR using constant resistance CMOS input sampling switch [J]. Esscirc 2007: Proceedings of the 33rd European Solid-State Circuits Conference, 2007, 244-247.
    [50] MIYAHARA M, MATSUZAWA A. The effects of switch resistances on pipelined ADC performances and the optimization for the settling time [J]. Ieice Transactions on Electronics, 2007, E90c(6): 1165-1171.
    [51] GEERTS Y, MARQUES A M, STEYAERT M S J, et al. A 3.3-V, 15-bit, delta-sigma ADC with a signal bandwidth of 1.1 MHz for ADSL applications [J]. IEEE Journal of Solid-State Circuits, 1999, 34(7): 927-936.
    [52] MEGANATHAN D, SUKUMARAN A, BABU M M D, et al. A systematic design approach for low-power 10-bit 100 MS/s pipelined ADC [J]. Microelectronics Journal, 2009, 40(10): 1417-1435.
    [53] KIM Y J, CHO Y J, SA D H, et al. A 10 b 200 MS/s 1.8 mm(2) 83 mW 0.13 mu m CMOS ADC based on highly linear integrated capacitors [J]. IEEE Transactions on Electronics, 2007, E90c(10): 2037-43.
    [54] TAFT R C, TURSI M R. A 100-MS/s 8-b CMOS subranging ADC with sustained parametric performance from 3.8 V down to 2.2 V [J]. IEEE Journal of Solid-State Circuits, 2001, 36(3): 331-338.
    [55]孙彤,李冬梅.低功耗逐次逼近数模转换器的研究与设计[D].硕士毕业论文, 2007.
    [56] RAZAVI A. Design techniques for high-speed high-resolution comparators [J]. IEEE, 1992, 43(23): 432.
    [57] WU R, WU X B, YAN X L. A dynamic CMOS comparator with high precision and resolution [J]. 2004: 7th International Conference on Solid-State and Integrated Circuits Technology, Vols 1- 3, Proceedings, 2004, 1567-1570.
    [58] FENG S B, WANG J H, FENG Z, et al. An implementation of low offset latched comparator for ADCs or DACs [J]. Istm/2007: 7th International Symposium on Test and Measurement, Vols 1-7, Conference Proceedings, 2007, 2073-2076.
    [59] AL-RAWI G A. A new offset measurement and cancellation technique for dynamic latches [J]. 2002 IEEE International Symposium on Circuits and Systems, Vol V, Proceedings, 2002, 149-152.
    [60] AL-RAWI G A. A new dynamic latch offset measurement technique for offset cancellation [J]. Circuits Systems and Signal Processing, 2002, 21(2): 137-148.
    [61] WANG J S, WANG Y M, CHENG C Y, et al. Improved SAR controller for DLL applications [J]. 2006 IEEE International Symposium on Circuits and Systems, Vols 1-11, Proceedings, 2006, 3898-3901.
    [62] ROSSI.A, FUCILI.G. Non-redundant successive approximation register for A/D converters [J]. IEEE, 1996, 32(12): 1055.
    [63] LIAO E, POSTULA A, DING Y. Top-down methodology in industrial mixed-signals design - art. no. 603525 [J]. Microelectronics: Design, Technology, and Packaging II, 2006, 6035(3525-3562).
    [64] SHIROTA H, SADAKANE T, TERAI M, et al. A new router for reducing "antenna effect" in ASIC design [J]. IEEE 1998 Custom Integrated Circuits Conference - Proceedings, 1998, 601-604.
    [65] NOWAKOWSKA M, KAREWICZ A, LOUKINE N, et al. Studies of the antenna effect in polymer molecules. 29. Synthesis and properties of poly in aqueous solution [J]. Polymer, 2002, 43(7): 2003-2009.
    [66] KUZMIN V A, YURKOV S N. Analysis of Latch-up Effect in Insulated Gate Bipolar-Transistors [J]. Fifth European Conference on Power Electronics and Applications, Vol 2, 1993, 377): 297-300.
    [67] CHEN W Y, KER M D, HUANG Y J, et al. Measurement on Snapback Holding Voltage of High-Voltage LDMOS for Latch-up Consideration [J]. 2008 IEEE Asia Pacific Conference on Circuits and Systems (Apccas 2008), Vols 1-4, 2008, 61-64.
    [68] VASHCHENKO V A, LAFONTEESE D J, KORABLEV K G. Lateral PNP BJT ESD Protection Devices [J]. Proceedings of the 2008 Bipolar/Bicmos Circuits and Technology Meeting, 2008, 53-56.
    [69] MUTH W. Matrix-Method for Latch-up Free Demonstration in a Triple-Well Bulk-Silicon Technology [J]. IEEE Transactions on Nuclear Science, 1992, 39(3): 396-400.
    [70] BASTOS J, STEYAERT M, GRAINDOURZE B, et al. Matching of MOS transistors with different layout styles [J]. Icmts 1996 - 1996 IEEE International Conference on Microelectronic Test Structures, Proceedings, 1996, 17-18.
    [71] BINICI H, KOSTAMOVAARA J. Layout preferences concerning matching in a fully differential Delta Sigma modulator design (vol 50, pg 95, 2007) [J]. Analog Integrated Circuits and Signal Processing, 2007, 51(2): 129-30.
    [72] VAN DER WAGT J P A, CHU G G, CONRAD C L. A layout structure for matching many integrated resistors [J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2004, 51(1): 186-190.
    [73] OKADA K, ONODERA H, TAMARU K. Layout dependent matching analysis of CMOS circuits [J]. Analog Integrated Circuits and Signal Processing, 2000, 25(3): 309-18.
    [74] ALBINA C M, HACKL G. Layout parasitic interconnections effects on high frequency circuits [J]. 2007 IEEE Dallas/Cas Workshop on System-on-Chip (Soc): Design, Applications, Integration, and Software, 2007, 71-74.
    [75] KAMEL D, BOL D, FLANDRE D. Impact of Layout Style and Parasitic Capacitances in Full Adder [J]. 2008 IEEE International SOI Conference, Proceedings, 2008, 97-98.
    [76] BRAMBILLA A, MANCINI P. Accuracy analysis of layout parasitic extraction based on Boolean methods [J]. Iscas '98 - Proceedings of the 1998 International Symposium on Circuits and Systems, Vols 1-6, 1998.
    [77] MARTIN D, KONCZYKOWSKA A. Very high speed circuits layout design with automated parasitic symmetrization [J]. Iscas 96: 1996 IEEE International Symposium on Circuits and Systems - Circuits and Systems Connecting the World, Vol 4, 1996, 783-786.
    [78] CHENG L, WONG M D F. Floorplan design for multi-million gate FPGAs [J]. Iccad-2004: International Conference on Computer Aided Design, IEEE/Acm Digest of Technical Papers, 2004, 292-299.
    [79] GUPTA S, KATKOORI S, SANKARAN H. Floorplan-based crosstalk estimation for macrocell-based designs [J]. 18th International Conference on VLSI Design, Proceedings, 2005, 463-468.
    [80] HUANG S H, WANG C L. An effective floorplan-based power distribution network design methodology under reliability constraints [J]. 2002 IEEE International Symposium on Circuits and Systems, Vol I, Proceedings, 2002, 353-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700