高效、高精度气体非灰辐射模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐射换热常常是燃烧系统和各类火焰中主要的换热方式,因此引起了广泛的注意。热辐射为揭示各类状态提供了多种方式,如辐射检测信号等。然而,由于辐射强度一方面依赖于空间和角度影响,另一方面如H2O、CO2等气体的吸收系数随波数剧烈变化,这导致很难准确模拟辐射换热问题。自19世纪50年代,辐射模型的研究已经引起了各国学者的注意。最近20年,发展了各类精确、有效的气体非灰模型,但目前还有待提高模型对气体混合物、气固混合物的处理能力。所以,本文旨在进一步发展已有模型,提高计算精度和效率,并将其应用于燃烧模拟中。具体工作如下:本文首先基于统计窄谱带模型和统计窄谱带关联K模型,研究了水蒸气、二氧化碳和烟黑的辐射热源分布和光谱强度变化情况,同时考察烟黑颗粒对气体壁面热流的影响,得到了气体的平均普朗克吸收系数。基于各个版本的气体谱线数据库,采用逐线法考察了一维平行平板间气体辐射换热情况。针对不同介质浓度和温度分布,考察各个数据库的性能。同时,也采用了统计窄谱带模型,通过逐线法结果来检验统计窄谱带模型谱带参数的准确性。研究显示,光谱数据库的选择对逐线法精度的影响很大。研究还显示,不论是辐射热源还是壁面热流,统计窄谱带模型计算结果都与基于HITEMP2010数据库的逐线法结果吻合的非常好。将逐线法和统计窄谱带关联K模型结合离散坐标法应用到二维含有边界的气体介质的辐射传递过程求解。发展了二维矩形区域基准解,并为多维系统中统计窄谱带关联K模型的可用性提供依据。基于最新光谱数据库,首次得到了水蒸气和二氧化碳的吸收线黑体分布数据库。利用该数据库,将本征正交分解(POD)法应用到气体辐射参数求取中,另外还提出了一个全新的双曲线关联式(HC)。基于此,发展POD-SLW模型。发展逐线法求取窄谱带透射率,进一步检验统计窄谱带模型的准确度;发展逐线法和统计窄谱带模型关于普朗克平均吸收系数新公式,纠正以往文献中的错误解,并将其应用到二维轴对称扩散火焰模拟中,考察辐射在不同重力加速度下对火焰结构、烟黑形成的影响。综上所述,本文发展的统计窄谱带模型、逐线法,为高温气体辐射特性计算及辐射传递的数值模拟提供了一种灵活、有效的方法。
The importance of thermal radiation heat transfer in combustion systems and flames has been paid unprecedented attention due to its often dominant role in heat transfer. Thermal radiation also offers various ways to reveal the state of combustion through inverse analysis from the detected radiation signals. Ultrafast pulse radiation is rapidly being deployed in many new applications. However, accurately modeling of thermal radiation is a formidable task due to the spatial and direction dependence of radiation intensity and extremely rapid variation of the absorption coefficient of gaseous species such as CO2 and H2O. Thermal radiation modeling has received attention in the 1950's. The last 20 years have witnessed rapid progress in the development of accurate and efficient modern non-grey gas radiation models. More research is required to improve the current modeling methods in terms of gas mixture treatment and non-grey particle scattering treatment. Therefore, this article will concentrate on further improve the current non-grey radiation models in terms of accuracy, or efficiency, or both. Specifically as follows:Firstly, the statistical narrow-band (SNB) model and SNB correlated-K method were employed to study the effect of soot volume fraction up to 1 ppm on the source term, the narrow-band radiation intensities along a line-of-sight, and the net wall heat fluxes were investigated for a wide range of temperature. In addition, the Planck-mean absorption coefficients were obtained using these models.Line-by-line calculations using the high-resolution spectral databases were conducted for six test cases of radiative heat transfer in one-dimensional enclosure between two parallel plates. This study demonstrates the importance of spectral database to the accuracy of line-by-line calculations through a systematic comparison of line-by-line results from different databases. The agreement between the LBL results using the HITEMP2010 database and the results of the SNB model was found to be very good for both the wall heat flux and the radiative source term.Radiation heat transfer in two-dimensional rectangular enclosures containing CO2/H2O/N2 mixtures was calculated using the line-by-line and the statistical narrow-band correlated-k models. The present line-by-line results can serve as benchmark results for the purpose of validating other approximate models. The SNBCK results were found in good agreement with those of the LBL model. Therefore, it can provide benchmark solution in the absence of LBL results in multi-dimensional gas radiation heat transfer problems.Databases of the absorption line blackbody distribution function (ALBDF) of CO2 and H2O were firstly generated over a wide range of gas and blackbody temperature and the full range of gas concentration from line-by-line (LBL) calculations using the latest version of HITEMP. Proper orthogonal decomposition (POD) and the new hyperbolic correlations (HC) were developed and used for rapid calculation the ALBDF value at an arbitrary combination of gas and blackbody temperatures and gas concentration. Then, the POD-SLW model was proposed.Narrow-band transmissivities in the spectral range were calculated using the statistical narrow-band model and the line-by-line method along with the HITEMP high-resolution spectral database. New Planck-mean absorption coefficients formats were developed based on these two methods. Planck-mean absorption coefficients obtained using LBL method were applied to the two-dimension diffustion flame.The effect of radiation at different gravity on flame structure and soot formation in coflow CH4/air diffusion flames were investigated.In summary, the LBL and SNB models are flexible and valid computation methods for high temperature gas radiative properties and radiative transfer simulation.
引文
[1]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [2]谈和平,夏新林,刘林华,等.红外辐射特性与传输的数值计算—计算热辐射学.哈尔滨:哈尔滨工业大学出版社,2006.
    [3]郑楚光,柳朝晖.弥散介质的光学特性及辐射传热.武汉:华中理工大学出版社,1996.
    [4] Modest M F. Radiative heat transfer,2nd Edition. San Diego:Academic Press,2003.
    [5] Siegel R, Howell J R. Thermal Radiation Heat Transfer.4th Edition. New York: Taylor & Francis,2002.
    [6]卞伯绘.辐射传热的分析与计算.北京:清华大学出版社,1988.
    [7]西格尔R,豪威尔JR.热辐射传热.曹玉章,黄素逸,陆大有,陶文铨,朱芙英,胡桅林,译.北京:科学出版社,1990.
    [8]刘林华,谈和平.梯度折射率介质内热辐射传递的数值模拟.北京:科学出版社,2006.
    [9]范维澄,万跃鹏.流动与燃烧的模型与计算.合肥:中国科学技术大学出版社,1992.
    [10]邢华伟.辐射换热混合模拟算法及弥散介质辐射特性的研究:[博士thesis.].能源与动力工程学院,华中科技大学,1999.
    [11] Arnold J O, Whiting E E, Lyle G C. Line by line calculation of spectra from diatomic molecules and atoms assuming a voigt line profile. J. Quant. Spectrosc. Radiat. Transfer,1969,9:775-798.
    [12] Plass G N. Models for spectral band absorption. J. Opt. Soc. Am.,1958,48(10):690-703.
    [13]尹雪梅.高温气体辐射特性计算的宽带k分布模型:[博士thesis]能源科学与工程学院,哈尔滨工业大学,2008.
    [14] Elsasser W M. Heat transfer by infrared radiation in the atmosphere, Harvard
    University Press, Cambridge, MA,1943.
    [15] Goody R M. A statistical model for water-vapor absorption. Quart. J. Royal Meteorol. Soc.1952,78:165-169.
    [16] Malkmus W. Random Lorentz band model with exponential-tailed S-1 line-intensity distribution function. J. Opt. Soc. Am.,1967,57:323-329.
    [17] Liu F, Smallwood G J. Radiathion heat transfer calculations using the SNBCK method. In:33rd thermophysics conference, AIAA 99-3679, Norfolk, VA, June 28-July 1,1999.
    [18] Penner S S. Quantitative molecular spectroscopy and gas emissivities, Addison Wesley, Reading, MA,1959.
    [19] Edwards D K. Molecular gas band radiation, in:T. F. Irvine Jr., J. P. Hartnett (Eds.), Advances in Heat Transfer, Vol.12, Academic Press, New York,1976.
    [20] Marin O, Buckius R O. Wide band correlated-k approach to thermal radiative transport in nonhomogeneous media. ASME J. Heat Transfer,1997,119:719-729.
    [21] Golden S A. The Doppler analog of the Elsaasser band model. J. Quant. Spectrosc. Radiat. Transfer,1968,8:877-897.
    [22] Golden S A. The Voigt analog of the Elsaasser band model. J. Quant. Spectrosc. Radiat. Transfer,1969,8:165-176.
    [23] Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2 and CO, and correlated k model for H2O and CO2. Int. J. Heat Mass Transfer,1997,40:987-991.
    [24] Andre F, Vaillon R. A nonuniform narrow band correlated-k approximation using the k-moment method. J. Quant. Spectrosc. Radiat. Transfer,2010,111:1900-1911.
    [25] Riviere P, Soufiani A. Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. Int. J. Heat Mass Transfer,2012,55:3349-3358.
    [26] Young S J. Nonisothermal band model theory. J. Quant. Spectrosc. Radiat. Transfer, 1976,18:1-28.
    [27] Modest M F, Sikka K K. The stepwise gray P-1 approximation for multi-dimensional radiative transfer in molecular-gas-particulate mixtures. J. Quant. Spectrosc. Radiat. Transfer,1992,48(2):159-168.
    [28] Liu Y Y, Zhang X X. Analysis of gas radiative transfer using box model and its
    comparison with gray band approximation. J. Thermal Sci.,2002,12(1):82-88.
    [29] Hottel H C, Sarofim A F. Radiative Transfer, McGraw-Hill:New York,1967.
    [30] Modest M F. The weighted-sum-of-grey-gases model for arbitrary solution methods in radiative transfer. ASME J. Heat Transfer,1991,113:650-656.
    [31] Denison M K, Webb B W. A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers, ASME J. Heat Transfer,1993,115:1004-1012.
    [32] Denison M K, Webb B W. The spectral line-based weighted-sum-of-grey-gases model in non-isothermal nonhomogeneous media. ASME J. Heat Transfer,1995, 117:359-365.
    [33] Denison M K, Webb B W. The spectral-line weighted-sum-of-grey-gases model for H2O/CO2 mixtures. ASME J. Heat Transfer,1995,117:788-792.
    [34] Solovjov V P, Webb B W. SLW modeling of radiative transfer in multicomponent gas mixtures. J. Quant. Spectrosc. Radiat. Transfer,2000,65(4):655-672.
    [35] Solovjov V P, Webb B W. An efficient method for modeling radiative transfer in multi-component gas mixtures with soot. ASME J. Heat Transfer,2001,123:450-457.
    [36] Solovjov V P, Lemonnier D, Webb B W. The SLW-1 Model for Efficient Prediction of Radiative Transfer in High Temperature Gases. J. Quant. Spectrosc. Radiat. Transfer,2011,112:1205-1212.
    [37] Colomer G. Consul R, Oliva A. Coupled radiation and natural convection:different approaches of the SLW model for a non-gray gas mixture. J. Quant. Spectrosc. Radiat. Transfer,2007,107(1):30-46.
    [38] Modest M F and Zhang H. The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures. ASME J. Heat Transfer.2002, 124(1):30-38.
    [39] Modest M F. Narrow-band and full-spectrum k-distributions for radiative heat transfer correlated-k vs. scaling approximation. J. Quant. Spectrosc. Radiat. Transfer, 2003,76(1):69-83.
    [40] Zhang H. Radiative properties and radiative heat transfer calculations for high temperature combustion gases. The Pennsylvania State University, August 2002.
    [41] Mazumder S, Modest M F. Application of the full spectrum correlated-k distribution approach to modeling non-gray radiation in combustion gases. Combustion and Flame,2002,129(4):416-438.
    [42] Zhang H, Modest M F. A multi-scale full-spectrum correlated-k distribution for radiative heat transfer in inhomogeneous gas mixtures. J. Quant. Spectrosc. Radiat. Transfer,2002,73(2-5):349-360.
    [43] Zhang H, Modest M F. Multi-group full-spectrum k-distribution database for water vapor mixtures in radiative transfer calculations. Int. J. Heat Mass Transfer,2003, 46(19):3593-3603.
    [44]张华.非均匀路径相关K-分布方法的研究:[博士thesis].中国科学院大气物理研究所,1999.
    [45] Chandrasekhar S. Radiative Transfer, Dover Publication, New York,1960.
    [46] Jeans J H. The equations of radiative transfer of energy. Monthly Notices Royal Astronomical Society,1917,78:28-36.
    [47] Hottel H C, Cohen E S. Radiant heat exchange in a gas-filled enclosure:Allowance for nonuniformity of gas temperature. AlChE J,1958,4:3-14.
    [48] Howell J R, Perlmutter M. Monte Carlo solution of thermal transfer through radiant media between gray walls. ASME J. Heat Transfer,1964,86:116-122.
    [49] Raj R, Prasad A, Parida P R and Mishra S C. Analysis of solidification of a semitransparent planar using the Lattice Boltzmann method and the discrete transfer method. Numer. Heat Transfer A,2006,49:279-299.
    [50]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社,2005.
    [51]程强.求解辐射传递方程的DRESOR法及其应用:[博士thesis]能源与动力工程学院,华中科技大学,2007.
    [52]黄志锋.高方向分辨率辐射强度及表面辐射特性计算研究:[博士thesis]能源与动力工程学院,华中科技大学,2010.
    [53] Lathrop K D. Use of discrete-ordinates methods for solution of photon transport problems. Nuclear Science and Engineering,1966,24(4):381-388.
    [54] Fiveland W A. Discrete-Ordinates solutions of the radiative transport equation for rectangular enclosures. ASME J. Heat Transfer,1984,106(4):699-706.
    [55] Truelove J S. Discrete-Ordinate solutions of the radiation transport equation. ASME J. Heat Transfer,1987,109(4):1048-1051.
    [56] Thurgood C P, Pollard A and Becker A B. The TN Quadrature set for the discrete ordinates method. ASME J. Heat Transfer,1995,117:1068-1070.
    [57] Li H S, Flamant G, Lu J D. A new discrete ordinate algorithm for computing radiative transfer in one-dimensional atmospheres. J. Quant. Spectrosc. Radiat. Transfer,2004,83(3-4):407-421.
    [58] Liu F, Becker H A, Pollard A. Spatial differencing schemes of the discrete-ordinates method. Numer. Heat Transfer B,1996,30:23-43.
    [59] Song T H. Comparison of engineering models of non-grey behavior of combustion products. Int. J. Heat Mass Transfer,1993,36(16):3975-3982
    [60] Marakis J G. Application of narrow and wide band models for radiative transfer in planar media. Int. J. Heat Mass Transfer,2001,44:131-142.
    [61]聂宇宏,陈海耿.非灰气体的宽带吸收系数模型.东北大学学报,2002,23(4):573-873.
    [62] Ludwig D B, Malkmus W, Reardon J E, Thomson J A L. Handbook of Infrared Radiation from Combustion Gases, NASA SP3080. Washington, D.C.:NASA,1973
    [63] Grosshandler W L. RADCAL:A narrow band model for radiation calculation in a combustion environment. NIST Technical Note (TN1402), National Institute of Standards and Technology, Gaithersburg, Maryland 20899,1993.
    [64] Kounalakis M E, Sivathanu Y R, Faeth G M. Infrared radiation statistics of nonluminus turbulent diffusion flames. ASME J. Heat Transfer,1991,113:437-445.
    [65] Fuss S P, Ezekoye O A, Hall M J. The absorptance of infrared radiation by methane at elevated temperatures. ASME J. Heat Transfer,1996,118:918-923.
    [66] Yan Z H, Holmstedt G. Fast, narrow-band computer model for radiation calculations. Numerical Heat Transfer, Part B.1997,31:61-71.
    [67] Hartmann J M, Levi Di Leon R, Taine J. Line-by-line and narrow-band statistical model calculations for H2O. J. Quant. Spectrosc. Radiat. Transfer,1984,32:119-127.
    [68] Soufiani A, Hartmann J M, Taine J. Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive-radiative transfer. J. Quant. Spectrosc. Radiat. Transfer,1985,33:243-257.
    [69] Soufiani A, Taine J. Application of statistical narrow-band model to coupled radiation and convection at high temperature. Int. J. Heat Mass Transfer,1987,30(3): 437-^47.
    [70] Zhang L, Soufiani A, Taine J. Spectral correlated and non-correlated radiative transfer in a finite axisymmetric system containing an absorbing and emitting real gasparticle mixture. Int. J. Heat Mass Transfer,1988,31(11):2261-2272
    [71] Kim T K, Menart J A, Lee H S. Non-grey radiative gas analysis using the S-N discrete ordinates method. ASME Journal of Heat Transfer,1991,113(4):946-952.
    [72] Menart J A, Lee H S, Kim T K. Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls. ASME J. Heat Transfer,1993,115:184-193.
    [73] Kritzstein F, Soufiani A. Infrared gas radiation from a homogeneously turbulent medium. Int. J. Heat Mass Transfer,1993,36(7):1749-1762.
    [74] Liu J, Tiwari S N. Investigation of radiative transfer in nongray gases using a Narrow band model and Monte Carlo simulation. ASME J. Heat Transfer,1994,116:160-166.
    [75] Daguse T, Croonenbroek T, Rolon J C, Darabiha N, Soufiani A. Study of radiative effects on Laminar counterflow H2/O2/N2 diffusion flames. Combustion and Flame, 1996,106:271-287.
    [76] Ju Y, Guo H, Liu F, Maruta K. Effects of the Lewis number and radiative heat loss on the bifurcation and extinction of CHt/O2-N2-He flames. J. Fluid Mech,1999,379: 165-190.
    [77] Soufiani A, Andre F, Taine J. A fictitious-gas based statistical narrow-band model for IR long-range sensing of H2O at high temperature. J. Quant. Spectrosc. Radiat. Transfer,2002,73(2-5):339-347
    [78] Bharadwaj S P, Modest M F. A multiscale Malkmus model for treatment of inhomogeneous gas paths. Int. J. Thermal Sci.,2007,46:479-490.
    [79] Andre F, Vaillon R. The k-moment method for modeling the blackbody weighted transmission function for narrow and wide band radiative properties of gases. J. Quant. Spectrosc. Radiat. Transfer,2007,108:1-16.
    [80] Andre F, Vaillon R. The spectral-line moment-based (SLMB) modeling of the wide band and global blackbody-weighted transmission function and cumulative distribution function of the absorption coefficient in uniform gaseous media. J. Quant. Spectrosc. Radiat. Transfer,2008,109:2401-2416.
    [81] Rothman L S, Gamache R R, Tipping R H, Rinsland C P, Smith M A H, Chris Benner D, Malathy Devi V, Flaud J M, Camy-Peyret C, Perrin A, Goldman A, Massie S T and Brown L R. The HITRAN molecular data base:editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transffer,1992,48:469-507.
    [82] Riviere P, Langlois S, Soufiani A, Taine J. An approximate data base of H2O infrared lines for high temperature applications at low resolution statistical narrow-band model parameters. J. Quant. Spectrosc. Radiat. Transfer,1995,53(2):221-234.
    [83]董士奎,谈和平,余其铮,刘林华.300~3000K水蒸气红外辐射谱带模型参数.热能动力工程,2001,16(91):33-38.
    [84]董士奎,余其铮,谈和平,贺志宏.燃烧产物二氧化碳高温辐射的窄谱带模型参数.航空动力学报,2001,16(4):355-359.
    [85] Perrin M-Y, Soufiani A. Approximate radiative properties of methane at high temperature. J. Quant. Spectrosc. Radiat. Transfer,2007,103:3-13.
    [86] Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer,2010,111:2139-2150.
    [87] Tashkun S A, Perevalo V I. CDSD-4000:High-resolution, high-temperature carbon dioxide spectroscopic databank. J. Quant. Spectrosc. Radiat. Transfer,2011,112(9): 1403-1410.
    [88] Riviere P, Soufiani A. Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. Int. J. Heat Mass Transfer,2012,55:3349-3358.
    [89] Godson W L. The evaluation of infra-red radiation fluxes due to atmospheric water vapor. Quart. J. Royal. Meteorol. Soc.,1953,79:367-379.
    [90] Hottel HC and Sarofim AF, Radiative Transfer, New York:McGraw-Hill,1967.
    [91] Buckius R O, Tien C L. Infrared flame radiation. Int. J. Heat Mass Transfer,1977,20(2): 93-106.
    [92] Lacis A, Oinas V. A description of the correlated-k distribution method for modeling non-gray gaseous absorption, thermal emission and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res.1991,96:9027-9063.
    [93] Goody R M, Yung Y L. Atmospheric Radiation,2nd ed. Oxfor:Oxford Univ Press; 1989.
    [94] Liu F, Smallwood G J, Gulder O L. Application of the statistical narrow-band correlated-k method to low-resolution spectral intensity and radiative heat transfer calculations-effects of the quadrature scheme. Int. J. Heat Mass Transfer,2000,43: 3119-3135.
    [95] Liu F, G. J. Smallwood G J, Giilder O L. Application of the statistical narrow-band correlated-k method to non-grey gas radiation in CO2-H2O mixtures approximate treatments of overlapping bands. J. Quant. Spectrosc. Radiat. Transfer,2001; 68: 401-117.
    [96] Domoto G A. Frequency integration for radiative transfer problems involving homogeneous non-gray gases:the inverse transmission function. J. Quant. Spectrosc. Radiat. Transfer,1974,14:935-942.
    [97] Liu F, Smallwood G J, Gulder O L. An accurate efficient and flexible SNBCK-based unified band model for calculations of spectrally resolved and integrated quantities in participating media containing real gases. Proceedings of the Twelfth International Heat Transfer Conference. Grenolde, France, Aug 18-23.2002. p.663-8.
    [98] Denison M K. A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers. Ph.D Thesis. Department of Mechanical Engineering, Brigham Young University,1994.
    [99] Bressloff N W. The influence of soot loading on weighted-sum-of-gray-gases solutions to the radiative transfer equation across mixtures of gases and soot. Int. J. Heat Mass Transf.,1999,42:3469-3480.
    [100] Terry W, Liu Y, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng C, Gupta R, Yamada T, Makino K, Yu J. An overview on oxyfuel
    coal combustion-State of the art research and technology development, Chem. Eng. Res. Des.,2009,87:1003-1016.
    [101] Krishnamoorthy G, Sami M, Orsino S, Perera A, Shahnam M, Huckaby E. Radiation modeling in oxy-fuel combustion scenarios. Int. J. Comput. Fluid D.,2010,24:69-82.
    [102] Edwards D K, Balakrishnan A. Thermal radiation by combustion gases. Int. J. Heat Mass Transfer,1973,16:25-40.
    [103] Quine B M, Drummond J R. GENSPECT:A line-by-line code with selectable interpolation error tolerance. J. Quant. Spectrosc. Radiat. Transfer,2002,74:147-165.
    [104] Rothman L S, Rinsland C P, Goldman A, Massie S T, D. P. Edwards D P, Flaud J M, Perrin A, Camy-Peyret C, Dana V, Mandin J Y, Schroeder J, Mccann A, Gamache R R, Wattson R B, Yoshino K, Chance K V, Jucks K W, Brown L R, Nemtchinov V, Varanasi P, The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation):1996 edition. J. Quant. Spectrosc. Radiat. Transfer,1998, 60:665-710.
    [105] Rothman L S, Jacquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Chackerian Jr. C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J-M, Gamache R R, Goldman A, Hartmann J -M, Jucks K W, Maki A G, Mandin J -Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P, Wagner G. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer,2005,96: 139-204.
    [106] Rothman L S, Gordon I E, Barbe A, Chris Benner D, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J -P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J -Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Simeckova M, Smith M A H, Sung K, Tashkun S A, Tennyson J, R. Toth R A, Vandaele A C, Vander Auwera J. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat.
    Transfer,2009,110:533-572.
    [107] Rothman L S, Wattson R B, Gamache R R, Schroeder J, McCann A. HITRAN, HAWKS and HITEMP High-temperature molecular database. Proc. Soc. Photo. Opt. Instrum. Eng.,1995,2471:105-111.
    [108] Tashkun S A, Perevalov V I, Teffo J L, Bykov A D, Lavrentieva N N. CDSD-296, the carbon dioxide spectroscopic databank:version for atmospheric applications, XIV Symposium on High Resolution Molecular Spectroscopy, Krasnoyarsk, Russia, July 6-11,2003.
    [109] Tashkun S A, Perevalov V I, Teffo J L, Bykov A D, Lavrentieva N N. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank. J. Quant. Spectrosc. Radiat. Transfer,2003,82:165-196.
    [110] Tashkun S A, Perevalov V I, Teffo J L. CDSD-296:the high-precision carbon dioxide spectroscopic databank:version for atmospheric applications, in:S. Agnes Perrin, Najate Ben Sari-Zizi, Jean Demaison (Ed.), Remote Sensing of the Atmosphere for Environmental Security, Springer, Netherlands,2006, pp.161-169 (The 2008 updated version was used, available at:ftp.iao.ru/pub/CDSD-2008/296).
    [111] Tashkun S A, Perevalov V I, Teffo J L, Bykov A D, LavrentievaN N. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank. J Quant Spectrosc Radiat Transfer,2003,82:165-196 (The 2008 updated version was used, available at: ftp.iao.ru/pub/CDSD-2008/1000).
    [112] Taine J. A line by line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gas mixtures up to 3000 K. J. Quant. Spectrosc. Radiat. Transfer,1983,30:371-379.
    [113] Sparks L. Efficient line-by-line calculation of absorption coefficients to high numerical accuracy. J. Quant. Spectrosc. Radiat. Transfer,1997,57:631-650.
    [114] Rothman L S. Spectroscopic archives and transmission codes for the atmosphere and their application to laser sensing, in:Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest (CD) (Optical Society of America, 2008), paper LMA3.
    [115] Rothman L S. The evolution and impact of the HITRAN molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer,2010,111:1565-1567.
    [116] Liu F, Giilder O L, Smallwood G J, Ju Y. Non-grey gas radiative transfer analyses using the statistical narrow-band model. Int. J. Heat Mass Transfer,1998,41:2227-2236.
    [117] Chu H, Liu F, Zhou H. Calculations of gas thermal radiation transfer in one-dimensional planar enclosure using LBL and SNB models. Int. J. Heat Mass Transfer, 2011,54:4736-4745.
    [118] Liu F. Numerical solutions of three-dimensional non-grey gas radiative transfer using the statistical narrow-band model. J. Heat Transfer,1999,121:200-2003.
    [119] Coelho P J. Numerical simulation of radiative heat transfer from non-gray gases in three-dimensional enclosures. J. Quant. Spectrosc. Radiat. Transfer,2002,74:307-328.
    [120] Trivic D N. Modeling of 3-D non-gray gases radiation by coupling the finite volume method with weighted sum of gray gases model. Int. J. Heat Mass Transfer,2004,47: 1367-1382.
    [121] Borjini M N, Guedri K, Said R. Modeling of radiative heat transfer in 3D complex boiler with non-gray sooting media. J. Quant. Spectrosc. Radiat. Transfer,2007, 105(2):167-179.
    [122] Strohle J. Assessment of the re-ordered wide band model for non-grey radiative transfer calculations in 3D enclosures. J. Quant. Spectrosc. Radiat. Transfer,2008, 109:1622-1640.
    [123] Selcuk N, Doner N. A 3-D radiation model for non-grey gases. J. Quant. Spectrosc. Radiat. Transfer,2009,110:184-191.
    [124] Demarco R, Consalvi JL, Fuentes A, Melis S. Assessment of radiative property models in non-gray sooting media. Int. J. Thermal Sciences,2011,50:1672-1684.
    [125] Goutiere V, Liu F, Charette A. An assessment of real-gas modelling in 2D enclosures. J. Quant. Spectrosc. Radiat. Transfer,2000,64:299-326.
    [126] Coelho P J. The role of ray effects and false scattering on the accuracy of the standard and modified discrete ordinates methods. J. Quant. Spectrosc. Radiat. Transfer,2002,73:231-238.
    [127] Pierrot L, Soufiani A and Taine J. Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperature. J. Quant. Spectrosc. Radiat. Transfer,1999,62:523-548.
    [128] Solovjov V P. Spectral line-based weighted-sum-of-gray-gases modeling of radiative transfer in multicompon mixtures of hot gases. Ph.D Thesis. Department of Mechanical Engineering, Brigham Young University,1999.
    [129] Liu F, Yang M, Smallwood G J and Zhang H. Evaluation of the SNB based full-spectrum CK method for thermal radiation calculation in CO2-H2O mixtures, In Proc. ofICHMT 2004.
    [130] Modest M F, Mehta R S. Full spectrum k-distribution correlations for CO2 from the CDSD-1000 spectroscopic databank. Int. J. Heat Mass Transfer,2004,47:2487-2491.
    [131] Modest M F, Singh V. Engineering correlations for full spectrum k-distribution of H2O from the HITEMP spectroscopic databank. J. Quant. Spectrosc. Radiat. Transfer, 2005,93:263-271.
    [132] Harmann J-M, Levi Di Leon R, Taine J. Line-by-line and narrow-band statistical model calculations for H2O. J. Quant. Spectrosc. Radiat. Transfer,1984,32(2):119-127.
    [133] Wecel G, Ostrowski Z, Bialecki R A. A novel approach of evaluating absorption line back body distribution function employing proper orthogonal decomposition. J. Quant. Spectrosc. Radiat. Transfer,2010,111:309-317.
    [134] Karhunen K. Ueber lineare methoden der Wahrscheinigkeitsrechnung, Ann Acad Sci Fennicae Al Math Phys,1946,37:3-79.
    [135] Pearson K. On lines planes of closes fit to system of points in space, Lond Edinb Dublin Philos Magazine J Sci,1901,2:559-572.
    [136]范晨麟,李孝伟.基于本征正交分解方法的多段翼型流动分析.上海大学学报,2012,18(1):76-82.
    [137] Rathinam M, Petzold L R. A new look at proper orthogonal decomposition. SIAM J. Numer. Anall,2003,41(5):1893-1925.
    [138] Buljak V. Proper orthogonal decomposition and radial basis functions algorithm for
    diagnostic procedure based on inverse analysis. FME Transactions,2010,38:129-136.
    [139] Andre F, Vaillon R. A database for the SLMB modeling of the full spectrum radiative properties of CO2. J. Quant. Spectrosc. Radiat. Transfer,2010,111:325-330.
    [140] Andre F, Vaillon R. SLMB modeling of the full spectrum cumulative k-distribution for the approximate modeling of the radiative properties of H2O. Proceedings of the 2009 ASME Summer Heat Transfer Conference, San Francisco,19-23 July 2009.
    [141] Zhang J Q, J. S. Cheng J S. Determination of the temperature profile of axisymmetric combustion-gas flow from infrared spectral measurements. Combust and Flame, 1986,65:163-176.
    [142] Zhang H, Modest M F. Evaluation of the Planck-mean absorption coefficients from HITRAN and HITEMP databases. J. Quant. Spectrosc. Radiat. Transfer,2002,73: 649-653.
    [143]艾育华.基于辐射成像的扩散火焰温度和烟黑浓度分布研究:[博士thesis].能源与动力工程学院,华中科技大学,2006.
    [144]乔瑜.基于自适应化学理论的均相反应过程模拟及其在甲烷预混火焰中的应用:[博士thesis],能源与动力工程学院,华中科技大学,2006.
    [145]张引弟.乙烯火焰反应动力学简化模型及烟黑生成模拟研究:[博士thesis].能源与动力工程学院,华中科技大学,2011.
    [146] Kennedy I M, Yam C, Rapp D C. et al. Modeling and measurements of soot and species in a laminar diffusion flame. Combustion and Flame,1996,107:368-382.
    [147] Smooke M D, McEnally C S, Pfefferle L D, Hall R J, Colket M B. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combustion and Flame,1999,117:117-139.
    [148] Guo H, Liu F, Smallwood GJ et al. The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene-air diffusion flame. Combustion Theory and Modelling,2002,6:173-187.
    [149] Liu F, Guo H, Smallwood G J et al. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. Journal of Quantitative
    Spectroscopy and Radiative Transfer,2002,73:409-421.
    [150] Liu F, Guo H, Smallwood G J et al. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flame. Combustion Theory and Modelling,2003,7:301-315.
    [151] Smooke M D, Long M B, Connelly B C, Colket M B, Hall R J. Soot formation in laminar diffusion flames. Combustion and Flame,2005,143:613-628.
    [152] Connelly B C, Long M B, Smooke M D, Hall R J, Colket M B. Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proc. Combust. Inst,2009,32(1):777-784.
    [153] Zhang Q. Detailed modeling of soot formation oxidation in laminar coflow diffusion flames. Ph.D Thesis. Department of Mechanical and Industrial Engineering, University of Toronto,2009.
    [154] Charest Marc R J. Numerical modelling of sooting laminar diffusion flames at elevated pressures and microgravity. Ph.D Thesis. Department of Mechanical and Industrial Engineering, University of Toronto,2011.
    [155] Olson S L, T'ien J S. Buoyant low-stretch diffusion flames beneath cylindrical PMMA samples. Combustion and Flame,2000,121:439-452.
    [156] Bahadori M Y, Edelman R B, Stocker D P, Olson S L. Ignition and behavior of laminar gas-jet diffusion flames in microgravity. AIAA J.,1990,28:236-244.
    [157] Megaridis C M, Griffin D W, Konsur B. Soot-field structure in laminar soot-emitting microgravity nonpremixed flames. Proc. Combust. Inst.,1996,26:1291-1299.
    [158] Konsur B, Megaridis C M, Griffin D W. Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g. Combustion and Flame, 1999,116:334-347.
    [159] Tien C L. Thermal radiation properties of gases. In:Advances in heat transfer, vol.5. New York:Academic Press,1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700