流域水文信息空间分布与人类影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域模拟是研究水沙自然规律、解决水利工程问题和提高流域管理水平的主要手段,也是数字流域建设工作的核心和基础。分布式流域模型作为流域模拟的最有效工具之一,在研究人类活动对流域水沙过程的影响等热点和难点问题时发挥了重要作用,但仍需研究提高模拟精度的方法。本文围绕清华大学数字流域模型开展工作,着眼于蒸发能力和降雨这两个基本输入变量,建立了适用于地势陡峻、测站稀疏地区的流域水文信息空间分布计算方法;同时,定量研究了人类活动对流域水沙过程的影响。主要研究成果如下:
     本文建立了空间分布式蒸发能力计算方法,可为数字流域模型提供更准确的蒸发能力输入。该法由新的修正道尔顿模型和气象要素空间分布计算方法两部分组成:一是提出了用于计算单点蒸发能力的基于水-气温差和气温修正的道尔顿模型;二是考虑地形对气象要素的影响,结合距离权重反比法,建立了利用有限气象站数据计算气象要素空间分布的方法。该法可为计算地势陡峻、测站稀疏地区的蒸发能力空间分布提供参考方法。
     本文建立了空间分布式降雨计算方法,可为数字流域模型提供更准确的降雨输入。考虑地形对降雨的影响,提出了利用数字高程模型数据对卫星栅格数据进行空间降尺度的方法;考虑降雨的有效影响距离,结合距离权重反比法,提出了基于点(雨量站)面(卫星栅格)降雨数据融合技术的降雨空间分布计算方法。该法结合了不同来源不同空间尺度降雨数据各自的优点,可为计算地势陡峻、测站稀疏地区的降雨空间分布提供参考方法。
     经检验,上述流域水文信息空间分布计算方法能够在一定程度上提高流域模拟精度。然而,在某些土地利用变化可观的地区,淤地坝等水利水保工程的作用不容忽视。本文定量模拟了以淤地坝为代表的人类活动对流域水沙过程的影响:分析了流域水沙变化特征及其原因,归纳了不同类型的水沙年景;给出了淤地坝的数量及其空间分布,建立了淤地坝与数字河网的一一对应关系以及淤地坝之间的拓扑关系;考虑淤地坝上游来水被全部拦蓄的情形,给出了淤地坝的最大作用比例;分析了现有淤地坝建设情况与降雨空间分布之间的关系,可为今后的水利水保工程建设决策提供数据支持。
Watershed simulation is one of the major approaches for studying the natural lawsof water and sediment, solving the practical problems of hydraulic engineering, andraising the level of watershed management. And it is also the core and foundation ofdigital watershed. As one of the most important tools for watershed simulation,distributed watershed models have played a major role in the studies of the key anddifficult issues (e.g., the human impact on the processes of runoff and sediment).However, it is still important and necessary to develop methods for improving theaccuracy of watershed simulation. Based on the Digital Watershed Model (DWM), thisstudy developed the new methods for computing the spatially distributed potentialevaporation (PE) and rainfall; and meanwhile, this study quantitatively researched thehuman impact on the processes of runoff and sediment.
     A new method for computing the spatially distributed PE, including the modifiedDalton model and the functions for extending meteorological variables, was proposed,which would be useful to provide the more accurate PE inputs for the DWM. First, inorder to compute the PE for a single point, the Dalton model was modified by includingthe influences of the related meteorological variables. Second, through analyzing theimpacts of elevation on the related meteorological variables, the functions for extendingthe meteorological data recorded at a station to any given altitude were developed; andthe inverse distance weighting (IDW) method was applied to integrate the extendedmeteorological variables. The new method would be valuable for computing the spatialdistribution of the PE over regions with steep terrain and sparse meteorological stations.
     A new method for computing the spatially distributed rainfall through merging theraingauge measurements and the satellite observations was proposed, which would beuseful to provide the more accurate rainfall inputs for the DWM. Considering thetopographic influence on rainfall, a method for the satellite observations downscaling byusing the Digital Elevation Model (DEM) data was developed. Considering the effectiveinfluence radius of a rain, the above two rainfall data were merged by using the IDWmethod. The new method could integrate the advantages of the two rainfall data and would be valuable for computing the spatial distribution of rainfall over regions withsteep terrain and sparse meteorological stations.
     The methods for computing the spatially distributed PE and rainfall were proved tobe helpful to improve the accuracy of watershed simulation. However, in some regionswith considerable land use change, the impact of soil and water conservation measures(e.g., check dams and reservoirs) could not be ignored. And therefore, this studyquantitatively analyzed and modeled the human impact (e.g., check dams) on theprocesses of runoff and sediment. First, change characteristics of the processes of runoffand sediment as well as the causes were analyzed, and periods of natural state anddisturbed state were defined. Second, the amount and spatial distribution of check damswere given, and the topological relationships between check dams and river reacheswere established. Third, the maximum impact of check dams was evaluated, consideringthe situation that water from upstream was completely intercepted by check dams.Fourth, the relationship between check dam construction and the spatial distribution ofrainfall was analyzed, which would be useful for the decision making of the future soiland water conservation measures in such regions.
引文
[1] Abbaspour K C, Yang J, Maximov I, et al. Modelling hydrology and water quality in thepre-ailpine/alpine Thur watershed using SWAT. Journal of Hydrology,2007,333(2-4):413-430.
    [2] Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European HydrologicSystem-Systeme Hydrologique Europeen, SHE,1: History and philosophy of aphysically-based, distributed modeling system. Journal of Hydrology,1986a,87,45-59.
    [3] Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European HydrologicSystem-Systeme Hydrologique Europeen, SHE,2: Structure of a physically-based,distributed modeling system. Journal of Hydrology,1986b,87,61-77.
    [4] Adams E E, Cosler D J, Helfrich K R. Evaporation from heated water bodies: Predictingcombined forced plus free convection. Water Resources Research,1990,26(3):425-435.
    [5] Armstrong R N, Pomeroy J W, Martz L W. Evaluation of three evaporation estimationmethods in a Canadian prairie landscape. Hydrological Processes,2008,22(15):2801-2815.
    [6] Arnold J G, Fohrer N. SWAT2000: current capabilities and research opportunities in appliedwatershed modeling. Hydrological Processes,2005,19(3):563-572.
    [7] Asmar B N, Ergenzinger P. Estimation of evaporation from the Dead Sea. HydrologicalProcesses,1999,13(17):2743-2750.
    [8] Barros R, Isidoro D, Aragues R. Long-term water balances in La Violada irrigation district(Spain): I. Sequential assessment and minimization of closing errors. Agricultural WaterManagement,2011,102(1):35-45.
    [9] Barry R G, Chorley R J. Atmosphere, Weather, and Climate. London: Methuen,1987.
    [10] Basic F, Kisic I, Butorac A, et al. Runoff and soil loss under different tillage methods onStagnic Luvisols in central Croatia. Soil&Tillage Research,2001,62(3-4):145-151.
    [11] Bean C, Juvik J O, Nullet D. Mountain evaporation profiles on the island of Hawaii. Journalof Hydrology,1994,156(1-4):181-192.
    [12] Beven K, Calver A, Morris E M. Institute of hydrology distributed model. Wallingford:Institute of Hydrology,1987.
    [13] Beven K J, Kirkby M J. A physically based variable contributing area model of basinhydrology. Hydrological Sciences Bulletin,1979,24(1):43-69.
    [14] Beven K J, Kirkby M J, Schofield N, Tagg A F. Testing a physically-based flood forecastingmodel (TOPMODEL) for three U.K. catchments. Journal of Hydrology,1984,69(1-4):119-143.
    [15] Burn D H, Elnur M A H. Detection of hydrologic trends and variability. Journal ofHydrology,2002,255(1-4):107-122.
    [16] Changnon S A, Demissie M. Detection of changes in streamflow and floods resulting fromclimate fluctuations and land use-drainage changes. Climatic Change,1996,32:411-421.
    [17] Chow V T, Maidment D R, Mays L W. Applied Hydrology. New York: McGraw-Hill BookCompany,1988.
    [18] Ciarapica L, Todini E. TOPKAPI: a model for the representation of the rainfall-runoffprocess at different scales. Hydrological Processes,2002,16(2):207-229.
    [19] Daly C, Neilson R P, Phillips D L. A statistical topographic model for mappingclimatological precipitation over mountainous terrain. Journal of Applied Meteorology,1994,33(2):140-158.
    [20] Dibella C M, Rebella C M, Paruelo J M. Evapotranspiration estimates using NOAA AVHRRimagery in the Pampa region of Argentina. International Journal of Remote Sensing,2000,21(4):791-797.
    [21] Dirks K N, Hay J E, Stow C D, et al. High-resolution studies of rainfall on Norfolk IslandPart II: Interpolation of rainfall data. Journal of Hydrology,1998,208(3-4):187-193.
    [22] Durisic Z, Mikulovic J. A model for vertical wind speed data extrapolation for improvingwind resource assessment using WAsP. Renewable Energy,2012,41:407-411.
    [23] Elsawwaf M, Willems P, Feyen J. Assessment of the sensitivity and prediction uncertainty ofevaporation models applied to Nasser Lake, Egypt. Journal of Hydrology,2010,395(1-2):10-22.
    [24] Ehret U. Rainfall and flood nowcasting in small catchments using weather radar. Ph.D.Thesis, University of Stuttgart,2002.
    [25] Franchini M, Wendling J, Obled C, Todini E. Physical interpretation and sensitivity analysisof the TOPMODEL. Journal of Hydrology,1996,175(1):293-338.
    [26] Freeze R A, Harlan R L. Blueprint for a physical-based, digitally-simulated hydrologicresponse model. Journal of Hydrology,1969,9(3):237-258.
    [27] Garbrecht J D, Martz L W. TOPAZ overview. Oklahoma: USDA ARS, GrazinglandsResearch Laboratory,1999.
    [28] Garrote L, Bras R L. A distributed model for real-time flood forecasting using digitalelevation models. Journal of Hydrology,1995,167(1-4):279-306.
    [29] Gualtieri G, Secci S. Comparing methods to calculate atmospheric stability-dependent windspeed profiles: A case study on coastal location. Renewable Energy,2011,36(8):2189-2204.
    [30] Giambelluca T W, Nullet D. Evaporation at high elevations in Hawaii. Journal of Hydrology,1992,136(1-4):219-235.
    [31] Goovaerts P. Geostatistical approaches for incorporating elevation into the spatialinterpolation of rainfall. Journal of Hydrology,2000,228(1-2):113-129.
    [32] Gosling S N, Arnell N W. Simulating current global river runoff with a global hydrologicalmodel: model revisions, validation, and sensitivity analysis. Hydrological Processes,2011,25(7):1129-1145.
    [33] Gotway C A, Ferguson R B, Hergert G W, et al. Comparison of kriging and inverse-distancemethods for mapping soil parameters. Soil Science Society of America Journal,1996,60:1237-1247.
    [34] Guo H, Xu M, Hu Q. Changes in near-surface wind speed in China:1969-2005.International Journal of Climatology,2010,31(3):349-358.
    [35] Houghton J G. A model for orographic precipitation in the north-central Great Basin.Monthly Weather Review,1979,107(11):1462-1475.
    [36] Houston J. Evaporation in the Atacama Desert: An empirical study of spatio-temporalvariations and their causes. Journal of Hydrology,2006,330(3-4):402-412.
    [37] Huffman G J, Adler R F, Bolvin D T, et al. The TRMM Multi-satellite Precipitation Analysis(TMPA): Quasi-global, multi-year, combined-sensor precipitation estimates at fine scales.Journal of Hydrometeorology,2007,8(1):38-55.
    [38] Huffman G J, Bolvin D T. Real-Time TRMM Multi-Satellite Precipitation Analysis Data SetDocumentation. EB/OL,2012, ftp://trmmopen.gsfc.nasa.gov/pub/merged/V7Documents/3B4XRT_doc_V7.pdf.
    [39] Husar R B, Falke S R. Uncertainty in the spatial interpolation of PM10monitoring data inSouthern California. EB/OL,1996, http://vigor.wustl.edu/CAPITA/capitareports/CAInterp/CAINTERP.doc.
    [40] Ivanov V Y, Vivoni E R, Bras R L, et al. Preserving high-resolution surface and rainfall datain operational-scale basin hydrology: a fully-distributed physically-based approach. Journalof Hydrology,2004,298(1-4):80-111.
    [41] Jia S F, Zhu W B, Lv A F, et al. A statistical spatial downscaling algorithm of TRMMprecipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sensing ofEnvironment,2011,115(12):3069-3079.
    [42] Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces globalprecipitation estimates from passive microwave and infrared data at high spatial andtemporal resolution. Journal of Hydrometeorology,2004,5(3):487-503.
    [43] Kalinga O A, Gan T Y. Merging WSR-88D stage III radar rainfall data with rain gaugemeasurements using wavelet analysis. International Journal of Remote Sensing,2012,33(4):1078-1105.
    [44] Kang S Z, Zhang L, Song X Y, et al. Runoff and sediment loss responses to rainfall and landuse in two agricultural catchments on the Loess Plateau of China. Hydrological Processes,2001,15(6):977-988.
    [45] Kendall M G. Rank Correlation Measures. London: Charles Griffin,1975.
    [46] Levenberg K. A method for the solution of certain nonlinear problems in least squares.Quarterly of Applied Mathematics,1944,2:164-168.
    [47] Li M, Shao Q X. An improved statistical approach to merge satellite rainfall estimates andraingauge data. Journal of Hydrology,2010,385(1-4):51-64.
    [48] Li T J, Wang G Q, Chen J. A modified binary tree codification of drainage networks tosupport complex hydrological models. Computers&Geosciences,2010,36(11):1427-1435.
    [49] Li T J, Wang G Q, Chen J, et al. Dynamic parallelization of hydrological model simulations.Environmental Modelling&Software,2011,26:1736-1746.
    [50] Li T J, Wang G Q, Xue H, et al. Soil erosion and sediment transport in the gullied LoessPlateau: Scale effects and their mechanisms. Science in China Series E-TechnologicalSciences,2009,52(5):1283-1292.
    [51] Li X H, Zhang Q, Xu C Y. Suitability of the TRMM satellite rainfalls in driving a distributedhydrological model for water balance computations in Xinjiang catchment, Poyang lakebasin. Journal of Hydrology,2012,426:28-38.
    [52] Lin J Y. Rural reforms and agricultural growth in China. The American Economic Review,1992,82(1):34-51.
    [53] Maidment D R. Handbook of Hydrology. New York: McGraw-Hill Book Company,1993.
    [54] Mann H B. Non-parametric tests against trend. Econometrica,1945,13:245-259.
    [55] Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters. JournalSociety Industrial Applied Mathematics,1963,11(2):431-441.
    [56] Martinec J A, Rango A. Snowmelt Runoff Model (SRM) user’s manual. USDA-ARSHydrology and Remote Sensing Laboratory,1998.
    [57] Miller S W, Arkin P A, Joyce R J. A combined microwave/infrared rain rate algorithm.International Journal of Remote Sensing,2001,22(17):3285-3307.
    [58] Mishra A K, Gairola R M, Varma A K, et al. Improved rainfall estimation over the Indianregion using satellite infrared technique. Advances in Space Research,2011,48(1):49-55.
    [59] Mito Y, Ismail M A M, Yamamoto T. Multidimensional scaling and inverse distanceweighting transform for image processing of hydrogeological structure in rock mass. Journalof Hydrology,2011,411(1-2):25-36.
    [60] Mu X M, Zhang L, McVicar T R, et al. Analysis of the impact of conservation measures onstream flow regime in catchments of the Loess Plateau, China. Hydrological Processes,2007,21(16):2124-2134.
    [61] Mukherjee I, Routroy S. Comparing the performance of neural networks developed by usingLevenberg-Marquardt and Quasi-Newton with the gradient descent algorithm for modellinga multiple response grinding process. Expert Systems with Applications,2012,39(3):2397-2407.
    [62] Murray F W. On the computation of saturation vapor pressure. Journal of AppliedMeteorology,1967,6:203-204.
    [63] Nalder I A, Wein R W. Spatial interpolation of climatic normals: test of a new method in theCanadian boreal forest. Agricultural and Forest Meteorology,1998,92:211-225.
    [64] Naoum S, Tsanis I K. Orographic precipitation modeling with multiple linear regression.Journal of Hydrologic Engineering,2004,9(2):79-102.
    [65] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part1-Adiscussion of principles. Journal of Hydrology,1970,10(3):282-290.
    [66] Novotny E V, Stefan H G. Stream flow in Minnesota: Indicator of climate change. Journal ofHydrology,2007,334(3-4):319-333.
    [67] Nowak W, Cirpka O A. A modified Levenberg–Marquardt algorithm for quasi-lineargeostatistical inversing. Advances in Water Resources,2004,27:737-750.
    [68] Nullet D, Giambelluca T W. Winter evaporation on a mountain slope, Hawaii. Journal ofHydrology,1990,112(3-4):257-265.
    [69] Nullet D, Juvik J O. Generalised mountain evaporation profiles for tropical and subtropicallatitudes. Singapore Journal of Tropical Geography,1994,15(1):17-24.
    [70] Osborn H B. Estimating precipitation in mountainous regions. Journal of HydraulicEngineering,1984,110(12):1859-1863.
    [71] Pettitt A N. A non-parametric approach to the change-point problem. Applied Statistics,1979,28(2):126-135.
    [72] Pereira F A J, Crawford K C, Hartzell C L. Improving WSR-88D hourly rainfall estimates.Weather and Forecasting,1998,13(4):1016-1028.
    [73] Phillips D L, Dolph J, Marks D. A comparison of geostatistical procedures for spatialanalysis of precipitations in mountainous terrain. Agricultural and Forest Meteorology,1992,58:119-141.
    [74] Price D T, McKenney D W, Nalder I A, et al. A comparison of two statistical methods forspatial interpolation of Canadian monthly mean climate data. Agricultural and ForestMeteorology,2000,101:81-94.
    [75] Refsgaard J C, Storm B. MIKE SHE. In: Singh, V.P.(Ed.), Computer Models of WatershedHydrology. Water Resource Publications, CO, USA,1995,806-846.
    [76] Ryan P J, Harleman D R, Stolzenb K D. Surface heat loss from cooling ponds. WaterResources Research,1974,10(5):930-938.
    [77] Riou C. Simplified calculation of the zero-plane displacement from wind-speed profiles.Journal of Hydrology,1984,69(1-4):351-357.
    [78] Running S W, Nemani R R, Hungerford R D. Extrapolation of synoptic meteorological datain mountainous terrain and its use for simulating forest evapotranspiration andphotosynthesis. Canadian Journal of Forest Research,1987,17:472-483.
    [79] Salhorta A M, Adams E E, Harleman D R F. Effect of salinity and ionic composition onevaporation, analysis of Dead Sea evaporation ponds. Water Resources Research,1985,21(9):1336-1344.
    [80] Salhorta A M, Adams E E, Harleman D R F. The alpha, beta, gamma of evaporation fromsaline water bodies. Water Resources Research,1987,23(9):1769-1774.
    [81] Schermerhorn V P. Relations between topography and annual precipitation in westernOregon and Washington. Water Resources Research,1967,3(3):707-711.
    [82] Sen P K. Estimates of the regression coefficient based on Kendall's tau. Journal of theAmerican Statistical Association,1968,63:1379-1389.
    [83] Shevenell L. Regional potential evapotranspiration in arid climates based on temperature,topography and calculated solar radiation. Hydrological Processes,1999,13:577-596.
    [84] Sinclair S, Pegram G. Combining radar and rain gauge rainfall estimates using conditionalmerging. Atmospheric Science Letters,2005,6(1):19-22.
    [85] Singh V P. Hydrologic Systems: Watershed Modeling. New Jersey: Prentice Hall,1988.
    [86] Smith R B. The influence of mountains on the atmosphere. Advances in Geophysics,1979,21:87-230.
    [87] Tabios G Q, Salas J D. A comparative analysis of techniques for spatial interpolation ofprecipitation. Water Resources Bulletin,1985,21(3):365-380.
    [88] Thiel H. A rank-invariant method of linear and polynomial regression analysis, III.Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen,1950,53:1397-1412.
    [89] Thornton P E, Running S W, White M A. Generating surfaces of daily meteorologicalvariables over large regions of complex terrain. Journal of Hydrology,1997,190(3-4):214-251.
    [90] Todini E. A Bayesian technique for conditioning radar precipitation estimates to rain-gaugemeasurements. Hydrology and Earth System Sciences,2001,5:187-199.
    [91] Turk F J, Ebert E E, Sohn B J, et al. Validation of an operational global precipitation analysisat short time scales. Preprints,12th Conf. on Satellite Meteorology and Oceanography, LongBeach, CA, American Meteorological Society, CD-ROM, J1.2,2003.
    [92] Valiantzas J D. Simplified versions for the Penman evaporation equation using routineweather data. Journal of Hydrology,2006,331(3-4):690-702.
    [93] Valiantzas J D. Simple ET0Forms of Penman’s Equation without Wind and/or HumidityData. I: Theoretical Development. Journal of Irrigation and Drainage Engineering,2013a,139(1):1-8.
    [94] Valiantzas J D. Simplified Reference Evapotranspiration Formula Using an Empirical ImpactFactor for Penman’s Aerodynamic Term. Journal of Hydrologic Engineering,2013b,18(1):108-114.
    [95] Vila D A, De Goncalves L G G, Toll D L, et al. Statistical evaluation of combined dailygauge observations and rainfall satellite estimates over continental South America. Journalof Hydrometeorology,2009,10(2):533-543.
    [96] Vincente G A. Hourly retrieval of precipitation rate from the combination of passivemicrowave and infrared satellite measurements. Ph.D. Thesis, University of Wisconsin-Madison,1994.
    [97] von Storch H, Navarra A. Analysis of Climate Variability: Applications of StatisticalTechniques. Berlin: Springer-Verlag,1995.
    [98] Vorosmarty C J, Federer C A, Schloss A L. Evaporation functions compared on USwatersheds: Possible implications for global-scale water balance and terrestrial ecosystemmodeling. Journal of Hydrology,1998,207(3-4):147-169.
    [99] Wang G Q, Wu B S, Li T J. Digital Yellow River model. Journal of Hydro-environmentResearch,2007,1(1):1-11.
    [100] Wang G S, Xia J, Chen J. Quantification of effects of climate variations and human activitieson runoff by a monthly water balance model: A case study of the Chaobai River basin innorthern China. Water Resources Research,2009,45: W00A11.
    [101] Wang H, Fu X D, Wang G Q, et al. A common parallel computing framework for modelinghydrological processes of river basins. Parallel Computing,2011,37:302-315.
    [102] Wang H, Zhou Y, Fu X D, et al. Maximum speedup ratio curve (MSC) in parallel computingof the binary-tree-based drainage network. Computers&Geosciences,2012,38:127-135.
    [103] Wei T X, Zhu J Z, Zhang X P. Soil Water Balance of Protection Forest in the Loess Plateau.Forestry Studies in China,1999,1(2):47-53.
    [104] Wotling G, Bouvier C, Danloux J, et al. Regionalization of extreme precipitation distributionusing the principal components of the topographical environment. Journal of Hydrology,2000,233(1-4):86-101.
    [105] Xu J X, Wang H B. Influence of soil and water conservation measures on reducing infrequency of hyperconcentrated flows in the Wudinghe River basin. Environmental EarthSciences,2011,62:1513-1520.
    [106] Xu X Z, Zhang H W, Zhang O Y. Development of check-dam systems in gullies on the LoessPlateau, China. Environmental Science&Policy,2004,7:79-86.
    [107] Yang Y H, Tian F. Abrupt change of runoff and its major driving factors in Haihe RiverCatchment, China. Journal of Hydrology,2009,374:373-383.
    [108] Zu R P, Xue X, Qiang M R, et al. Characteristics of near-surface wind regimes in theTaklimakan Desert, China. Geomorphology,2008,96(1-2):39-47.
    [109]陈浩,周金星,陆中臣,等.黄河中游流域环境要素对水沙变异的影响.地理研究,2002,21(2):179-187.
    [110]陈惠泉,何树椿,刘长贵,等.超温水体水面蒸发与散热.水利学报,1989,10:27-36.
    [111]陈惠泉,毛世民.水面蒸发系数全国通用公式的验证.水科学进展,1995,6(2):116-120.
    [112]陈江南,王云璋,徐建华,等.水土保持生态建设对黄河水资源、泥沙影响评价方法研究.郑州:黄河水利出版社,1998.
    [113]陈江南,张胜利,赵业安,等.清涧河流域水利水保措施控制洪水条件分析.泥沙研究,2005,1:14-20.
    [114]陈仁升,康尔泗,杨建平,等.黑河干流山区流域月蒸发能力计算模型.水文,2002,22(6):5-10.
    [115]池宸星,郝振纯,王玲,等.黄土区人类活动影响下的产汇流模拟研究.地理科学进展,2005,24(3):101-108.
    [116]党宪军.陕北清涧河2002-07-04暴雨洪水分析.陕西气象,2003,2:20-21.
    [117]冯国安.治黄的关键是加快多沙粗沙区淤地坝建设.科技导报,2000,7:53-57.
    [118]封志明,杨艳昭,丁晓强,等.气象要素空间插值方法优化.地理研究,2004,23(3):357-364.
    [119]傅抱璞.地形和海拔高度对降水的影响.地理学报,1992,47(4):302-314.
    [120]付新峰,杨胜天,刘昌明.雅鲁藏布江流域潜在蒸散量计算方法.水利水电技术,2006,37(8):5-8.
    [121]高华中,姚亦锋.近50年来人类活动对博斯腾湖水位影响的量化研究.地理科学,2005,25(3):305-309.
    [122]顾本文,戴丛蕊.云南省水、陆面蒸发量计算方法的初步研究.中国农业气象,2004,25(2):15-18.
    [123]郭方,刘新仁,任立良.以地形为基础的流域水文模型——TOPMODEL及其拓宽应用.水科学进展,2000,11(3):296-301.
    [124]郭生练,程肇芳.流域蒸散发的气候学计算.水文,1994,5:16-22.
    [125]黄领梅,沈冰.干旱区人类活动干扰强度定量评估研究.西安理工大学学报,2009,25(4):425-429.
    [126]江妹官,许国兰.福建省水面蒸发地理规律的初步分析.水利科技,1998,1:41-44.
    [127]李铁键.流域泥沙动力学机理与过程模拟[博士学位论文].北京:清华大学水利系,2008.
    [128]李铁键,王光谦,刘家宏.数字流域模型的河网编码方法.水科学进展,2006,17(5):658-664.
    [129]李新,程国栋,卢玲.空间内插方法比较.地球科学进展,2000,15(3):260-265.
    [130]李新,程国栋,卢玲.青藏高原气温分布的空间插值方法比较.高原气象,2003,22(6):565-573.
    [131]林炳干,张培昌,顾松山,等.天气雷达测定区域降水量方法的改进与比较.南京气象学院学报,1997,20(3):334-340.
    [132]林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值.地理学报,2002,57(1):47-56.
    [133]刘家宏,王光谦.基于数字流域的淤地坝规划减水减沙效果模拟.中国水土保持,2006,8:20-22.
    [134]吕勇平,穆晓涛.拉萨河流域的气候特征.气象月报,1986,7:24-25.
    [135]马丽梅,王万忠,焦菊英,等.黄河中游输沙与减沙的时空分异特征.水土保持研究,2010,17(4):67-72&77.
    [136]穆兴民,王文龙,徐学选.黄土高原沟壑区水土保持对小流域地表径流的影响.水利学报,1999,2:71-75.
    [137]倪晋仁,韩鹏,王光谦,等.黄河中游水保措施对入黄干支流泥沙特性的影响: II.减沙效益分析.自然资源学报,1997,12(2):126-132.
    [138]彭定志,徐宗学,巩同梁.雅鲁藏布江拉萨河流域水文模型应用研究.北京师范大学学报:自然科学版,2008,44(1):92-95.
    [139]彭文英,张科利.不同土地利用产流产沙与降雨特征的关系.水土保持通报,2001,21(4):25-29.
    [140]钱维宏.天气学.北京:北京大学出版社,2004.
    [141]冉大川.黄河中游水土保持措施减沙量宏观分析.人民黄河,2006,28(11):39-41.
    [142]冉大川,高健翎,赵安成,等.皇甫川流域水沙特性分析及其治理对策.水利学报,2003,2:122-128.
    [143]冉大川,刘斌,王宏.水土保持措施对黄河减水减沙作用的分析.中国水土保持,2002,10:35-36.
    [144]冉大川,罗全华,刘斌,等.黄河中游地区淤地坝减洪减沙及减蚀作用研究.水利学报,2004,5:7-13.
    [145]冉大川,左仲国,上官周平.黄河中游多沙粗沙区淤地坝拦减粗泥沙分析.水利学报,2006,37(4):443-450.
    [146]任芝花,黎明琴,张纬敏.小型蒸发器对E-601B蒸发器的折算系数.应用气象学报,2002,13(4):508-512.
    [147]史海匀,傅旭东,王皓,等.高山深谷地区水土流失模拟与预测:以昌都地区为例.应用基础与工程科学学报,2011,19(S1):17-27.
    [148]史海匀,傅旭东,王远见,等.拉萨河流域蒸发力估算:改进道尔顿模型.应用基础与工程科学学报,2012,20(2):219-227.
    [149]汪岗,范昭.黄河水沙变化研究.郑州:黄河水利出版社,2002.
    [150]王光谦,李铁键.流域泥沙动力学模型.北京:中国水利水电出版社,2009.
    [151]王光谦,刘家宏.数字流域模型.北京:科学出版社,2006.
    [152]王国庆,张建云,刘九夫,等.气候变化和人类活动对河川径流影响的定量分析.中国水利,2008,2:55-58.
    [153]王皓,傅旭东,孙其诚,等.大尺度流域水文并行计算的方法改进.应用基础与工程科学学报,2009, S1:1-10.
    [154]王皓,王光谦,孙其诚,等.大尺度流域高分辨率河网提取的多叉树耦合方法.应用基础与工程科学学报,2009,17(5):643-651.
    [155]汪丽娜,王勇,高鹏,等.黄土高原粗泥沙集中来源区水沙变化特征及趋势性分析.水土保持通报,2008,28(2):11-16.
    [156]王菱,陈沈斌,侯光良.利用彭曼公式计算潜在蒸发的高度订正方法.气象学报,1988,46(3):381-383.
    [157]王万忠,焦菊英.黄土高原水土保持减沙效益预测.郑州:黄河水利出版社,2002.
    [158]王霞,夏自强,李捷,等.黄河中游降水量特征及变化趋势分析.人民黄河,2009,31(4):48-49&52.
    [159]王小军,蔡焕杰,张鑫,等.皇甫川流域水沙变化特点及其趋势分析.水土保持研究,2009,16(1):222-226.
    [160]王秀英,曹文洪,付玲燕,等.分布式流域产流数学模型的研究.水土保持学报,2001,15(3):38-40.
    [161]翁笃鸣,方先金,李占青.我国自由大气与山地水汽压垂直递减规律的初步研究.南京气象学院学报,1985,2:152-161.
    [162]武荣,陈高峰,张建兴.黄河中游河口龙门区间水沙变化特征分析.中国沙漠,2010,30(1):210-216.
    [163]吴瑞琛.西藏高原水文特征.水文,1990,2:53-56.
    [164]邢浩,闵骞.一种新的水面蒸发计算模型的研究.江西水利科技,2005,31(2):97-99.
    [165]徐建华,林银平,吴成基,等.黄河中游粗泥沙集中来源区界定研究.郑州:黄河水利出版社,2006.
    [166]许炯心.人类活动对黄河河川径流的影响.水科学进展,2007,18(5):648-655.
    [167]许炯心.黄河中游多沙粗沙区1997-2007年的水沙变化趋势及其成因.水土保持学报,2010,24(1):1-7.
    [168]杨贵林,张静娴.柴达木盆地水文特征.干旱区研究,1996,13(1):7-13.
    [169]叶许春,张奇,刘健,等.气候变化和人类活动对鄱阳湖流域径流变化的影响研究.冰川冻土,2009,31(5):835-842.
    [170]张翠云,王昭.黑河流域人类活动强度的定量评价.地球科学进展,2004, S19:386-390.
    [171]张建云,王国庆,贺瑞敏,等.黄河中游水文变化趋势及其对气候变化的响应.水科学进展,2009,20(2):153-158.
    [172]张淑兰,王彦辉,于澎涛,等.人类活动对泾河流域径流时空变化的影响.干旱区资源与环境,2011,25(6):66-72.
    [173]中国气象局.暴雨[EB/OL].北京:中国气象报社.2013[2013-01-16].http://www.cma.gov.cn/kppd/qxkppdqxcd/201301/t20130109_201593.html
    [174]庄立伟,王石立.东北地区逐日气象要素的空间插值方法应用研究.应用气象学报,2003,14(5):605-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700