移动通信领域包络线跟踪电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高移动通信的数据传输率和有效利用日益拥挤的频带资源,现代移动通信系统广泛采用非恒定包络的数字调制方式。此时若仍然沿用传统的恒压供电方式为移动通信基站中的功率放大器(PowerAmplifier, PA)供电,则PA会产生较大的功率损耗,造成巨大的能源浪费。包络线跟踪(Envelope Tracking, ET)电源是指其输出电压跟踪射频输入信号包络线的变化而变化,使PA始终工作在高效率状态,进而提升整个系统的变换效率。本文主要探讨ET电源的系统架构及相应的控制方法。
     为同时满足高效率和高跟踪线性度的要求,可以采用开关线性组合结构来构成ET电源,本文讨论了开关变换器和线性放大器的具体组合方式,指出电压型输出的开关线性并联结构和开关线性串联结构适于构成ET电源。通过分析开关变换器PWM工作时的边带效应和多频域控制模型,指出开关变换器的高带宽设计面临的主要问题是所需要的开关频率过高,而实际电路中开关管的开关速度往往难以满足要求。为此,探讨提高系统跟踪带宽的同时降低所需要的开关频率的控制方法和电路结构,提出采用串入阻断二极管的多电平开关切换结构来拟合输出电压的方案和多幅值电流源拟合输出电流的方案,它们分别适用于开关线性串联结构和开关线性并联结构ET电源中开关变换器的设计。在此基础上,为适应两种结构对线性放大器的不同要求,讨论了线性放大器的拓扑选择。
     开关线性并联结构ET电源采用电压型输出的AB类线性放大器和电流型输出的同步整流Buck变换器相并联。其中,线性放大器控制ET电源的输出电压,Buck变换器提供绝大部分的负载电流。通过推导线性放大器的输出电流表达式可以发现,当跟踪信号频率处环路增益不足够大时,线性放大器的输出电流会受到输出电压的影响而包含较大幅值的基波量,这大大降低了系统效率。为此,本文提出一种输出电压全前馈方法,可以完全消除输出电压对线性放大器输出电流的影响,大幅减小线性放大器输出电流中的基波电流成分,提高ET电源的效率。设计制作了一台跟踪频率为100kHz,输出电压为5V~15V正弦波,峰值输出功率为75W的ET电源原理样机进行实验验证,实验结果证明了所提出方法的有效性。
     开关线性串联结构ET电源采用多电平开关切换结构和A类线性放大器相串联。其中,多电平开关切换结构用阶梯波电压的形式拟合出输出电压的形状,线性放大器仅需提供阶梯波电压与输出电压之间的差值。由于阶梯波电压包含非常丰富的谐波,系统闭环无法有效抑制其对输出电压的影响,导致输出电压上出现高频电压尖峰。为此,本文提出一种阶梯波电压前馈方法,以消除阶梯波电压对ET电源输出电压的影响,仿真结果证明了其有效性。但在实际电路实现时,前馈电路中运算放大器的放大能力会受自身带宽的限制,影响了前馈方法的实现效果。为此,提出了运算放大器级联通路的频率补偿方法,以扩展其有效带宽;提出了输出电压高频尖峰抑制方法,进一步消除阶梯波电压中的高频分量对ET电源输出电压的影响。设计制作了一台跟踪频率为300kHz,输出电压为10V~32V正弦波,峰值输出功率为50W的ET电源原理样机进行实验验证,实验结果证明了所提出方法的有效性。
For high data transmission rate and efficient utilization of the increasingly crowded spectrum,non-constant-envelope modulation methods have been widely used in modern mobile communicationsystem. In order to avoid considerable power loss of power amplifier (PA) in mobile base stationpowered by a constant voltage, envelope tracking (ET) technique is adopted, which provides a variablepower supply voltage tracking the envelope of the radio frequency (RF) input signal, so that the PA canalways operate in its theoretical high efficiency region, and the system efficiency can be improvedaccordingly. This dissertation is dedicated to the ET power supply configuration, control andexperimental verifications.
     The switch-linear hybrid configuration for constructing the ET power supply can achieve bothhigh efficiency and high linearity. This dissertation discusses the possible combinations of switchingconverter and linear amplifier, and it is pointed out that the series-connected and parallel-connectedswitch-linear hybrid schemes with voltage-controlled output are preferred to construct the ET powersupply. By analyzing the sideband frequencies of the pulse-width modulation (PWM) based switchingconverters and the multi-frequency small signal model, it is indicated that achieving a high bandwidthof the switching converter often requires too high switching frequency, which is very difficult to obtainsuitable power switches. The possible control methods and new configurations are discussed to reducethe required switching frequency while retaining a high tracking bandwidth. The multilevel converterwith block diodes scheme and the multi-phase current sources scheme are proposed forseries-connected and parallel-connected hybrid configuration, respectively. Additionally, the topologyselection of the linear amplifier is discussed for the two hybrid schemes.
     A voltage-controlled Class AB linear amplifier in parallel with a current-controlled synchronousrectification buck converter is employed to construct the parallel-connected hybrid ET power supply,where the linear amplifier controls the output voltage while the buck converter provides the most partof the load power. The expression of the linear amplifier output current is derived, and from which, it isfound that when the loop gain magnitude at the tracking frequency is not sufficiently high, the linearamplifier is forced to output a fundamental-wave current by the influence of the output voltage, whichgreatly degrades the system efficiency. This dissertation proposes a full feed-forward of the outputvoltage scheme, which can substantially reduce the linear amplifier output current. A prototype for100kHz sine wave tracking, with5V~15V output voltage, and75W peak output power is fabricated and tested in the lab. The experimental results verify the effectiveness of the proposed full feed-forward ofthe output voltage scheme.
     A multilevel converter in series with a Class A linear amplifier is employed to construct theseries-connected hybrid ET power supply, where the multilevel converter fits the output voltage with astep-wave, and the linear amplifier provides the voltage difference between the step-wave voltage andthe final output voltage. Due to the abundant harmonics, the influence from the step-wave voltage onthe output voltage cannot be suppressed effectively by the loop gain, which leads to high spikesappearing at the ET power supply output voltage. This dissertation proposes a feed-forward of thestep-wave voltage scheme to eliminate this influence, and it is verified effectively by the simulationresults. However, in practical implementation, the operational amplifiers suffer bandwidth limitation inrelatively high-frequency range, thus better output voltage linearity cannot be achieved as expected. Toimprove the tracking performance, the frequency compensation scheme is proposed to extend theeffective bandwidth of the operational amplifier cascade path, and the output voltage high-frequencyspike elimination scheme is proposed to further eliminate the influence from the high frequencyharmonics of the step-wave voltage on the final output voltage. A prototype for300-kHz sine wavetracking, with10V~32V output voltage, and50W peak output power is fabricated and tested in thelab. The experimental results validate the proposed schemes.
引文
[1]庞宝茂.移动通信.西安:西安电子科技大学出版社,2009年.
    [2]曹达仲,侯春萍.移动通信原理、系统及技术.北京:清华大学出版社,2004年.
    [3] Raab F H, Asbeck P, Cripps S, Kenington P B, Popovi Z B, Pothecary N, Sevic J F, Sokal N O.Power amplifiers and transmitters for RF and microwave. IEEE Transactions on MicrowaveTheory and Techniques,2002,50(3):814826.
    [4] Raab F H, Asbeck P, Cripps S, Kenington P B, Popovi Z B, Pothecary N, Sevic J F, Sokal N O.RF and microwave power amplifier and transmitter technologies. High Frequency Electronics,2003,2(3):22–54.
    [5] Lau V K N. Average of peak-to-average ratio (PAR) of IS95and CDMA2000systems-singlecarrier. IEEE Communications Letters,2001,5(4):160–162.
    [6] Tellambura C. Computation of the continuous-time PAR of an OFDM signal with BPSKsubcarriers. IEEE Communications Letters,2001,5(5):185–187.
    [7] Sevic J F, Steer M B. On the significance of envelope peak-to-average ratio for estimating thespectral regrowth of an RF/microwave power amplifier. IEEE Transactions on MicrowaveTheory and Techniques,2000,46(6):1068–1071.
    [8] Nujira energy primer. Nujira Ltd,2008. Available at http://www.nujira.com.
    [9] Soto A, Oliver J A, Cobos J A, Cezón J, Arévalo F. Power supply for a radio transmitter withmodulated supply voltage. Proc. IEEE Applied Power Electronics Conference and Exposition(APEC),2004:392–398.
    [10] Kahn L R. Single sideband transmission by envelope elimination and restoration. Proc. Instituteof Radio Engineers (IRE),1952:803–806.
    [11] Su D, McFarland W. An IC for linearizing RF power amplifiers using envelope elimination andrestoration. IEEE Journal of Solid-Stage Circuits,1998,33(12):2252–2258.
    [12] Walling J S, Taylor S S, Allstot D J. A class-G supply modulator and class-E PA in130nmCMOS. IEEE Journal of Solid-State Circuits,2009,44(9):2339–2347.
    [13] Diet A, Berland C, Villegas M, Baudoin G. EER architecture specifications for OFDMtransmitter using a class E amplifier. IEEE Microwave and Wireless Components Letters,2004,14(8):389–391.
    [14] Jeon Y, Yang H, Nam S. A novel EER structure for deducing complexity using negativeresistance amplifier. IEEE Microwave and Wireless Components Letters,2004,14(5):195–197.
    [15] Kahn L R. Comparison of linear single-sideband transmitters with envelope elimination andrestoration single-sideband transmitters. Proc. Institute of Radio Engineers (IRE),1956:1706–1712.
    [16] Minnis B J, Moore P A, Whatmough P N, Blanken P G, van der Heijden M P.System-efficiency analysis of power amplifier supply-tracking regimes in mobile transmitters.IEEE Transactions on Circuits and Systems,2009,56(1):268–279.
    [17] Wang N, Yousefzadeh V, Maksimovic D, Pajic S, Popovic Z B.60%efficient10-GHz poweramplifier with dynamic drain bias control. IEEE Transactions on Microwave Theory andTechniques,2004,52(3):1077–1081.
    [18] Raab F H, Sigmon B E, Myers R G, Jackson R M. L-band transmitter using Kahn EERtechnique. IEEE Transactions on Microwave Theory and Techniques,1998,46(12):2220–2225.
    [19] Wang F, Yang A H, Kimball D F, Larson L E, Asbeck P M. Design of wide-bandwidthenvelope-tracking power amplifiers for OFDM applications. IEEE Transactions on MicrowaveTheory and Techniques,2005,53(4):1244–1255.
    [20] Lopez J, Li Y, Popp J D, Lie D Y C, Chuang C, Chen K, Wu S, Yang T, Ma G. Design of highlyefficient wideband RF polar transmitters using the envelope-tracking technique. IEEE Journalof Solid-State Circuits,2009,44(9):2276–2294.
    [21] Yan J J, Presti C D, Kimball D F, Hong Y, Hsia C, Asbeck P M, Schellenberg J. Efficiencyenhancement of mm-wave power amplifiers using envelope tracking. IEEE Microwave andWireless Components Letters,2011,21(3):157–159.
    [22] Kim D, Kang D, Choi J, Kim J, Cho Y, Kim B. Optimization for envelope shaped operation ofenvelope tracking power amplifier. IEEE Transactions on Microwave Theory and Techniques,2011,59(7):1787–1795.
    [23] Yusoff Z, Lees J, Benedikt J, Tasker P J, Cripps S C. Linearity improvement in RF poweramplifier system using integrated auxiliary envelope tracking system. Proc. IEEE MicrowaveSymposium Digest (MTT),2011:1–4.
    [24] Hsia C, Kimball D F, Lanfranco S, Asbeck P M. Wideband high efficiency digitally-assistedenvelope amplifier with dual switching stages for radio base-station envelope tracking poweramplifiers. Proc. IEEE Microwave Symposium Digest (MTT),2010:672–675.
    [25] Kimball D F, Jeong J, Hsia C, Draxler P, Lanfranco S, Nagy W, Linthicum K, Larson L E,Asbeck P M. High-efficiency envelope-tracking W-CDMA base-station amplifier using GaNHFETs. IEEE Transactions on Microwave Theory and Techniques,2006,54(11):3848–3856.
    [26] Li Y, Lopez J, Wu P, Hu W, Wu R, Lie D Y C. A SiGe envelope-tracking power amplifier withan integrated CMOS envelope modulator for mobile WiMAX/3GPP LTE transmitters. IEEETransactions on Microwave Theory and Techniques,2011,59(10):2525–2536.
    [27] Jeong J, Kimball D F, Kwak M, Draxler P, Hsia C, Steinbeiser C, Landon T, Krutko O, LarsonL E, Asbeck P M. High-efficiency WCDMA envelope tracking base-station amplifierimplemented with GaAs HVHBTs. IEEE Journal of Solid-State Circuits,2009,44(10):2629–2639.
    [28] Gruner D, Sorge R, Bengtsson O, Tanany A, Boeck G. Analysis, design, and evaluation ofLDMOS FETs for RF power applications up to6GHz. IEEE Transactions on MicrowaveTheory and Techniques,2010,58(12):4022–4030.
    [29] Chiu C, Chen K, Huang G, Chen M, Yang Y, Wang K. Capacitance charactersisticsimprovements and power enhancement for RF LDMOS transistors using annular layoutstructure. IEEE Transactions on Microwave Theory and Techniques,2011,59(3):638–643.
    [30] Gajadharsing J R. Low distortion RF-LDMOS power transistor for wireless communicationsbase station applications. Proc. IEEE Microwave Symposium Digest (MTT),2003:1563–1566.
    [31] Chung Y, Jeong J, Wang Y, Ahn D, Itoh T. Power level-dependent dual-operation modeLDMOS power amplifier for CDMA wireless base-station applications. IEEE Transactions onMicrowave Theory and Techniques,2005,53(2):739–746.
    [32] Van Rijs F, Theeuwen S. Efficiency improvement of LDMOS transistors for base stations:towards the theoretical limit. Proc. IEEE International Electron Devices Meeting (IEDM),2006:1–4.
    [33] Brech H, Brakensiek W, Burdeaux D, Burger W, Dragon C, Formicone G, Pryor B, Rice D.Record efficiency and gain at2.1GHz of high power RF transistors for cellular and3G basestations. Proc. IEEE International Electron Devices Meeting (IEDM),2003:15.1.1–15.1.4.
    [34] Lee Y, Lee M, Jeong Y. A wideband GaN HEMT distributed power amplifier for WiMAXapplications. Proc. IEEE Asia-Pacific Microwave Conference (APMC),2008:1–4.
    [35] Suebsombut P, Koch O, Chalermwisutkul S. Development of a GaN HEMT class-AB poweramplifier for an envelope tracking system at2.45GHz. Proc. IEEE Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON),2010:561–565.
    [36] Wang F, Kimball D F, Lie D Y, Asbeck P M, Larson L E. A monolithic high-efficiency2.4-GHz20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier. IEEE Journal ofSolid-Stage Circuits,2007,42(6):1271–1281.
    [37] Lie D Y C, Popp J D, Wang F, Kimball D, Larson L E. Linearization of highly-efficientmonolithic class E SiGe power amplifiers with envelope-tracking (ET) and envelope-elimination-and-restoration (EER) at900MHz. Proc. IEEE Dallas Circuits and SystemsWorkshop on System-on-Chip (DCAS),2007:1–4.
    [38] Kim I, Kim J, Moon J, Kim B. Optimized envelope shaping for hybrid EER transmitter ofmobile WiMAX-optimized ET operation. IEEE Microwave and Wireless Components Letters,2009,19(5):335–337.
    [39] Hanington G, Chen P, Asbeck P M, Larson L E. High-efficiency power amplifier using dynamicpower-supply voltage for CDMA applications. IEEE Transactions on Microwave Theory andTechniques,1999,47(8):1471–1476.
    [40] Wang N L, Ho W J, Higgins J A. AlGaAs/GaAs HBT linearity characteristics. IEEETransactions on Microwave Theory and Techniques,1994,42(10):1845–1850.
    [41] Cai Q, Gerber J, Rohde U L, Daniel T. HBT high-frequency modeling and integrated parameterextraction. IEEE Transactions on Microwave Theory and Techniques,1997,45(12):2493–2502.
    [42] Cressler J D. SiGe HBT technology: a new contender for Si-based RF and microwave circuitapplications. IEEE Transactions on Microwave Theory and Techniques,1998,46(5):572–589.
    [43] Yousefzadeh V, Alarcón E, Maksimovi D. Three-level buck converter for envelope trackingapplications. IEEE Transactions on Power Electronics,2006,21(2):549–552.
    [44]阮新波.三电平直流变换器及其软开关技术.北京:科学技术出版社,2006年.
    [45] Rodriguez M, Miaja P F, Rodriguez A, Sebastian J. Multiple-input buck converter optimizedfor accurate envelope tracking in RF power amplifiers. Proc. IEEE Applied Power ElectronicsConference and Exposition (APEC),2010:715–722.
    [46] Rodríguez M, Fernández-Miaja P, Rodríguez A, Sebastián J. A multiple-input digitallycontrolled buck converter for envelope tracking applications in radiofrequency poweramplifiers. IEEE Transactions on Power Electronics,2010,25(2):369–381.
    [47] Sebastián J, Villegas P J, Nuno F, Hernando M M. High-efficiency and wide-bandwidthperformance obtainable from a two-input buck converter. IEEE Transactions on PowerElectronics,1998,13(4):706–717.
    [48] Hudspeth T, Kaplan D S, Rosen H A. Envelope amplifier. US Patent, No.4831334, May16,1989.
    [49] Myers R G, Buer K V, Raab F H. Method and apparatus for high efficiency high dynamic rangepower amplification. US Patent, No.5929702, Jul.27,1999.
    [50] Shvarts E Y, Triolo A A, Ziesse N G. Variable output power supply, US Patent, No.US6788151B2, Sep.7,2004.
    [51] Wilson M P. High efficiency amplification, US Patent, No. US7482869B2, Jan.27,2009.
    [52] Wilson M P. Transformer based voltage supply, US Patent, No. US7764060B2, Jul.27,2010.
    [53] H yerby M C W, Andersen M A E. High-bandwidth, high-efficiency envelope tracking powersupply for40W RF power amplifier using paralleled bandpass current sources. Proc. IEEEPower Electronics Specialists Conference (PESC),2005:2804–2809.
    [54] Markowski P. Power supply providing ultra fast modulation of output voltage. US Patent, No.US7990214B2, Aug.2,2011.
    [55] Nagle P, Burton P, Heaney E, McGrath F. A wide-band linear amplitude modulator for polartransmitters based on the concept of interleaving delta modulation. IEEE Journal of Solid-StateCircuits,2002,37(12):1748–1756.
    [56] Kikkert C. Digital techniques in delta modulation. IEEE Transactions on CommunicationTechnology,1971,19(4):570–574.
    [57] O’neal J B. Delta modulation of data signals. IEEE Transactions on Communications,1974,22(3):334–339.
    [58] Schindler H R. Linear, nonlinear and adaptive delta modulation. IEEE Transactions onCommunications,1974,22(11):1807–1823.
    [59] Ziogas P D. The delta modulation technique in static PWM inverters. IEEE Transactions onIndustry Applications,1981,17(2):199–204.
    [60] H yerby M C W, Andersen M A E. Envelope tracking power supply with fully controlled4thorder output filter. Proc. IEEE Applied Power Electronics Conference and Exposition (APEC),2006:993–1000.
    [61] H yerby M C W, Andersen M A E. Optimized envelope tracking power supply for Tetra2basestation RF power amplifier. Proc. IEEE Applied Power Electronics Conference and Exposition(APEC),2008:777–783.
    [62] Yousefzadeh V, Alarcón E, Maksimovi D. Efficiency optimization in linear-assisted switchingpower converters for envelope tracking in RF power amplifiers. Proc. IEEE InternationalSymposium on Circuits and Systems (ISCAS),2005:1302–1305.
    [63] Ertl H, Kolar J W, Zach F C. Basic considerations and topologies of switched-mode assistedlinear power amplifiers. IEEE Transactions on Industrial Electronics,1997,44(1):116–123.
    [64] Van der Zee R A R, Van Tuijl A J M. A power-efficient audio amplifier combining switchingand linear techniques. IEEE Journal of Solid-state Circuits,1999,34(7):985–991.
    [65] Kimball D F. Cuk style inverter with hysteretic control. US Patent, No. US6710646B1, Mar.23,2004.
    [66] Kim D, Choi J, Kang D, Kim B. High efficiency and wideband envelope tracking poweramplifier with sweet spot tracking. Proc. IEEE Radio Frequency Integrated CircuitsSymposium (RFIC),2010:255–258.
    [67] Garde P. High-efficiency low distortion parallel amplifier. US Patent, No.4516080, May7,1985.
    [68] Midya P. High efficiency power amplifier using combined linear and switching techniques withnovel feedback system. US Patent, No.5905407, May18,1999.
    [69] Midya P. Linear switcher combination with novel feedback. Proc. IEEE Power ElectronicsSpecialists Conference (PESC),2000:1425–1429.
    [70] Mathe L, Kimball D, Arehambault J, Haley W. Apparatus and method for efficientlyamplifying wideband envelope signals. US Patent, No. US6300826B1, Oct.9,2001.
    [71] Miaja P F, Rodriguez M, Rodriguez A, Sebastian J. A linear assisted dc/dc converter forenvelope tracking and envelope elimination and restoration applications. Proc. IEEE EnergyConversion Congress and Exposition (ECCE),2010:3825–3835.
    [72] Kanbe A, Kaneta M, Yui F, Kobayashi H, Takai N, Shimura T, Hirata H, Yamagishi K. Newarchitecture for envelope-tracking power amplifier for base station. Proc. IEEE Asia PacificConference on Circuits and Systems (APCCAS),2008:296–299.
    [73] Wu P Y, Mok P K T. A two-phase switching hybrid supply modulator for RF power amplifierswith9%efficiency improvement. IEEE Journal of Solid-State Circuits,2010,45(12):2543–2556.
    [74] Hsia C, Zhu A, Yan J J, Draxler P, Kimball D F, Lanfranco S, Asbeck P M. Digitally assisteddual-switch high-efficiency envelope amplifier for envelope-tracking base-station poweramplifiers. IEEE Transactions on Microwave Theory and Techniques,2011,59(11):2943–2952.
    [75] Vasic M, Garcia O, Oliver J A, Alou P, Diaz D, Cobos J A. Multilevel power supply forhigh-efficiency RF amplifiers. IEEE Transactions on Power Electronics,2010,25(4):1078–1089.
    [76] Cheng P M, Vasic M, Garcia O, Oliver J A, Alou P, Cobos J A. Design of envelope amplifierbased on interleaved multiphase buck converter with minimum time control for RF application.Proc. IEEE Energy Conversion Congress and Exposition (ECCE),2011:1279–1283.
    [77] Yundt G B. Series parallel connected composite amplifiers,[Master Thesis]. Cambridge:Massachusetts Institute of Technology,1983.
    [78] Rivas J M, Wahby R S, Shafran J S, Perreault D J. New architectures for radio-frequency dc-dcpower conversion. IEEE Transactions on Power Electronics,2006,21(2):380–393.
    [79] Erickson R W, Maksimovi D. Fundamentals of Power Electronics. Norwell, MA: Kluwer,2000.
    [80] Tymerski R. Frequency analysis of time-interval-modulated switched networks. IEEETransactions on Power Electronics,1991,4(3):287–295.
    [81] Perreault D, Verghese G. Time-varying effects and average issues in models for current-modecontrol. IEEE Transactions on Power Electronics,1991,17(6):453–461.
    [82] Tymerski R. Application of the time varying transfer function for exact small-signal analysis.IEEE Transactions on Power Electronics,1994,14(3):196–205.
    [83] Verghese G, Thottuvelil V. Aliasing effects in PWM power converters. Proc. IEEE PowerElectronics Specialists Conference (PESC),1999:1043–1049.
    [84] Qiu Y, Yao K, Meng Y, Xu M, Lee F C, Ye M. Control-loop bandwidth limitations formultiphase interleaving buck converters. Proc. IEEE Applied Power Electronics Conferenceand Exposition (APEC),2004:1322–1328.
    [85] Qiu Y, Xu M, Yao K, Sun J, Lee F C. The multi-frequency small-signal model for buck andmultiphase interleaving buck converters. Proc. IEEE Applied Power Electronics Conferenceand Exposition (APEC),2005:392–398.
    [86] Qiu Y, Xu M, Sun J, Lee F C. High-frequency modeling for the nonlinearities in buckconverters. Proc. IEEE Applied Power Electronics Conference and Exposition (APEC),2006:1197–1203.
    [87] Qiu Y, Xu M, Yao K, Sun J, Lee F C. Multifrequency small-signal model for buck andmultiphase buck converters. IEEE Transactions on Power Electronics,2006,21(5):1185–1192.
    [88] Qiu Y, Xu M, Sun J, Lee F C. A generic high-frequency model for the nonlinearities in buckconverters. IEEE Transactions on Power Electronics,2007,22(5):1970–1977.
    [89] Sun J, Qiu Y, Xu M, Lee F C. High-frequency dynamic current sharing analyses for multiphasebuck VRs. IEEE Transactions on Power Electronics,2007,22(6):2424–2431.
    [90] Wester G, Middlebrook R D. Low-frequency characterization of switched dc-dc converters.IEEE Transactions on Aerospace and Electronic Systems,1973,9(3):376–385.
    [91] Middlebrook R D, Cuk S. A general unified approach to modeling switching-converter powerstages. Proc. IEEE Power Electronics Specialists Conference (PESC),1976:18–34.
    [92]张卫平.开关变换器的建模与控制.北京:中国电力出版社,2005年.
    [93]胡寿松.自动控制原理.北京:科学出版社,2001年.
    [94]杨孟雄.基于燃料电池供电系统的三电平双向变换器研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [95] Albulet M. RF Power Amplifiers. Atlanta: Noble Publishing Corporation,2001.
    [96]康华光.电子技术基础(模拟部分).北京:高等教育出版社,2006年.
    [97] Xiong X, Ruan X, Xi H, Ge J. Feed-forwarding the output voltage to improve efficiency forenvelope-tracking power supply based on a switch-linear hybrid scheme. IEEE Transactions onPower Electronics,2011,26(8):2106–2111.
    [98] Hambley A R. Electronics,2nd edition. New Jersey: Prentice-Hall, Inc.,2000.
    [99] Ron M. Op amps for everyone. TI design reference SLOD006B, Texas Instruments,2002.
    [100] OPA3690datasheet. Texas Instruments,2008. Available at: http://www.ti.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700