网络控制系统的学习和控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络控制系统具有布线少、易于安装维护和灵活性强等诸多优点,已经在磁悬浮球系统、双轴压力位置系统、机器人等领域出现一系列应用。然而实际工业过程往往为非线性多变量系统,参数往往时变,这类复杂对象本身在空间上分布广泛,常采用多个本地控制器的分布式控制模式,但由于本地控制器自身计算资源有限,无力运行复杂的控制算法以满足高性能的控制要求,因此控制需求对单层网络控制系统提出了严峻的挑战。此外,在复杂的控制算法中,学习算法由于具有可发现潜在规律以及适应环境等特点,能有效提高系统控制性能而得到广泛应用。于是,考虑学习算法趋于复杂,而采用本地设备受成本和可靠性要求的影响其计算资源和算法复杂度有限等现实,提出了两层网络学习控制系统。本文主要研究两层网络学习控制系统的学习和控制策略设计,主要工作概括如下:
     首先,提出了两层网络学习控制系统(networked learning control system, NLCS)架构,分析了其与传统网络控制系统相比所具有的不同特点。针对学习算法的需求,提出了一种新的基于快速回归算法的快速RBF神经网络构造方法,不但可以选择隐节点中心而且可以计算输出层权重,并分析了计算复杂度,与常见的基于正交最小二乘算法构造RBF神经网络相比速度更快。在此基础上,提出了基于RBF神经网络的自学习模糊控制策略,利用RBF神经网络实时调整本地模糊控制器的参数,并将其应用到两层网络学习控制系统中,得到基于快速RBF神经网络的两层NLCS自学习模糊控制策略方案。
     其次,提出了一种新的基于带有调整因子前向回归算法的RBF神经网络构造方法,通过给每一个候选项绑定一个调整因子,采用贝叶斯证据框架推理来优化调整因子,随着调整因子优化的进行,一些在网络中起非常微弱作用的隐节点将从RBF网络中移出,从而精简了RBF神经网络的结构,解决了RBF神经网络对含有噪声的测量数据出现过度拟合的问题。接着,定义一系列中间变量并采用递归方法简化了算法的计算负担,给出了算法的计算复杂度。在此基础上,提出了改进的基于RBF神经网络的自学习模糊控制策略,得到了基于带有调整因子RBF神经网络的两层NLCS自学习模糊控制策略方案。
     第三,提出了一种新的基于带有调整因子前向回归算法的RBF神经网络自动构造方法,采用能够测量模型泛化能力的LOO交叉验证准则来自动终止RBF神经网络的中心选择过程,进一步运用调整因子精简径向基神经网络的结构,并通过定义一系列中间变量以及采用递归方法简化了算法的计算复杂度。在此基础上,提出了进一步改进的基于RBF神经网络的自学习模糊控制策略,得到了基于带有调整因子自构造RBF神经网络的两层NLCS自学习模糊控制策略方案。
     第四,在不改变本地控制器的前提下,为了提高系统的控制性能,研究了基于强化学习控制策略的两层网络学习控制方案,学习单元采用强化学习策略,本地控制器采用PI控制策略,学习单元的输出动态调整PI控制器输出,组成本地控制器和学习单元相结合的控制策略。进一步探索了适合该策略的强化学习方法,对基于Q学习算法和Actor-Critic神经网络学习算法的两层网络学习控制方案分别进行仿真研究,仿真结果验证了所提方案的有效性。
     第五,分析了多输入多输出网络控制系统具有的多通道网络特性,采用对角矩阵描述广义传感器和广义执行器的状态。然后分别采用丢失数据置零策略和零阶保持器策略补偿数据丢包,建立了带有任意切换序列的切换系统模型,给出了闭环系统渐近稳定的充分条件,并将其拓展到参数不确定线性系统对象,得到了具有参数不确定性的闭环系统渐近稳定的充分条件。
     最后,在上述理论研究并在仿真结果验证了所提方案的有效性基础上,结合上海自动化仪表股份有限公司生产的具有两层网络架构的SUPMAX分散控制系统,分析了其网络架构和网络不确定性因素处理策略,通过扩展一个学习单元构建了两层网络学习控制系统实验平台。进一步以SUPMAX系统中广泛应用的PID控制回路为例进行两层网络学习控制实验,即在SUPMAX实现基本PID控制功能的基础上,利用SUPMAX的SMCP协议和名字服务器的地址解析功能,通过Ethernet网络从分散处理单元(DPU)获得实时数据,在学习单元采用面积法和继电整定法,对SUPMAX系统DPU中的PID控制器进行参数整定,开发了SUPMAX的先进PID自整定功能库。仿真实验表明该先进控制软件能够有效地进行PID参数整定,具有良好的应用前景。
Networked control system (NCS) has wide industrial applications, such as in ball maglev system, dual-axis hydraulic positioning system, robot and large-scale transportation vehicles, due to various advantages including low cost of installation, ease of maintenance, easy installation, and flexibility. However, many industrial systems are characterized by time-varying, nonlinear and multivariable coupling. The plants are distributed at different locations, and distributed control strategies are most common where many local controllers are implemented. While the local controllers are mostly embedded real-time controller or program logic controllers which are highly reliable, but they can not fulfill the needs for high quality control due to very low computational capability for implementation of complex control strategies. This imposes a severe challenge on the widely used single-layer NCS. Learning control strategies are capable of effectively improving the control performance by on-line mining of valuable knowledge and hidden relations, accumulating experience and adapting to environment, but it is difficult to design and implement via the local controllers. Therefore, a two-layer networked learning control system (NLCS) is proposed. The focus of this paper is on the design of control strategies of two-layer NLCS. The main work is summarized as follows:
     Firstly, a two-layer NLCS architecture is presented, and.the differences between two-layer NLCS and NCS are analyzed. Then, a novel fast radial basis function (RBF) neural network based on fast recursive algorithm (FRA) is proposed. The method can not only select RBF neural network centers, but also can estimate the network weights simultaneously using a back substitution approach. Unlike popular orthogonal least squares (OLS) algorithm, FRA requires less computational effort by the computational complexity analysis. Furthermore, a self-learning fuzzy control strategy based on fast RBF neural network for two-layer NLCS is presented. Under this strategy, RBFNN is employed in a learning agent, while fuzzy control strategy is adopted in the local controller. The RBF neural network is used to on-line tune the parameters of fuzzy controller. Simulation results confirm its effectiveness.
     Secondly, a new locally regularized recursive method for the center selection of RBF neural network is proposed. By associating each candidate center to an individually regularized parameter which is optimized within the Bayesian evidence framework, the associated weights of those nonsignificant candidate centers are effectively forced to zero as their corresponding regularization parameters become sufficiently large. Therefore, the proposed method can easily choose significant centers and hence improve the sparsity. The computational complexity analysis shows that the computational cost is significantly reduced by using a proper regression context and the recursive formulas. Then, a self-learning fuzzy control strategy based on RBF neural networks with regularized parameters for two-layer NLCS is developed, and simulation results demonstrate its effectiveness.
     Thirdly, a novel locally regularized automatic construction method for RBF neural models is proposed. This is achieved by combing the proposed locally regularized recursive method with the leave-one-out (LOO) cross-validation criterion. It can automatically determine the network size by iteratively minimizing a LOO mean square error (MSE) without the need to specify any additional termination criterion. By defining a proper regression context and the recursive formulas, the whole network construction process can be concisely formulated and easily implemented at significantly reduced computational expense which is not achievable using any existing approaches. Then, self-learning fuzzy control strategy based on automatic constructive RBF neural network with regularized parameters for two-layer NLCS is investigated, and its effectiveness is then confirmed by simulation results.
     Fourthly, to improve the control performance, a two-layer NLCS scheme without changing the local controller is studied by using reinforcement learning methods. Under this scheme, reinforcement learning methods are employed in a learning agent, while proportion integration (PI) control strategy is adopted in the local controller. Total control signal consists of control signal of learning agent plus control signal of PI controller, where control signal of learning agent dynamically tunes total control signal. Then, two-layer NLCS using Q-learning and Actor-Critic neural network are investigated respectively, and simulation results verify its effectiveness.
     Fifthly, the characteristics of multi-channels networks for multi-input multi-output (MIMO) NCS are analyzed. The generalized sensor and generalized actuator are defined, and the sate of generalized sensor and generalized actuator can be described using diagonal matrix. The methods of zero-set and zero order holding (ZOH) are used to compensate data loss, MIMO NCS models are then modeled as a switched system with unknown switched sequence and sufficient conditions for asymptotically stable are given. This can be further extended to uncertain MIMO system, and sufficient conditions for asymptotically stable are derived. Numerical example confirms its effectiveness.
     Finally, SUPMAX distributed control system (DCS) is introduced, and the network architecture and the method for tracking networked nondeterministics are presented. A two-layer NLCS experiment platform is then established by addding a learning agent to SUPMAX DCS. Using the SMCP protocol and address resolution function, and real-time data can be obtained from distributed processing unit (DPU) via Ethernet network. An advanced PID self-tuning software package is then developed using the characteristic area method and a relay tuning algorithm, which can tune the PID parameters in DPU. Simulation experiments demonstrate that the software can effectively tune the PID parameters, and shows the potentials of the software for real-life applications.
引文
[1] J. P. Thomesse. Fieldbus technology in industrial automation [J]. Proceedings of the IEEE, 2005, 93(6): 1073-1101.
    [2] G. Johnston. The future of fieldbus [J]. Computing & Control Engineering Journal, 2006, 17(1): 24-27.
    [3] P. LoonTang, C. W. Silva. Compensation for transmission delays in an ethernet-based control network using variable-horizon predictive control [J]. IEEE Transactions on Control Systems Technology, 2006, 14(4): 707-718.
    [4] R. Piggin. Ethernet/IP-control in real time [J]. IET Computing & Control Engineering, 2006, 17(6): 28-31.
    [5] R. Sofia. A survey of advanced ethernet forwarding approaches [J]. IEEE Communications surveys & Tutorials, 2009, 11(1): 92-115.
    [6] K. B. Sim, K. S. Byun, Fumio Harashima. Internet-based teleoperation of an intelligent robot with optimal two-layer fuzzy controller [J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1362-1372.
    [7] R. C. Luo, K. L. Su, S. H. Shen, K. H. Tsai. Networked intelligent robots through the Internet: issues and opportunities [J]. Proceedings of the IEEE, 2003, 91(3): 371-382.
    [8] C. Lazar, S. CArari. A remote-control engineering laboratory [J]. IEEE Transactions on Industrial electronics, 2008, 55(6): 2368-2375.
    [9] J. Sanchez, S. Dormido, R. Pastor, F. Morilla. A java/matlab-based environment for remote control system laboratories: illustrated with an inverted pendulum, IEEE Transactions on Education, 2004, 47(3): 321-329.
    [10] C. R. Weisbin. G. Rodriguez. NASA robotics research for planetary surface exploration [J]. IEEE Robotics & Automation Magazine, 2000, 7(4): 25-34.
    [11] M. E. M. B. Gaid, A. Cela, Y. Hamam. Optimal integrated control and scheduling of networked control systems with communication constraints: application to a car suspension system [J]. IEEE Transaction on Control Systems Technology, 2006, 14(4): 776-787.
    [12] D. Monotosh, R. Ghosh, B. Goswami, A. Gupta, A. P. Tiwari, R. Balasubrmanian, A. K. Chandra. Network control system applied to a large pressurized heavy water reactor[J]. IEEE Transactions on Nuclear Science, 2006, 53(5): 2948-2956.
    [13] W. B. Wei, Y. D. Pan, K. Furuta. Internet-based tele-control system for wheeled mobile robot. Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, 2005, 1151-1156.
    [14] K. S. Choi, J. H. Jo, S. S. Cheon, P. L. Seong. Design of the network control system for OBS satellite communications system. ICACT2006, 2006, 876-879.
    [15] X. H. Dai; C. K. Li; A. B. Rad. An approach to tune fuzzy controllers based on reinforcement learning [J]. Fuzzy Systems, 2003, 1:517 - 522.
    [16] M. Norrlof. An adaptive iterative learning control algorithm with experiments on an industrial robot [J]. IEEE Transactions on Robotics and Automation, 2002, 18(2): 245 - 251.
    [17] V. Koltchinski, C. T. Abdallah, M. Ariola, P. Dorato, D. Pachenko, Improved samplecomplexity estimates for statistical learning control of uncertain systems [J]. IEEE Transactions on Automatic Control, 2000, 45(12): 2383 - 2388.
    [18]葛芦生,刘升,基于计算机视觉实时测量系统中的若干问题探讨[J].电子测量与仪器学报, 2005, 19(2): 71-74.
    [19] P. Kuusela, D. Ocone, E. D. Sontag. Learning complexity dimensions for a Continuous-time control system [J]. SIAM J. Control Optim., 2004, 43(3):872-898.
    [20]费敏锐,李力雄,基于网络学习的控制系统[C].中国智能自动化会议论文集, 2003.
    [21]易军,费敏锐.基于三次样条滚动优化多步预测算法的网络学习控制[J].信息与控制, 2006, 35(1): 1-5.
    [22] L. X. Li, M. R. Fei, X. Y. Xie. Adaptive control systems with network closed identification loop, Springer LNAI 4114, 2006, 1037-1048.
    [23] M. R. Fei, J. Yi, H. Hu. Robust stability analysis of a class of uncertain nonlinear networked control system, International Journal of Control [J]. Automation, and Systems, 2006, 4(2):172-177.
    [24] F. L. Lian, J. R. Moyne, D. M. Tilbury. Performance evalutation of control networks: ethernet, controlNet, and deviceNet [J]. IEEE Control Systems Magazine, 2001, 21(1): 66-83.
    [25]周晓兵.基于TCP/IP网络的延时建模及网络先进PID控制器研究[D],上海,上海大学, 2006.
    [26] F. L. Lian, J. Moyne, D. Tibury. Network design consideration for distribtuted control systems [J]. IEEE Transactions on Control Systems Technology, 2002, 10(2): 297-307.
    [27]郭戈,贾二娜.网络化控制系统中的延时问题:分析与展望[J].控制与决策, 2009, 24(1): 1-6.
    [28]朱其新.网络控制系统的建模、分析与控制[D],南京,南京航空航天大学, 2003.
    [29] J. C. R. Bennett, C. Partridge, N. Schectman. Packet reordering is not pathological network behavior [J]. IEEE/ACM Transactions on Networking, 1999, 7(6): 789-798.
    [30]李力雄.基于网络整定的控制系统中网络诱导延时的分析及解决方法研究[D],上海,上海大学, 2005.
    [31]谢林柏,纪志成,潘庭龙,方华京.基于信息调度的网络化控制系统[J].系统工程与电子技术, 2005, 27(3): 449-482.
    [32] L. Zhang, D. Hristu-Varsakelis. Communication and control co-design for networked control systems [J]. Automatica, 2006, 42: 953-958.
    [33] P. Martí, J. Yépez, M. Velasco, et al. Managing quality-of-control in network-based control systems by controller and message scheduling co-design [J]. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1159-1167.
    [34] S. Soucek, T. Sauter. Quality of service concerns in IP-based control systems [J]. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1249-1258.
    [35]黄杰,吴平东,修震,马树元,陈之龙.基于因特网的运动控制系统中变采样过程的研究[J].控制与决策, 2005, 20(7): 754-758, 763.
    [36]任旭东,王智,黎善斌,孙优贤.并行网络控制系统服务质量管理[J].浙江大学学报, 2004, 38(7): 805-810.
    [37] S. M. Yu, M .Y. Yang, L. Yu. Predictive compensation for stochastic time delay in networked control systems [J].自动化学报, 2005, 31(2): 231-238.
    [38] Z. Chen, X. Yin, L. Liu. Networked control systems based on compensation fornetwork-induced delay. Proc. IEEE International Conference on Systems, Man and Cybernetics, 2005, 468-473.
    [39]陈鹏,戴连奎.自适应Smith补偿器在基于IP的网络控制系统中的应用[J].控制理论与应用, 2006, 23(1): 115-118.
    [40] F. Y. Wang, D. R. Liu, S. X. Yang, L. Li. Networking, sensing, and control for networked control systems: architectures, algorithms, and applications [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37(2): 157-159.
    [41] J. Wu, T. W. Chen. Design of networked control systems with packet dropouts [J]. IEEE Transactions on Automatic Control, 2007, 52(7): 1314-1319.
    [42] H. Hirano, M. Mukai, T. Azuma, M. Fujita. Optimal control of discrete-time linear systems with network-induced varying delay. Proc. American Control Conference, Portland, USA, 2005, 1419-1424.
    [43] D. Yue, Q. L. Han, J. Lam. Network-based robust H∞control of systems with uncertainty [J]. Automatica, 2005, 41(6): 999-1007.
    [44]邱占芝,张庆灵,刘明.有时延和数据包丢失的网络控制系统控制器设计[J].控制与决策, 2006, 21(6): 625-630, 635.
    [45]张奇智,张卫东.网络控制系统中的时间戳预测函数控制[J].控制理论与应用, 2006, 23(1): 126-130.
    [46] L. Q. Zhang, Y. Shi, T. W. Chen, B. Huang. A new method for stabilization of networked control systems with random delays [J]. IEEE Trans. on Automatic Control, 2005, 50(8): 1177-1181.
    [47] V. N. Phat, J. Jiang, A. V. Savkina. Robust Stabilization of linear uncertain discrete-time systems via a limited capacity communication channel [J]. Systems & Control Letters, 2004, 53: 347-360.
    [48]胡寿松,朱其新. Stochastic optimal control and analysis of stability of networked control systems with long delay [J]. Automatica, 2003, 39(11): 1877-1884.
    [49] H. Li, M.-Y. Chow, Z. Sun. State feedback stabilisation of networked control systems [J]. IET Control Theory and Applications, 2009, 3(7): 929-940.
    [50] G. P. Liu, Y. Q. Xia, J. Chen, D. Rees, W. Hu. Networked predictive control of systems with random network delays in both forward and feedback channels [J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1282-1297.
    [51] W. A. Zhang, L. Yu. Output feedback stabilization of networked control systems with packet dropouts [J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1705-1710.
    [52] H. G. Zhang, D. D. Yang, T. Y. Chai. Guaranteed cost networked control for T-S fuzzy systems with time delays [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37(2): 160-172.
    [53] C. H. Chen, C. L. Lin, T. S. Hwang. Stability of networked control systems with time-varying delays [J]. IEEE Communications Letters, 2007, 11(3): 270-272.
    [54] G. P. Liu, Y. Q. Xia, D. Rees, W. Hu. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37(2): 173-184.
    [55] M. Sahebsara, T. W. Chen, S. L. Shah. Optimal H2 filtering in networked control systems with multiple packet dropout [J]. IEEE Transactions on Automatic Control, 2007, 52(8): 1508-1513.
    [56]杨方,方华京.基于模糊卡尔曼滤波器的网络控制系统状态估计[J].信息与控制, 2007, 36(3): 257-260.
    [57]王艳,陈庆伟,樊卫华,胡维礼.数据包丢失网络控制系统的保成本控制[J].控制理论与应用, 2007, 24(2): 249-254.
    [58]马卫国,邵诚.具有长延时及丢包的网络控制系统稳定性分析[J].控制与决策, 2007, 22(1): 21-24, 29.
    [59]王武,林琼斌,杨富文.具有数据丢失的网络控制系统的H∞输出反馈控制[J].信息与控制, 2007, 36(3): 285-292,301.
    [60]王玉龙,杨光红.具有时变采样周期的网络控制系统的H∞控制[J].信息与控制, 2007, 36(3): 278-284.
    [61] T. Matiakis, S. Hirche, M. Buss. Control of networked systems using the scattering transformation [J]. IEEE Transactions on Control Systems Technology, 2009, 17(1): 60-67.
    [62]邱占芝,张庆灵,刘明.不确定时延输出反馈网络化系统保性能控制[J].控制理论与应用, 2007, 24(2): 274-278.
    [63]郑刚,谭民, SONG Y H.多模式网络化控制系统稳定性分[J].控制理论与应用, 2007, 23(5): 749-755.
    [64]李旭光,朱新坚,曹广益.含状态和输入时滞的网络控制系统镇定[J].控制与决策, 2007, 22(7): 825-828, 835.
    [65]张喜民,李建东,陈实.具有时延和数据包丢失的网络控制系统稳定性[J].控制理论与应用, 2007, 24(3): 494-497,502.
    [66] W. A. Zhang, L. Yu, Q. X. Chen. Delay-dependent output feedback guaranteed cost control of time-delay systems over communication networks. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalin, China, 2006, 359-363.
    [67] D. Yue, C. Peng, G. Y. Tang. Guaranteed cost control of linear systems over networks with state and input quantisations [J]. IEE Proc.-Control Theory Appl., 2006, 153(6): 658-664.
    [68] J. B. Wang, B. G. Xu, Q. Y. Wang. Guaranteed cost control analysis of a class of networked control systems, Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, 4561-4565.
    [69] K. Tanaka, H. Ohtake, H. O.Wang. Shared nonlinear control in internet-based remote stabilization. The 2005 IEEE International Conference on Fuzzy Systems, 2005, 714-719.
    [70] G. C. Walsh, O. Beldiman, L. G. Bushnell. Asymptotic behavior of nonlinear networked control systems [J]. IEEE Trans. Autom. Control, 2001, 46: 1093-1097.
    [71] Y. Wang, W. L. Hu, W. H. Fan. Fuzzy robust H∞control for networked control systems. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, 4448-4452.
    [72]马丹,赵军.一类仿射非线性网络控制系统的稳定性分析[J].控制与决策, 2006, 21(9): 1001-1005+1010.
    [73] S. Hirche, T. Matiakis, M. Buss. A distributed controller approach for delay-independent stability of networked control systems [J]. Automatica, 2009, 45(8): 1828-1836.
    [74]樊卫华,蔡骅,周川,胡维礼. MIMO网络控制系统的建模与分析[J].控制理论与应用,2005,22(3): 487-490.
    [75]邱占芝,张庆灵.一类多输入多输出网络控制系统的稳定性分析[J].控制与决策, 2005, 20(5): 525-544.
    [76]宋洪波,俞立,张文安.存在通信约束和时延的多输入多输出网络控制系统镇定研究[J].信息与控制, 2007, 36(3): 334-339.
    [77]窦连旺,刘鲁源,陈玉柱.基于时滞理论的网络控制系统稳定性分析[J].天津大学学报, 2005, 38(1): 22-26.
    [78] G. Thomas.开放式控制建议的网络层次(上) [J].工业控制计算机, 2001, 14(8): 26-30,36.
    [79] http://www.siemens.com.cn/
    [80] T.C. Yang. Networked control system: A brief survey [J]. IEE Proc. Control Theory Appl, 2006, 153(4): 403-412.
    [81] T. C. Yang, H Yu, M. R. Fei, L. X. Li. Networked control systems: a historical review and current research topics [J]. Measurement + Control, 2005, 38(1): 12-16.
    [82] J. Nilsson. Real-time control systems with delays [D]. Lund Institute of Technology, Lund, Sweden, 1998.
    [83] D. Huang, S. K. Nguang. State feedback control of uncertain networked control systems with random time delays [J]. IEEE Transactions on Automatic Control, 2008, 53(3): 829-834.
    [84] D. Huang, S. K. Nguang. Robust disturbance attenuation for uncertain networked control systems with random time delays [J]. IET Control Theory and Applications, 2008, 2(11): 1008-1023.
    [85] Y. Shi, B. Yu. Output feedback stabilization of networked control systems with random delays modeled by markov chains [J]. IEEE Transactions on Automatic Control, 2009, 25(7): 1668-1674.
    [86] M. Liu, D. W. C. Ho, Y. Niu. Stabilization of markovian jump linear system over networks with random communication delay [J]. Automatica, 2009, 45: 416-421.
    [87] D. Yue, E. Tian, Z. Wang, J. Lam. Stabilization of systems with probabilistic interval input delays and its applications to networked control systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2009, 39(4):939-945.
    [88] C. Lin, Z. Wang, F. Yang. Observer-based networked control for continuous-time systems with random sensor delays [J]. Automatica, 2009, 45: 578-584.
    [89]杨丽,关新平,罗小元,龙承念.具有包丢失和时延的网络控制系统的随机稳定性[J].吉林大学学报(工学版), 2010, 40(1): 130-135.
    [90] Q. Ling, M. D. Lemmon. Soft real-time scheduling of networked control systems with dropouts governed by a markov chain, Proc. American Control conference, 2003: 4845-4850.
    [91] P. Seiler, R. Sengupta. An H∞Approach to networked control [J]. IEEE Transactions on Automatic Control, 2005, 50(3): 356-363.
    [92] Q. F. Wang, Y. L. Yang, H. Chen. H∞Control of three-tank system over networks with packet dropout. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 2426-2430.
    [93]徐英,王万良,徐晖.基于马尔科夫链的网络控制系统调度[J].计算机工程, 2008, 34(18): 140-141+144.
    [94]谢德晓,韩笑冬,黄鹤,王执铨.有数据包丢失的网络控制系统状态反馈控制[J].系统工程与电子技术, 2009, 31(3): 630-633.
    [95] W. Zhang, M. S. Branicky, S. M. Phillips. Stability of networked control systems [J]. IEEE Control Systems Magazine, 2001, 21(1): 85-89.
    [96] G. Xie, L. Wang. Stabilization of networked vontrol systems with time-varyingnetworked-induced delay [C]. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahams, 2004: 3551-3556.
    [97]张喜明,李建东,张建国.网络控制系统的鲁棒保性能控制[J].西安电子科技大学学报(自然科学版) [J]. 2008, 35(1): 96-100.
    [98] Y. J. Pan, H. J. Marquez, T. Chen. Stabilization of remote control systems with unknown time varying delays by LMI techniques [J]. International Journal of Control, 2006, 79(7): 752-763.
    [99] M. B. B. Cloosterman, N. V. D. Wouw, W. P. M. H. Heemels, H. Nijmeijer. Stability of networked control systems with uncertain time-varying delays [J]. IEEE Transactions on Automatic Control, 2009, 54(7): 1575-1580.
    [100] H. Gao, X. Meng, T. Chen. Stabilization of networked control systems with a new delay characterization [J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2142-2148.
    [101] H. Gao, T. Chen, J. Lam. A new delay system approach to network-based control [J]. Automatica, 2008, 44: 39-52.
    [102] D. Yue, Q. Han, C. Peng. State feedback controller design of networked control systems [J]. IEEE Transaction on Circuit and Systems-Ⅱ: Express Briefs, 2004, 51(11): 640-644.
    [103]郭亚锋,李少远.网络控制系统的H∞状态反馈控制器设计[J].控制理论与应用, 2008, 25(3): 414-420.
    [104]樊卫华,谢蓉华,陈庆伟,胡维礼.长延时网络控制系统的建模与分析[J].兵工学报, 2006, 27(2): 278-283.
    [105]孙海义,张庆灵,李宁.一类时延网络控制系统的H∞控制[J].沈阳建筑大学学报(自然科学版), 2006, 22(2): 323-328.
    [106]张湘,肖建.分布式网络控制系统的输出反馈控制[J].西南交通大学学报, 2007, 42(1): 29-34.
    [107] Y. Wang, G. Yang. H∞control of networked control systems with time delay and packet disordering [J]. IET Control Theory and Applications, 2007, 1(5): 1344-1354.
    [108] M. Yu, L. Wang, T. Chu, G. Xie. Stabilization of networked control systems with data packet dropout and network delays via switching system appraoch [C]. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004: 3539-3544.
    [109]邱占芝,张庆灵.具有数据包丢失的奇异网络控制系统指数稳定性[J].控制与决策, 2009, 24(6): 837-842.
    [110]杨业,王永骥.一类多包传输网络控制系统的设计及稳定性分析[J].信息与控制, 2005, 34(2):129-132.
    [111]张瑞金,张浩,王磊.长延时多包传输网络控制系统的稳定性分析[J].郑州大学学报(工学版), 2009, 30(2): 91-94.
    [112] H. Li, M. Chow, Z. Sun. Optimal stabilizing gain selection for networked control systems with time delays and packet losses [J]. IEEE Transactions on Control Systems Technology, 2009, in press.
    [113] H. Li, M. Chow, Z. Sun. EDA-based speed control of a networked DC motor system with time delays and packet losses [J], IEEE Transactions on Industrial Electronics, 2009, 56(5): 1727-1735.
    [114]张小美,郑毓藩,许建强,陆国平.存在时延和数据丢包的网络控制系统的控制器设计[J].信息与控制, 2006, 35(3): 339-345.
    [115] H. Ishii, T. Basar. Remote control of LTI systems over networks with state quantization [J]. Systems and Control Letters, 2005, 54(1): 15-31.
    [116] Y. W. Feng, X. Zhu, Z. M. Liu, C. Q. Zhu. Stability and guaranteed cost control for quantized feedback networked control system [C]. 2008 International Workshop on Modelling, Simulation and Optimization, 2008: 78-83.
    [117] Z. W. Wang, C. Q. Zhu, W. Pan, G. Guo. Observability and controllability of networked control systems [C]. Proceedings of the 2007 IEEE International Conference on Integration Technology. Shenzhen, China, 2007: 96-99.
    [118]朱训林,张宏礼.网络控制系统量化H∞控制器设计[J].黑龙江八一农垦大学学报, 2008, 20(4): 81-85.
    [119] E. Tian, D. Yue, X. Zhao. Quantised control design for networked control systems [J]. IET Control Theory & Applications, 2007, 1(6): 1693-1699.
    [120] C. Peng, Y. C. Tian. Networked H∞control oflinear systems with state quantization [J]. Information Sciences, 2007, 177: 5763-5774.
    [121] Y. F. Guo, S. Y. Li. Stability and stabilization of networked control systems with control input quantization [C]. 07 Second International Conference on Innovative Computing, Information and Control, 2007: 348-351.
    [122] X. L. Zhu, G. H. Yang. New H∞controller design method for networked control systems with quantized state feedback [C]. 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 2009: 5103-5108.
    [123]樊卫华,蔡骅,陈庆伟,胡维礼.基于异步动态系统的网络控制系统建模[J].东南大学学报(自然科学版), 2003, 33(2):194-196.
    [124]吕明,吴晓蓓,陈庆伟,胡维礼.基于异步动态系统的网络控制系统故障检测[J].控制与决策, 2008, 23(3): 325-328+332.
    [125]马卫国,邵诚.具有长延时及丢包的网络控制系统稳定性分析[J].控制与决策, 2007, 22(1): 21-24+29.
    [126] A. V. Savkin, Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control [J]. Automatica, 2006, 42(2): 51-62.
    [127]黄四牛,陈宗基,魏晨.网络控制中传输延迟的接口延迟模型[J].北京航空航天大学学报, 2004, 30(5): 414-418.
    [128]宗群,王鹤,李然.一种网络控制系统的随机通信逻辑设计与分析[J],控制与决策,2007, 22(7): 795-799.
    [129] W. J. Kim, K. Ji, A. Ambike. Real-time operating environment for networked control systems [J]. IEEE Transactions on Automation Science and Engineering, 2006, 3(3): 287-296.
    [130] W. Hu, G. P. Liu, D. Rees. Event-driven networked predictive control [J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1603-1613.
    [131] G. P. Liu, J. Mu, D. Rees. Networked predictive control of systems with random communication delay [C]. Proc. UKACC Int. Conf. Control, Bath, U. K., 2004, ID-015.
    [132] W. Hu, G. P. Liu, D. Rees. Networked predictive control over the internet using round-trip delay measurement [J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(10): 2231-2241.
    [133]薛燕,刘克.基于预测值控制的变采样网络控制系统[J].控制理论与应用, 2009, 26(6): 657-660.
    [134]雷必成,王万良,李祖欣.基于在线LS-SVM的网络预测控制系统[J].信息与控制, 2009, 38(2): 163-169.
    [135]王柱锋,蒋静坪,李丽春.长延时网络控制系统预测函数控制研究[J].仪器仪表学报, 2008, 29(5): 1006-1010.
    [136]陈虹,严法高,史旺旺,梁文彬.网络控制系统中考虑动态延时的广义预测控制算法[J].信息与控制. 2008, 37(2): 224-227.
    [137]赵辉,邓燕,王红君,岳有军.基于预测控制的网络诱导延时补偿策略研究[J].仪器仪表学报, 2008, 29(9): 1923-1927.
    [138] J. Nilsson, B.Bernhardsson, B. Wittenmark. Stochastic analysis and control of real-time systems with random time delays [J]. Automatica, 1998, 34: 57-64.
    [139]常玲芳,李惠光.随机最优非线性网络控制系统设计[J].电机与控制学报, 2006, 10(4): 435-439.
    [140]纪志成,赵维一,谢林柏.δ算子下的网络控制系统最优控制方法[J].控制与决策, 2006, 21(12): 1349-1353+1359.
    [141] S. Hu, Q. Zhu. Stochastic optimal control and analysis of stability of networked control systems with long delay [J]. Automatica, 2003, 39(11), 1877-1884.
    [142]朱其新,胡寿松,刘亚.无限时间长延时网络控制系统的随机最优控制[J].控制理论与应用, 2004, 21(3): 321-326.
    [143]于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究[J].控制理论与应用, 2002, 19(2): 263-267.
    [144] K. Ji, W. J. Kim. Stochastic optimal control and network co-design for networked control systems [J]. International Journal of Control, Automation and Systems, 2007, 5(5): 515-525.
    [145] C. Ma, H. Fang. Research on stochastic control of networked control systems [J]. Nonlinear Science and Numerical Simulation, 2009, 14: 500-507.
    [146] J. Nillson, B. Bernhardsson. LQG control over a markov communication network [C]. Proceedings of the IEEE Conference on Decision and Control, 1997, 5: 4586-4591.
    [147] V. Gupta, B. Hassibi, R. M. Murray. Optimal LQG control across packet-dropping links [J]. Systems & Control Letters, 2007, 56: 439-446.
    [148] F. L. Lian, J. Moyne, D. Tibury. Modelling and optimal controller design of networked control systems with multiple delays [J]. International Journal of Control, 2003, 76(6): 591-606.
    [149]李海涛,唐功友,马慧.一类具有数据包丢失的网络控制系统的最优控制[J].控制与决策, 2009, 24(5): 773-776.
    [150]谢林柏,冯宏伟,王艳,纪志成.对丢失数据包的网络控制系统的分析及最优控制[J].系统工程与电子技术, 2008, 30(7): 1324-1327.
    [151]魏震,李长虹,谢剑英.网络控制系统在线时延估计控制[J].控制与决策, 2003, 18(5): 545-549.
    [152]李毅,胡保生,彭勤科.随机长延迟同步网络控制系统的建模与最优控制[J].信息与控制, 2006, 35(3): 346-354.
    [153] L. Dritsas, A. Tzes. Robust stability bounds for networked controlled systems with unknown, bounded and varying delays [J]. IET Control Theory and Applications, 2009, 3(3): 270-280.
    [154] S. H. Kim, P. G. Park. Networked-based robust H∞control design using multiple levels of network traffic [J]. Automatica, 2009, 45: 764-770.
    [155] N. Vatanski, J. P. Georges, C. Aubrun, E. Rondeau, S. L. J. Jounela. Networked cotrol with delay measurement and estimation [J]. Control Engineering Practice, 2009, 17: 231-244.
    [156] H. Zhang, M. Li, J. Yang, D. Yang. Fuzzy model-based robust networked control for a class of nonlinear systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2009, 39(2): 437-447.
    [157]高金凤,柯飂挺.网络控制系统的鲁棒控制器设计研究[J].浙江理工大学学报, 2006, 23(4): 427-431.
    [158]彭晨,岳东.网络环境下不确定时滞系统鲁棒H∞控制[J].自动化学报, 2007, 33(10):1093-1096.
    [159]谢成祥,胡维礼.时延网络控制系统的模型预测控制[J].信息与控制, 2008, 37(2): 171-175.
    [160] Y. J. Pan, H. J. Marquez, T. Chen. Sampled-data iterative learning control for a class of nonlinear networked control systems [C]. Proceeding of the 2006 American Control Conference Minneapolis, Minnesota, USA, 2006: 3494-3499.
    [161] Y. Tipsuwan, M. Y. Chow. Neural network middleware for model predictive path tracking of networked mobile robot over IP network [C]. IECON Proceedings, 2003: 1419-1424.
    [162] K. C. Lee, S. Lee. Remote controller design of networked control system using genetic algorithm [C]. Proceedings of the IEEE International Symposium on Industrial Electronics, Piscataway, USA, 2001: 1845-1850.
    [163] K. C. Lee, S. Lee, M. H. Lee. Remote fuzzy logic control of networked control system via profibus-DP [J]. IEEE Transactions on Industrial Electronics, 2003, 50(4): 784-792.
    [164] T. Wang, L. Zhou, P. Han, D. Xu. Co-compensation for transmission delay and packet dropout in networked cotnrol system [C]. Proceedings of the 26th Chinese Control Conference, 2007: 562-566.
    [165] Y. Zheng, H. J. Fang, H. O. Wang. Takagi-Sugeno fuzzy model based fault detection for networked control systems with markov delays [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2006, 36(4): 924-929.
    [166] X. Jia, D. Zhang, X. Hao, N. Zheng. Fuzzy H∞tracking control for nonlinear networked control systems in T-S fuzzy model [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2009, 39(4): 1073-1079.
    [167] F. Xia, S. Li, Y. X. Sun. Neural network based feedback scheduler for networked control system with flexible workload [C]. Proc. of ICNCOS, LNCS, Heidelberg, 2005, 3611: 242-251.
    [168] Z. Li, H. J. Fang. A novel controller design and evaluation for networked control systems with time-variant delays [J]. Journal of the Franklin Institute, 2006, 343: 161-167.
    [169] J. Yi, M. R. Fei. Networked learning control based on predictive algorithm of uncertain nonlinear [C]. WCICA, 2006: 4526-4530.
    [170] M. Ohlin, D. Henriksson, A. Cervin, J. Eker. TrueTime: Simulation of networked and embedded control systems, http://www.control.lth.se/truetime/.
    [171] T. C. Yang. NCS_simu, http://www.sussex.ac.uk/Users/taiyang/.
    [172]刘峙飞,王树青.网络控制系统的仿真平台设计[J].系统仿真学报, 2005, 26(6): 597-600.
    [173]李洪波,吴凤鸽,孙增圻,孙富春.网络控制系统仿真平台的设计与实现[J].系统仿真学报, 2006, 18(6): 1700-1704.
    [174] B. Ramaswamy, Y. Q. Chen, K. Moore. Omni-directional robotic wheel-a mobile real-time control systems laboratory [C]. Proceeding of the 2006 American Control Conference Minneapolis, Minnesota, USA, 2006, 719-724.
    [175] G. P. Liu, D. Rees, S. C. Chai, Nie, X.Y. Design, simulation and implementation of the networked predictive control systems [J]. Meas. Control, 2005, 38, 17-21.
    [176] S. Chai, G. P. Liu, D. Rees, Y. Xia. Design and practical implementation of internet-based predictive control of a servo system [J]. IEEE Transactions on Control Systems Technology, 2008, 16(1): 158-168.
    [177] Y. Qiao, G. P. Liu, G. Zheng, W. Hu. NCSLab: a web-based global-scale control laboratory with rich interactive features [J], IEEE Transactions on Industrial Electronics, 2009, in press.
    [178] Y. Tipsuwan, M. Y. Chow. Gain scheduling middleware for networked mobile robot control [C]. Proceeding of the 2004 American Control Conference, Boston, USA, 2004: 4313-4318.
    [179] I. Ahmed, H. Wong, V. Kapila. Internet-based remote control using a microcontroller and an embedded ethernet [C]. Proceeding of the 2004 American Control Conference, Boston, USA, 2004: 1329-1334.
    [180]钟铭恩,吴平东,黄杰.基于Internet的共享控制系统平台构建[J].北京理工大学学报, 2007, 27(5): 403-407.
    [181] C. C. Ko, B. M. Chen, S. Y. Hu, el al. A web-based virtual laboratory on a frequency modulation experiment [J]. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2001, 31(3): 295-303.
    [182]徐宁,李春光,张健,虞厥邦.几种现代优化算法的比较研究[J].系统工程与电子技术, 2002, 24(12): 100-103.
    [183]王浩.四种智能算法的比较研究[J].火力与指挥控制, 2008, 33(s): 71-75.
    [184]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社.
    [185]刘永,张立毅. BP和RBF神经网络的实现及其性能比较[J].电子测量技术, 2007, 30(4): 77-80.
    [186] V. T. Sunil Elanayar, C. S. Yung. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems [J]. IEEE Trans. Neural Netw. 1994, 5(4): 594-603.
    [187] L. Xu, A. Krzyzak, A. Yuille. On radial basis function nets and kernel regression: statistical consistency, convergence rates, and receptive field size [J]. Neural Networks, 1994, 7(4): 609-628.
    [188] Z. Uykan, C. Guzelis, M. E. Celebi, H. N. Koivo. Analysis of input-output clustering for determining cernters of RBFN [J]. IEEE Transactions on Neural Networks, 2000, 11(4): 851-858.
    [189]苏小红,侯秋香,马培军,王亚东. RBF神经网络的混合学习算法[J].哈尔滨工业大学学报, 2006, 38(9): 1446-1449.
    [190]魏海坤,徐嗣鑫,宋文忠. RBF网学习的进化优选算法[J].控制理论与应用, 2000, 17(4): 604-608.
    [191] M. Vittorio. Genetic evolution of the topology and weight distribution of networks [J].IEEE Transactions on Neural Networks, 1994, 5(1): 39-53.
    [192] S. Chen. Orthogonal least square learning algorithm for radial basis function networks [J]. IEEE Trans.Neural Networks, 1991, 2(2):302-309.
    [193] K. Li, J. Peng, G. W. Irwin. A fast nonlinear model identification method [J]. IEEE Transactions on Automatic Control, 2005, 50(8): 1211-1216.
    [194] K. Li, J. Peng, E. W. Bai. A two-stage algorithm for identification of nonlinear dynamic systems [J]. Automatica, 2006, 42(7): 1189-1197.
    [195] S. L. Ho, M. R. Fei, W. N. Fu, H. C. Wong, E. W. C. Lo. Integrated RBF network based estimation strategy of the output characteristics of brushless DC motors [J]. IEEE Trans. Magnetics, 2002, 38(2): 1033-1036.
    [196] K. Z. Mao, G.-B. Huang. Neuron selection for RBF neural network classifier based on data structure preserving criterion [J]. IEEE Trans. Neural Netw, 2005, 16(6): 1531-1540.
    [197] Q. Xia, M. Y. Wang, X. J. Wu. Orthogonal least squares in partition of unity surface reconstruction with radial basis function [C]. Proceedings of the Geometric Modeling and Imaging-New Trends (GMAI’06), 2006: 2604-2607.
    [198] D. Burshtein, E. Weinstein. Some Relations between the various criteria for autoregressive model order determination [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 1017-1019.
    [199] K. Z. Mao, S. A. Billings. Algorithms for minimal model structure detection in nonlinear dynamic system identification [J]. International Journal of Control, 1997, 68(2): 311-330.
    [200] S. Chen, S. A. Billings, W. Luo. Orthogonal least squares methods and their application to nonlinear system identification [J]. International Journal of Control, 1989, 50(5): 1873-1896.
    [201] H. Peng, T. Ozaki, V. haggan-Ozaki, Y. Toyoda. A parameter optimization method for radial basis function type models [J]. IEEE Transactions on Neural Networks, 2003, 14(2): 432-438.
    [202] K. S. Narendra, K. Parthasarathy. Identification and conttol of dynamical systems using neural networks [J]. IEEE Transactions Neural Networks, 1990, 1(1): 4-27.
    [203] G. M. Abdelnour, C. H. Chang, F. H. Huang, J.Y. Cheung. Design of a Fuzzy Controller Using Input and Output Mapping Factors [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(5): 952-960.
    [204]陈善本,吴林,张铨,张福恩.具有时滞的不确定性系统神经网络模糊自学习控制[J].控制理论与应用, 1996, 13(3): 347-355.
    [205]易军.针对不确定非线性对象的网络学习控制系统研究[D],上海,上海大学, 2007.
    [206] S. A. Dyer, X. He. Cubic-spline interpolation: Part2 [J]. IEEE Instrumentation and Measurement Magazine, 2001, 4(2): 34-36.
    [207] Y. Bai, H. Q. Zhuang. On the comparison of bilinear, cubic spline, and fuzzy interpolation techniques for robotic position measurements [J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2281-2288.
    [208] C. W. Anderson, D. C. Hittle, A. D. Katz, R. M. Kretchmar. Synthesis of reinforcement learning, neural networks and PI control applied to a simulated heating coil, [J]. Artificial Intelligence in Engineering, 1997, 11(4): 421-429.
    [209] T. Poggio, V. Torre, C. Koch. Computational vision and regularization theory [J]. Nature, 1985, 317: 314-319.
    [210] A. E. Hoerl, R. W. Kennard. Ridge regression: biased estimation for nonorthogonal problems [J]. Technometics, 1970, 12(1): 55-67.
    [211] M. T. Tipping. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001, 1: 211-244.
    [212] S. Chen. Local regularization assisted orthogonal least squares regression [J]. Neurocomputing , 2006, 69(4-6):559-585.
    [213] D. Burshtein, E. Weinstein. Some Relations between the various criteria for autoregressive model order determination [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 1017-1019.
    [214] M. Stone. Cross validatory choie and assessment of statistical preditions [J]. Journal of the Royal Statistical Society, Series B, 1974, 36: 117-147.
    [215] X. Hong, R. J. Mitchell, S. Chen, C. J. Harris, K. Li, G. W. Irwin. Model selection approaches for non-linear system identification: a review [J]. International Journal of Systems Science, 2008, 39(10): 925-946.
    [216] R. H. Myers. Classical and modern regression with applications [M]. PWS-KENT, Boston, 1990.
    [217] L. Ljung. System Identification: Theory for the User. Englewood Cliffs [M]. N.J.: Prentice-Hall.
    [218] X. Hong, P. M. Sharkey, K. Warwick. Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS static [J]. IEE Proc. Control Theory and Applications, 2003, 150(3): 245-254, 2003.
    [219]许建新,侯忠生.学习控制的现状与展望[J].自动化学报, 2005, 31(6): 943-955.
    [220]张汝波,顾国昌,刘照德,王醒策.强化学习理论、算法及应用[J].控制理论与应用, 2000, 17(5): 637-642.
    [221]蒋志明.电液位置伺服系统的再励学习控制研究[J].西安交通大学学报, 2000, 34(3): 66-69.
    [222]蒋志明,林廷圻.一种基于CMAC的自学习控制器[J].自动化学报, 2000, 26(4): 542-545.
    [223]郭晨,贾欣乐.基于神经网络与模糊逻辑的智能控制算法[J].大连海事大学学报, 1997, 23(1): 97-101.
    [224] P. M. Young, C. W. Anderson, D. C. Hittle, etc. Robust reinforcement learning control with static and dynamic stability [J]. International Journal of Robust and Nonlinear Control, 2001, 11(15): 1469-1500.
    [225] R. M. Kretchmar, P. M. Young, C. W. Anderson, etc.Robust reinforcement learning contol [C]. Proceedings of the Amefican Conference, 2001: 902-907.
    [226]高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报, 2004, 30(1): 86-100.
    [227] K. P. Leslie, L. L. Michael, W. M. Andrew. Reinforcement learning:a survey [J]. Journal of Artifical Intelligence Research, 1996, 4: 237-285.
    [228]阎平凡.人工神经网络与模拟进化计算[M].清华大学出版社.
    [229] C. J. H. Watkins. Q-learning [J]. Machine Learning, 1992, 8: 279-292.
    [230] R. M. Kretchmar. A synthesis of reinforcement learning and robust control theory [D], Colorado, Colorado Statee University, 2000.
    [231]雷必成.网络控制系统中控制与调度的协同设计[D],浙江,浙江工业大学, 2008.
    [232]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社.
    [233] K. C. Goh, L. Turan, M. G. Safonov, G. P. Papavassilopoulos, J. H. Ly. Baffine matrix inequality properties and computational methods [C]. Proceedings of the American Conference, Maryland, USA, 1994:850-855.
    [234]王常力,罗安.分布式控制系统(DCS)设计与应用实例[M].北京:电子工业出版社.
    [235] DCS主要产品对比分析[J].自动化信息, 2006, 10: 27-34, 38.
    [236]上海自动化仪表股份有限公司DCS公司. SUPMAX800分散控制系统用户手册.
    [237]陶永华,尹怡欣,葛芦生.新型PID控制系统及其应用[M].北京:机械工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700