基于隐马尔可夫模型的网络化控制系统建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络化控制系统是一种通过实时通信网络进行数据交换的分布式反馈控制系统。与传统的点对点控制系统相比,网络化控制系统具有减少系统布线、易于系统扩展和维护、增强系统灵活性和可靠性等优点。然而,由于网络带宽是有限的,导致数据在网络传输过程中不可避免地存在网络诱导时延。而且,由于受到网络负荷、节点竞争、网络堵塞等诸多表征网络状态的随机因素的影响,网络时延往往呈现出随机变化的特征。网络时延是导致网络化控制系统性能下降甚至不稳定的主要原因,寻找有效的网络时延建模方法在网络化控制系统建模与控制研究中占有重要地位。在这一背景下,本论文从网络时延受控于网络状态这一时延产生机理出发,引入离散时间隐马尔可夫模型对网络时延进行建模研究,并在此基础上研究仅存在前向网络短时延的网络化控制系统的建模与控制问题。具体内容包含以下几个方面:
     1.建立网络时延的离散时间隐马尔可夫模型,并在此基础上实现对当前采样周期内前向网络时延的预测。首先,分别采用平均量化法和K-均值聚类量化法对网络时延进行量化处理。然后,用网络状态构成隐含的马尔可夫链过程,用时延量化序列构成可见的观察过程,建立网络时延的离散时间隐马尔可夫模型,并采用不完全数据期望最大化算法对离散时间隐马尔可夫模型进行训练,得到模型参数的最优估计。最后,利用Viterbi算法估计与时延序列相对应的网络状态序列,并与离散时间隐马尔可夫模型参数相结合预测出当前采样周期内的前向网络时延。在平均量化下选择时延所在子区间的中点作为时延预测值,而在K-均值聚类量化下选择时延所在类的聚类中心作为时延预测值。
     2.基于网络时延的离散时间隐马尔可夫模型设计网络化控制系统的状态反馈控制器,补偿了网络时延对系统性能的影响。首先,根据网络状态的马尔可夫特性将网络化控制系统建模成一个典型的离散时间马尔可夫跳变线性系统。然后,借助马尔可夫跳变线性系统的随机稳定性理论得到网络化控制系统随机稳定的充分条件,并在受控对象状态完全反馈的情况下利用该充分条件设计状态反馈控制器。进一步利用Schur补引理将状态反馈控制器的设计问题转换成线性矩阵不等式的求解问题。由于状态反馈控制器的设计过程考虑了当前采样周期内前向网络时延的预测值,所以直接补偿了时延对系统性能的影响。最后,通过仿真实验验证了所设状态反馈控制器的有效性。
     3.在给定性能指标下,基于网络时延的离散时间隐马尔可夫模型设计网络化控制系统的最优控制器,获得了比状态反馈控制器更好的时延补偿效果。首先,将当前采样周期的受控对象状态和前一采样周期的控制律合并定义成一个增广状态,从而将网络化控制系统建模成一个增广状态系统模型。然后,基于贝尔曼动态规划原理设计系统在给定性能指标下的最优控制器,并且研究系统在该控制器下的指数均方稳定性问题。由于最优控制器的设计过程考虑了当前采样周期内前向网络时延的预测值,所以直接补偿了时延对系统性能的影响,而且补偿效果优于状态反馈控制器。最后,通过仿真实验验证了所设最优控制器的有效性和优越性。
     4.利用TrueTime1.5工具箱为网络化控制系统设计Matlab/Simulink环境下的仿真平台:NCS-SP。使用TrueTime1.5中的Kernel模块设计NCS-SP中的传感器、控制器、执行器和干扰节点,使用TrueTime1.5中的Network模块设计控制器到执行器之间的网络,使用Simulink中的State-Space模块设计受控对象阻尼复摆。在NCS-SP上验证了本论文关于网络时延的建模和预测算法以及用来补偿时延对系统影响的系统建模与控制器设计方法,并且通过对比实验验证了K-均值聚类量化法相对于平均量化法的优越性以及最优控制器相对于状态反馈控制器的优越性。
A networked control system (NCS) is a distributed feedback control system whose data is exchanged via a real-time communication network. Compared with conventional point-to-point control systems, the NCS has enormous advantages including reduced system wiring, simplified system expansion and maintenance, and improved system flexibility and reliability. However, due to the limited network bandwidth, there are inevitably network-induced delays when the data is transmitted in the network. Moreover, the delays are random since they are governed by many stochastic factors (e.g., network load, nodes competition, network congestion). All these factors can be collected to be defined as the network states which reflect the network status and determine the randomness of delays. In the NCS, the delays degrade the system performance and even cause the system instability. So, the studies of modeling methods for the delays are critical issues in the NCS. Under such a background, this thesis introduces the discrete-time hidden Markov model (DTHMM) to model the network delays, which is based on the mechanism that the network delays are governed by the network states. Furthermore, the modeling and control methods for the NCS with short delays in the forward network (denoted as forward delays) are studied. The main contents are as follows:
     1. Network-induced delays are modeled as a discrete-time hidden Markov model (DTHMM), and the forward delay in the current sampling period is predicted based on the DTHMM. First, the delays are quantized by using the uniform quantization method and the K-means clustering quantization method respectively. Then, the delays are modeled as a DTHMM, where the hidden Markov chain consists of the network states and the visible observation process consists of the quantized sequence of delays. The missing-data expectation maximization algorithm is used to train the DTHMM and derive the optimal estimation of the DTHMM parameters. Finally, the Viterbi algorithm is used to estimate the network state sequence corresponding to the quantized sequence of delays. Based on the estimated network state sequence and the derived DTHMM parameters, the forward delay in the current sampling period is predicted. Under the method of uniform quantization, the prediction is taken from the midpoint of the subinterval in which the forward delay falls, while under the method of K-means clustering quantization, the prediction is taken from the centroid of the cluster to which the forward delay belongs.
     2. Based on the DTHMM delay model, a state-feedback controller is designed to compensate for the effect of the delays on the NCS. First, the NCS is modeled as a typical discrete-time Markovian jump linear system (MJLS) according to the Markovian characteristics of the network states. Then, the sufficient conditions for the stochastic stability of the NCS are obtained by using the stochastic stability theory in the MJLS, and the state-feedback controller for the NCS with full state feedback is designed based on these sufficient conditions. Furthermore, the controller design problem is solved via the linear matrix inequality approach by using the Schur complement lemma. Since the prediction of the forward delay in the current sampling period is considered in the controller design, the effect of the delay on the NCS is compensated directly. Finally, simulation experiments are done to verify the validity of the state-feedback controller.
     3. Under some certain performance criteria, an optimal controller is designed for the NCS based on the DTHMM delay model. The effect of the delay on the NCS is better compensated by the optimal controller than by the state-feedback controller. First, the NCS is modeled as an augmented state system, where the augmented state consists of the plant state in the current sampling period and the control law in the previous sampling period. Then, the optimal controller under certain performance criteria is designed based on Bellman's dynamic programming principle. The optimal controller guarantees the exponential mean square stability of the NCS. Since the prediction of the forward delay in the current sampling period is considered in the optimal controller design, the effect of the delay on the NCS is compensated directly. Compared with the state-feedback controller, the optimal controller renders the NCS better performance. Finally, simulation experiments are done to verify the validity and superiority of the optimal controller.
     4. Based on TrueTime 1.5, a simulation platform named NCS-SP is designed for the NCS to work in Matlab/Simulink environment. The kernel block of TrueTime 1.5 is used to design the network nodes (e.g., sensor, controller, actuator, interference unit) on the NCS-SP. The network block of TrueTime 1.5 is used to design the network between the controller and the actuator on the NCS-SP. The state-space block of Simulink is used to design the plant (i.e. damped compound pendulum). The modeling and predictive methods for the network delays and the modeling and control methods for the NCS given in this thesis are all validated on the NCS-SP. Moreover, some contrastive simulation experiments are done to demonstrate the superiority of the K-means clustering quantization to the uniform quantization and the superiority of the optimal controller to the state-feedback controller.
引文
常玲芳,李惠光. 2006.随机最优非线性网络控制系统设计[J].电机与控制学报, 10(4): 435-439.
    程云鹏,张凯院,徐仲. 1999.矩阵论[M] .第2版.西安:西北工业大学出版社.
    顾洪军. 2001.网络控制系统建模及性能分析方法的研究[D]. [博士].北京:清华大学.
    纪志成,赵维一,谢林柏. 2006.δ算子下的网络控制系统最优控制方法[J].控制与决策, 21(12): 1349-1353, 1359.
    李洪波,孙增圻,孙富春. 2010.网络控制系统的发展现状及展望[J].控制理论与应用, 27(2): 238-243.
    李雯,戴金海. 2008.航天领域研究网络控制系统的必要性分析[J].航天控制, 26(5): 93-96.
    李祖欣,王万良,雷必成,陈惠英. 2007.网络控制系统中基于模糊反馈的消息调度[J].自动化学报, 33(11): 1229-1232.
    邱占芝,张庆灵. 2009.具有数据包丢失的奇异网络控制系统指数稳定性[J].控制与决策, 24(6): 837-842.
    宋洪波,俞立,张文安. 2007.存在通信约束和时延的多输入多输出网络控制系统镇定研究[J].信息与控制, 36(3): 334-339.
    孙海燕,侯朝桢. 2005.具有数据包丢失及多包传输的网络控制系统稳定性[J].控制与决策, 20(5): 511-515.
    孙连坤. 2009.网络化控制系统调度与控制协同设计[D]. [博士].天津:天津大学.
    王武,杨富文. 2007.随机时延网络化不确定系统的鲁棒H∞滤波[J].自动化学报, 33(5): 557-560.
    王武,林琼斌,蔡逢煌等. 2008.随机时延网络控制系统的H∞输出反馈控制器设计[J].控制理论与应用, 25(5): 920-924.
    杨业,王永骥. 2005.一类多包传输网络控制系统的设计及稳定性分析[J].信息与控制, 34(2): 129-132.
    尹逊和,李斌,宋永端,等. 2010.网络控制系统的变采样周期调度算法[J].北京交通大学学报, 34(5): 135-141.
    俞立. 2002.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社.
    俞立,吴玉书,宋洪波. 2010.具有随机长时延的网络控制系统保性能控制[J].控制理论与应用, 27(8): 985-990.
    于之训,蒋平,陈辉堂. 2000a.具有传输延迟的网络控制系统中状态观测器的设计[J].信息与控制, 39(2): 125-130.
    于之训,陈辉堂,王月娟. 2000b.具有随机通讯延迟和噪声干扰的网络系统控制[J].控制与决策, 15(5): 518-522.
    于之训,陈辉堂,王月娟. 2000c.时延网络控制系统均方指数稳定的研究[J].控制与决策, 15(3): 278-281.
    于之训,陈辉堂,王月娟. 2001.基于H∞和μ综合的闭环网络控制系统的设计[J].同济大学学报, 29(3): 308-311.
    于之训,陈辉堂,王月娟. 2002.基于Markov延迟特性的闭环网络控制系统研究[J].控制理论与应用, 19(2): 263-267.
    岳东,彭晨. 2007.网络控制系统的分析与综合[M].北京:科学出版社.
    张奇智,张卫东. 2006.网络控制系统中的时戳预测函数控制[J].控制理论与应用, 23(1): 126-130.
    朱其新,胡寿松,刘亚. 2004.无限时间长时延网络控制系统的随机最优控制[J].控制理论与应用, 21(3): 321-326.
    Aberkane S, Ponsart JC, Sauter D. 2008. Output-feedback H2/H∞control of a class of networked fault tolerant control systems[J]. Asian Journal of Control, 10(1): 34-44.
    Andersson M, Henriksson D, Cervin A. 2005. TrueTime 1.3—Reference Manual[EB/OL]. Sweden: Lund University. http://www.control.lth.se/truetime/.
    (?)str(o|¨)m KJ. 1970. Introduction to stochastic control theory[M]. New York: Academic Press. Baum LE, Petrie T, Soules G, et al. 1970. A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains[J]. The Annals of Mathematical Statistics, 41(1): 164-171.
    Bellegarda JR, Nahamoo D. 1989. Tied mixture continuous parameter models for large vocabulary isolated speech recognition[C]. Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, 13-16.
    Branicky MS, Philips SM, Zhang W. 2000. Stability of networked control systems: explicit analysis of delay[C]. Proceedings of 2000 American Control Conference, 2352-2357.
    Cervin A, Henriksson D, Lincoln B, et al. 2003. How Does Control Timing Affect Performance? Analysis and Simulation of Timing Using Jitterbug and TrueTime[J]. IEEE Control Systems Magazine, 23(3): 16-30.
    Cervin A, Henriksson D, Ohlin M. 2010. TrueTime 2.0 beta 5 - Reference Manual[EB/OL]. Sweden: Lund University. http://www.control.lth.se/truetime/.
    Cervin A, Ohlin M, Henriksson D. 2007. Simulation of networked control systems using truetime[C]. Proceedings of the 3rd International Workshop on Networked Control Systems: Tolerant to Faults.
    Chen CC, Hirche S, Buss M. 2008. Stability, stabilization and experiments for networked control systems with random time delay[C]. Proceedings of 2008 American Control Conference, 1552-1557.
    Chen ZS, He Y, Wu M. 2010. Robust fuzzy tracking control for nonlinear networked control systems with integral quadratic constraints[J]. International Journal of Automation and Computing, 7(4): 492-499.
    Cong S, Zheng H. 2009. Modelling and performance analysis of networked control systems under different driven modes[J]. International Journal of Computer Applications in Technology, 34(3): 192-198.
    Dang XD, Zhang QL. 2010. Exponential stability for singular networked control system with dynamical state feedback[C]. Proceedings of 2010 Chinese Control and Decision Conference, 1904-1909.
    Ding J, Li LX, Fei MR. 2008. Design and development of real-time simulation experimentation for networked control systems[J]. Journal of System Simulation, 20(19): 5094-5098.
    Dominguez MA, Marino P, Poza F, et al. 2007. Design of a networked control system to integrated vehicular electronic devices[C]. Proceedings of 2007 IEEE International Symposium on Industrial Electronics, 2870-2875.
    Dritsas L, Tzes A. 2009. Robust stability bounds for networked controlled systems with unknown, bounded and varying delays[J]. IET Control Theory and Applications, 3(3): 270-280.
    Fang X, Wang J. 2008. Stochastic observer-based guaranteed cost control for networked control systems with packet dropouts[J]. IET Control Theory and Applications, 2(11): 980-989.
    Feng X, Loparo KA, Ji Y, et al. 1992. Stochastic stability properties of jump linear systems[J]. IEEE Transactions on Automatic Control, 37(1): 38-53.
    Gaid MEMB, Cela A, Hamam Y. 2006. Optimal integrated control and scheduling of networked control systems with communication constraints: application to a car suspension system[J]. IEEE Transaction on Control Systems Technology, 14(4): 776-787.
    Gajate AM, Guerra REH. 2009. Internal model control based on a neurofuzzy system for network applications. A case study on the high-performance drilling process[J]. IEEE Transactions on Automation Science and Engineering, 6(2): 367-372.
    Ge Y, Chen QG, Jiang M, et al. 2008. Stability Analysis of Networked Control Systems with Data Dropout and Transmission Delays[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, 7986-7991.
    Goktas F. 2000. Distributed control of systems over communication networks[D]. [Ph.D.] USA: University of Pennsylvania.
    Guerrero C. 2010. Available bandwidth estimation: A hidden Markov model approach[M]. Germany: LAMBERT Academic Publishing.
    Guo XL, Wang H. 2009. Stochastic optimal control based on variable-period sampling model for Networked Control Systems with random delays[C]. Proceedings of the 21st Chinese Control and Decision Conference, 5582-5586.
    Guo YF, Li SY. 2010a. Transmission probability condition for stabilisability of networked control systems[J]. IET Control Theory and Applications, 4(4): 672-682.
    Guo YF. Li SY. 2010b. A new networked predictive control approach for systems with random network delay in the forward channel[J]. International Journal of Systems Science, 41(5):511-520.
    Halevi Y, Ray A. 1988. Integrated communication and control systems: Part I– Analysis[J]. Journal of Dynamic Systems, Measurement and Control, 110(4): 367-373.
    Hasan MS, Yu H, Griffiths A, et al. 2007. Simulation of distributed wireless networked control systems over MANET using OPNET[C]. Proceedings of 2007 IEEE International Conference on Networking, Sensing and Control, 699-704.
    He X, Wang ZD, Zhou DH. 2009. Robust fault detection for networked systems with communication delay and data missing[J]. Automatica, 45(11): 2634-2639.
    Henriksson D, Cervin A. 2003. TrueTime 1.1—Reference Manual[EB/OL]. Sweden: Lund University. http://www.control.lth.se/truetime/.
    Henriksson D, Cervin A. 2004. TrueTime 1.2—Reference Manual[EB/OL]. Sweden: Lund University. http://www.control.lth.se/truetime/.
    Hirai K, Satoh Y. 1980. Stability of a system with variable time delay[J]. IEEE Transactions on Automatic Control, 25(3): 552-554.
    Hu S, Yan WY. 2007. Stability robustness of networked control systems with respect to packet loss[J]. Automatica, 43(7): 1243-1248.
    Hu SS, Zhu QX. 2003. Stochastic optimal control and analysis of stability of networked control systems with long delay[J]. Automatica, 39(11): 1877-1884.
    Hu S, Yan WY. 2008. Stability of networked control systems under a multiple-packet transmission policy[J]. IEEE Transactions on Automatic Control, 53(7): 1706-1711.
    Huang CZ, Bai Y, Liu XJ. 2010. H-infinity state feedback control for a class of networked cascade control systems with uncertain delay[J]. IEEE Transactions on Industrial Informatics, 6(1): 62-72.
    Huang D, Nguang SK. 2008a. State feedback control of uncertain networked control systems with random time delays[J]. IEEE Transactions on Automatic Control, 53(3): 829-834.
    Huang D, Nguang SK. 2008b. Robust disturbance attenuation for uncertain networked control systems with random time delays[J]. IET Control Theory and Applications, 2(11): 1008-1023.
    Huang XD. 1989. Semi-continuous hidden Markov models for speech recognition[D]. [Ph.D.]. England: University of Edinburgh.
    Huo ZH, Fang HJ. 2007. Research on robust fault-tolerant control for networked control system with packet dropout[J]. Journal of Systems Engineering and Electronics, 18(1): 76-82.
    Ji Y, Chizeck HJ. 1990. Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control[J]. IEEE Transactions on Automatic Control, 35(7): 777-788.
    Jia XC, Zhang DW, Hao XH, et al. 2009. Fuzzy H∞tracking control for nonlinear networked control systems in T-S fuzzy model[J]. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 39(4): 1073-1079.
    Jiang B, Mao ZH, Shi P. 2010. H∞-filter design for a class of networked control systems via T-S fuzzy-model approach[J]. IEEE Transactions on Fuzzy Systems, 18(1): 201-208.
    Jiang XF, Han QL, Liu SR, et al. 2008. A new H∞stabilization criterion for networked control systems[J]. IEEE Transactions on Automatic Control, 53(4): 1025-1032.
    Kim DK, Ko JW, Park P. 2002. Stabilization of the asymmetric network control system using a deterministic switching system approach[C]. Proceedings of the 41st IEEE Conference on Decision and Control, 1638-1642.
    Kim DK, Park PG, Ko JW. 2004. Output-feedback H∞control of systems over communication networks using a deterministic switching system approach[J]. Automatica, 40(7): 1205-1212.
    Kim JM, Park JB, Choi YH. 2010. Stochastic observer based H∞control of networked systems with packet dropouts[C]. Proceedings of 2010 International Conference on Control Automation and Systems, 2524-2528.
    Kim SH, Park PG. 2009. Networked-based robust H∞control design using multiple levels of network traffic[J]. Automatica, 45(3): 764-770.
    Kim WJ, Ji K, Ambike A. 2005. Networked real-time control strategies dealing with stochastic time delays and packet losses[C]. Proceedings of 2005 American Control Conference, 621-626.
    Kim YH, Phong LD, Park WM, et al. 2009. Laboratory-level telesurgery with industrial robots and haptic devices communicating via the internet[J]. International Journal of Precision Engineering and Manufacturing. 10(2): 25-29.
    Kolberg M, Magill EH. 2006. Using pen and paper to control networked appliances[J]. IEEE Communications Magazine, 44(11): 148-154.
    Koski T. 2001. Hidden Markov models of bioinformatics[M]. Netherlands: Kluwer Academic Publishers.
    Krassovskii NN, Lidskii EA. 1961a. Analytical design of controllers in systems with random atrributes I[J]. Automation and Remote Control, 22(1): 1021-1025.
    Krassovskii NN, Lidskii EA. 1961b. Analytical design of controllers in systems with random atrributes II[J]. Automation and Remote Control, 22(2): 1141-1146.
    Krassovskii NN, Lidskii EA. 1961c. Analytical design of controllers in systems with random atrributes III[J]. Automation and Remote Control, 22(3): 1289-1294.
    Li HB, Chow MY, Sun ZQ. 2009a. Optimal stabilizing gain selection for networked control systems with time delays and packet losses[J]. IEEE Transactions on Control Systems Technology, 17(5): 1154-1162.
    Li HB, Chow MY, Sun ZQ. 2009b. State feedback stabilisation of networked control systems[J]. IET Control Theory and Applications, 3(7): 929-940.
    Li J, Najmi A, Gray RM. 2000. Image classification by a two dimensional hidden Markov model[J]. IEEE Transactions on Signal Processing, 48(2): 517-533.
    Li JG, Yuan JQ, Lu JG. 2010. Observer-based H∞control for networked nonlinear systems with random packet losses[J]. ISA Transactions, 49(1): 39-46.
    Li JN, Zhang QL, Xie YH. 2008. Robust H∞control of uncertain networked control systems with dropout compensation and Markov jumping parameters[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, 7970-7975.
    Li JN, Zhang QL, Wang YL, et al. 2009. H∞control of networked control systems with packet disordering[J]. IET Control Theory and Applications, 3(11): 1463-1475.
    Li L, Ugrinovskii VA. 2007. On necessary and sufficient conditions for H∞output feedback control of Markov jump linear systems[J]. IEEE Transactions on Automatic Control, 52(7): 1287-1292.
    Lian FL. 2001. Analysis, design, modeling, and control of networked control system[D]. [Ph.D.]. USA: University of Michigan.
    Lian FL, Moyne J, Tiblury D. 2002a. Optimal controller design and evaluation for a class of networked control systems with distributed constant delays[C]. Proceedings of 2002 American Control Conference, 3009-3014.
    Lian FL, Moyne J, Tilbury D. 2002b. Network design consideration for distributed control systems[J]. IEEE Transactions on Control System Technology, 10(2): 297-307.
    Lian FL, Moyne J, Tilbury D. 2003. Modelling and optimal controller design of networked control systems with multiple delays[J]. International Journal of Control, 76(5): 591-606.
    Lim D, Anbuky A. 2004. A distributed industrial battery management network[J]. IEEE Transactions on Industrial Electronics, 51(6): 1181-1193.
    Lin T, Ran YH, Liu JH. 2009. Research of scheduling and control co-design of networked control systems[C]. Proceedings of the 2nd International Conference on Intelligent Networks and Intelligent Systems, 201-204.
    Lincoln B, Bemhardsson B. 2000. Optimal control over networks with long random delays[C]. Proceedings of the 14th International Symposium on Mathematical Theory of Networks and Systems, 84-90.
    Ling Q, Lemmon MD. 2002. Robust performance of soft real-time networked control systems with data dropouts[C]. Proceedings of the 41st IEEE Conference on Decision and Control, 1225-1230.
    Liou LW, Ray A. 1990. Integrated communication and control systems: Part III– Nonidentical sensor and controller sampling[J]. Journal of Dynamic Systems, Measurement and Control, 112(3): 357-364.
    Liou LW, Ray A. 1991a. A stochastic regulator for integrated communication and control systems: Part I– Formulation of control law[J]. Journal of Dynamic Systems, Measurement and Control, 113(4): 604-611.
    Liou LW, Ray A. 1991b. A stochastic regulator for integrated communication and control systems: Part II– Numerical analysis and simulation[J]. Journal of Dynamic Systems, Measurement and Control, 113(4): 612-619.
    Liu FC, Yao Y. 2005. Modeling and analysis of networked control systems using hidden Markov models[C]. Proceedings of the 4th International Conference on Machine Learning and Cybernetics, 928-931.
    Liu GP, Mu J, Rees D. 2004. Networked predictive control of systems with random communications delay[C]. Proceedings of 2004 UKACC International Conference on Control.
    Liu GP, Mu JX, Rees D, et al. 2006. Design and stability analysis of networked control systems with random communication time delay using the modified MPC[J]. International Journal of Control, 79(4): 287-296.
    Liu GP, Xia YQ, Rees D, et al. 2007a. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel[J]. IEEE Transactions on Systems, Man and Cybernetics– Part C, 37(2): 173-184.
    Liu GP, Xia YQ, Chen J, et al. 2007b. Networked predictive control of systems with random network delays in both forward and feedback channels[J]. IEEE Transactions on IndustrialElectronics, 54(3): 1282-1297.
    Liu GP, Chai SC, Mu JX, et al. 2008. Networked predictive control of systems with random delay in signal transmission channels[J]. International Journal of Systems Science, 39(11): 1055-1064.
    Liu JG, Liu BY, Zhang RF, et al. 2007. The new variable-period sampling scheme for networked control systems with random time delay based on BP neural network prediction[C]. Proceedings of the 26th Chinese Control Conference, 81-83.
    Liu LM, Shan LQ, Tong CN. 2009. Delay-quantization and augmented controller vector method of networked control systems modeling[C]. Proceedings of the 1st International Workshop on Education Technology and Computer Science, 278-282.
    Liu N, Liu H, Fei SM. 2007. Optimal tasks and messages scheduling for asynchronous networked control systems[C]. Proceedings of the 2007 IEEE International Conference on Automation and Logistics, 2329-2333.
    Liu Y, Sun DQ. 2010. Delay-dependent H∞stabilisation criterion for continuous-time networked control systems with random delays[J]. International Journal of Systems Science, 41(11): 1399-1410.
    Luck R, Ray A. 1990a. Delay Compensation in integrated communication and control systems: part I - Conceptual development and analysis[C]. Proceedings of 1990 American Control Conference, 2045-2050.
    Luck R, Ray A. 1990b. Delay Compensation in integrated communication and control systems: part II - Implementation and verification[C]. Proceedings of 1990 American Control Conference, 2051-2055.
    Luck R, Ray A. 1990c. An observer-based compensator for distributed delays[J]. Automatica, 26(5): 903-908.
    Luck R, Ray A. 1994. Experimental verification of a delay compensation algorithm for integrated communication and control systems[J]. International Journal of Control, 59(6): 1357-1372.
    Luo DD, Wang ZW, Guo G. 2008. Stability of model-based networked control systems with multi-rate input sampling[C]. Proceedings of the 20th Chinese Control and Decision Conference, 348-351.
    Luo RC, Chen TM. 2000. Development of a multi-behavior based mobile robot for remote supervisory control through the internet[J]. IEEE/ASME Transactions on Mechatronics, 5(4): 376-385.
    Ma CL, Fang HJ. 2007. Stochastic stabilization analysis of networked control systems[J]. Journal of Systems Engineering and Electronics, 18(1): 137-141.
    Ma CL, Fang HJ. 2009. Research on stochastic control of networked control systems[J]. Communications in Nonlinear Science and Numerical Simulation, 14(2): 500-507.
    Ma WG, Shao C. 2008. Robust H∞control for networked control systems[J]. Journal of Systems Engineering and Electronics, 19(5): 1003-1009.
    Ma ZP, Cui DG, Cheng P. 2004. Dynamic network flow model for short-term air traffic flow management[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(3): 351-358.
    MacQueen J. 1967. Some methods for classification and analysis of multi-variate observations[C]. Proceedings of the 5th Berkeley Symposium on Mathematics Statistic Problem, 281-297.
    Mamon RS, Elliott RJ. 2007. Hidden Markov models in finance[M]. New York: Springer Verlag. Mao ZH, Jiang B, Shi P. 2010. Fault detection for a class of nonlinear networked control systems[J]. International Journal of Adaptive Control and Signal Processing, 24(7): 610-622.
    Mastellone S, Abdallah CT, Dorato P. 2005. Model-based networked control for nonlinear systems with stochastic packet dropout[C]. Proceedings of 2005 American Control Conference, 2365-2370.
    Moayedi M, Foo YK, Soh YC. 2011. Filtering for networked control systems with single/multiple measurement packets subject to multiple-step measurement delays and multiple packet dropouts[J]. International Journal of Systems Science, 42(3): 335-348.
    Montestruque LA, Antsaklis PJ. 2003. On the model-based control of networked systems[J]. Automatica, 39(10): 1837-1843.
    Mueller JB, Zhao YY. 2008. Distributed real-time optimization across airborne networks[C]. Proceedings of 2008 IEEE Aerospace Conference, 1-12.
    Murray RM, Astrom KJ, Boyd SP, et al. 2003. Future direction in control in an information-rich world[J]. IEEE Control Systems Magazine, 23(2): 20-33.
    Nilsson J, Bernhardsson B. 1997. LQG control over a Markov communication network[C]. Proceedings of the 36th IEEE Conference on Decision and Control, 4586-4591.
    Nilsson J, Bernhardsson B, Wittenmark B. 1998a. Stochastic analysis and control of real-time systems with random time delays[J]. Automatica, 34(1): 57-64.
    Nilsson J. 1998b. Real-time control systems with delays[D]. [Ph.D.]. Sweden: Lund Institute of Technology.
    Oh PY. 2008. Motor-propeller damped compound pendulum[EB/OL]. USA: Drexel University. http://prism2.mem.drexel.edu/~paul/thrustTester/thrustTester.html/. Ohlin M, Henriksson D, Cervin A. 2006. TrueTime 1.4—Reference Manual[EB/OL]. Sweden: Lund University. http://www.control.lth.se/truetime/.
    Ohlin M, Henriksson D, Cervin A. 2007. TrueTime 1.5– Reference manual[EB/OL]. Sweden: Lund University. http://www.control.lth.se/truetime/.
    Otanez PG, Moyne JR, Tilbury DM. 2002. Using deadbands to reduce communication in networked control systems[C]. Proceedings of 2002 American Control Conference, 3015-3020.
    Park HS, Lee SW. 1998. A truly 2-D hidden Markov model for off-line handwritten character recognition[J]. Pattern Recognition, 31(12): 1849-1864.
    Qiu L, Xu BG, Li SB. 2010. Stability analysis and controller design for networked control systems based on hidden Markov model[C]. Proceedings of the 8th IEEE International Conference on Control and Automation, 1316-1320.
    Rabiner LR. 1989. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 77(2): 257-286.
    Ray A, Halevi Y. 1988a. Integrated communication and control systems: Part II– Design consideration[J]. Journal of Dynamic Systems, Measurement and Control, 110(4): 374-381.
    Ray A. 1988b. Distributed data communication networks for real time process control[J]. Chemical Engineering Communications, 65(2): 139-154.
    Rayman R, Primak S, Eagleson R. 2009. Effects of network delay on training for telegurgery[C]. Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 63-67.
    Sadeghi P, Kennedy R, Rapajic P, et al. 2008. Finite-state Markov modeling of fading channels– a survey of principles and applications[J]. IEEE Signal Processing Magazine, 25(5): 57-80.
    Sauter D, Li SB, Aubrun C. 2009. Robust fault diagnosis of networked control systems[J]. International Journal of Adaptive Control and Signal Processing, 23(8): 722-736.
    Seiler P, Sengupta R. 2001. Analysis of communication losses in vehicle control problem[C]. Proceedings of 2001 American Control Conference, 1491-1496.
    Shi Y, Yu B. 2009a. Output feedback stabilization of networked control systems with random delays modeled by Markov chains[J]. IEEE Transactions on Automatic Control, 54(7): 1668-1674.
    Shi Y, Yu B, Huang J. 2009b. Mixed H2/H∞control of networked control systems with random delays modeled by Markov chains[C]. Proceedings of 2009 American Control Conference, 4038-4043.
    Tan PN, Steinbach M, Kumar V. 2005. Introduction to data mining[M]. USA: Addison-Wesley. Tipsuwan Y, Chow MY. 2001. Network-based controller adaptation based on QoS negotiation and deterioration[C]. Proceeding of the 27th annual conference of the IEEE industrial electronicssociety, 1794-1799.
    Tipsuwan Y, Chow MY. 2002. Gain adaptation of networked mobile robot to compensate QoS deterioration[C]. Proceeding of the 28th annual conference of the IEEE industrial electronics society, 3146-3151.
    Tipsuwan Y, Chow MY. 2003. Control methodologies in networked control systems[J]. Control Engineering Practice, 11(10): 1099-1111.
    Vatanski N, Georges JP, Aubrun C, et al. 2009. Networked control with delay measurement and estimation[J]. Control Engineering Practice, 17(2): 231-244.
    Viterbi AJ. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[J]. IEEE Transactions on Information Theory, 13(2): 260-269.
    Walsh GC, Ye H, Bushnell LG. 1999. Stability analysis of networked control systems[C]. Proceedings of 1999 American Control Conference, 2876-2880.
    Walsh GC, Ye H. 2001a. Scheduling of networked control systems[J]. IEEE Control System Magazine, 21(1): 57-65.
    Walsh GC, Beldiman O, Bushnell LG. 2001b. Asymptotic behavior of nonlinear networked control systems[J]. IEEE Transactions on Automatic Control, 46(7): 1093-1097.
    Walsh GC, Ye H, Bushnell LG. 2002a. Stability analysis of networked control systems[J]. IEEE Transactions on Control Systems Technology, 10(3): 438-446.
    Walsh GC, Beldiman O, Bushnell LG. 2002b. Error encoding algorithms for networked control systems[J]. Automatica, 38(2): 261-267.
    Wang QF, Chen H. 2008. H∞control of networked control system with long time delay[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, 5457-5462.
    Wang R, Liu GP, Wang B, et al. 2009. L2-gain analysis for networked predictive control systems based on switching method[J]. International Journal of Control, 82(6): 1148-1156.
    Wang R, Wang B, Liu GP, et al. 2010a. H∞controller design for networked predictive control systems based on the average dwell-time approach[J]. IEEE Transactions on Circuits and Systems– II: Express Briefs, 57(4): 310-314.
    Wang R, Liu GP, Wang W, et al. 2010b. H∞control for networked predictive control systems based on the switched Lyapunov function method[J]. IEEE Transactions on Industrial Electronics, 57(10): 3565-3571.
    Wang W, Cai FH, Yang FW. 2010. An H2 approach for networked control systems with multiple packet dropouts[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation, 1277-1282.
    Wang Y, Sun ZQ. 2007. H∞control of networked control systems via LMI approach[J].International Journal of Innovative Computing, Information and Control, 3(2): 343-352.
    Wang YL, Yang GH. 2007a. H∞control of networked control systems with delay and packet disordering via predictive method[C]. Proceedings of 2007 American Control Conference, 1021-1026.
    Wang YL, Yang GH. 2007b. H∞control of networked control systems with time delay and packet disordering[J]. IET Control Theory and Applications, 1(5): 1344-1354.
    Wang ZD, Yang FW, Ho DWC, et al. 2007. Robust H∞control for networked systems with random packet losses[J]. IEEE Transactions on Systems, Man, and Cybernetics– Part B: Cybernetics, 37(4): 916-924.
    Wei W, Wang B, Towsley D. 2002. Continuous-time hidden Markov models for network performance evaluation[J]. Performance Evaluation, 49(1-4): 129-146.
    Wei Z, Li CH, Xie JY. 2002. Improved control scheme with online delay evaluation for networked control systems[C]. Proceedings of the 4th World Congress on Intelligent Control and Automation, 1319-1323.
    Wen DL, Gao Y. 2008. Networked control systems in multiple-packet transmission[C]. Proceedings of 2008 Chinese Control and Decision Conference, 423-426.
    Wu D, Wu J, Chen S. 2010. Robust H∞control for networked control systems with uncertainties and multiple-packet transmission[J]. IET Control Theory and Applications, 4(5): 701-709.
    Wu J, Chen TW. 2007. Design of networked control systems with packet dropouts[J]. IEEE Transactions on Automatic Control, 52(7): 1314-1319.
    Wu J, Deng FQ. 2006. Finite horizon optimal control of networked control systems with Markov delays[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, 4513-4517.
    Wu J, Zhang LQ, Chen TW. 2009. Model predictive control for networked control systems[J]. International Journal of Robust and Nonlinear Control, 19(9): 1016-1035.
    Xia Y, Liu GP, Fu M, et al. 2009. Predictive control of networked systems with random delay and data dropout[J]. IET Control Theory and Applications, 3(11): 1476-1486.
    Xiao L, Hassibi A, How JP. 2000. Control with random communication delays via a discrete-time jump system approach[C]. Proceedings of 2000 American Control Conference, 2199-2204.
    Xiong JL, Lam J. 2007. Stabilization of linear systems over networks with bounded packet loss[J]. Automatica, 43(1): 80-87.
    Yang C, Guan ZH, Huang J, et al. 2010. Design of stochastic switching controller of networked control systems based on greedy algorithm[J]. IET Control Theory and Applications, 4(1): 164-172.
    Yang CX, Guan ZH, Huang J, et al. 2008. Stochastic controlling tolerable fault of Network Control Systems[C]. Proceedings of 2008 American Control Conference, 1979-1984.
    Yang FW, Wang ZD, Hung YS, et al. 2006. H∞control for networked systems with random communication delays[J]. IEEE Transactions on Automatic Control, 51(3): 511-518.
    Yaz E. 1988. Control of randomly varying system with predescribed degree of stability[J]. IEEE Transactions on Automatic Control, 33(4): 407-410.
    Yorke JA. 1970. Asymptotic stability for one dimensional differential delay equations[J]. Journal of Differential Equations, 7(1): 189-202.
    Yu B, Shi Y. 2008. State feedback stabilization of networked control systems with random time delays and packet dropout[C]. Proceedings of 2008 ASME Dynamic Systems and Control Conference, 127-133.
    Yu M, Wang L, Chu TG, et al. 2004. Stabilization of networked control systems with data packet dropout and network delays via switching system approach[C]. Proceedings of the 43rd IEEE Conference on Decision and Control, 3539-3544.
    Yue D, Han QL, Lam J. 2005. Network-based robust H∞control of systems with uncertainty[J]. Automatica, 41(6): 999-1007.
    Zeiger F, Schmidt M, Schilling K. 2009. Remote experiments with mobile-robot hardware via internet at limited link capacity[J]. IEEE Transactions on Industrial Electronics, 56(12): 4798-4805.
    Zhang LQ, Shi Y, Chen TW, et al. 2005. A new method for stabilization of networked control systems with random delays[J]. IEEE Transactions on Automatic Control, 5(8): 1177-1181.
    Zhang W, Branicky MS, Phillips SM. 2001. Stability of networked control systems[J]. IEEE Control Systems Magazine, 21(1): 84-99.
    Zhang WA, Yu L. 2007. Output feedback stabilization of networked control systems with packet dropouts[J]. IEEE Transactions on Automatic Control, 52(9): 1705-1710.
    Zhang WA, Yu L. 2010. Output feedback guaranteed cost control of networked linear systems with random packet losses[J]. International Journal of Systems Science, 41(11): 1313-1323.
    Zhang Y, Tang GY. 2009. Feedforward and feedback optimal control for networked control systems with long time-delay[C]. Proceedings of the 21st Chinese Control and Decision Conference, 582-587.
    Zhang Y, Wang SQ. 2006. Delay-loss estimation and control for networked control systems based on hidden Markov models[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, 4415-4419.
    Zhao YB, Liu GP, Rees D. 2008a. A predictive control-based approach to networked Hammersteinsystems: design and stability analysis[J]. IEEE Transactions on Systems, Man, and Cybernetics– Part B: Cybernetics, 38(3): 700-708.
    Zhao YB, Liu GP, Rees D. 2008b. A predictive control based approach to networked Wiener systems[J]. International Journal of Innovative Computing, Information and Control, 4(11): 2793-2802.
    Zhao YB, Liu GP, Rees D. 2008c. Improved predictive control approach to networked control systems[J]. IET Control Theory and Applications, 2(8): 675-681.
    Zhao YB, Liu GP, Rees D. 2009a. Modeling and stabilization of continuous-time packet-based networked control systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(6): 1646-1652.
    Zhao YB, Liu GP, Rees D. 2009b. Design of a packet-based control framework for networked control systems[J]. IEEE Transactions on Control Systems Technology, 17(4): 859-865.
    Zhao YB, Liu GP, Rees D. 2010. Actively compensating for data packet disorder in networked control systems[J]. IEEE Transactions on Circuits and Systems–Ⅱ: Express Briefs, 57(11): 913-917.
    Zheng Y, Fang HJ, Wang HO. 2006. Takagi-Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays[J]. IEEE Transactions on Systems, Man, and Cybernetics– Part B: Cybernetics, 36(4): 924-929.
    Zhu QX, Liu GP, Cao JY, et al. 2005. Stability analysis of networked control systems with Markov delay[C]. Proceedings of 2005 International Conference on Control and Automation, 720-724.
    Zhu XL, Yang GH. 2009. State feedback controller design of networked control systems with multiple-packet transmission[J]. International Journal of Control, 82(1): 86-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700