多智能体系统分布式预测控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多智能体系统是控制理论和人工智能的一个前沿学科,其研究核心是寻求一种有效的方法使功能独立的智能体通过协作完成复杂的控制任务或解决复杂的问题。多智能体系统由多个空间分布的,具有独立动态特性智能体(子系统)组成,如多卫星系统、多机器人系统、多飞行器系统。智能体在网络化环境下相互协作共同完成系统级目标任务。智能体之间的协作主要体现在两个方面:与其它智能体拥有一个共同的目标;在实现目标的过程中在线共享信息。智能体具有的功能独立性(自治性)主要体现在能够独立地采集周围环境信息和其它智能体信息,并与其它智能体通信,计算并完成控制动作以达到自身的子目标。
     与其它控制方法相比,预测控制根据系统目标和工作环境变化,重新定义代价函数和约束条件,并使智能体在约束边界条件下工作,从而能够得到更好的控制效果,受到多智能体系统控制领域的青睐。然而集中式预测控制方法不能简单推广到分布式情形。在分布式控制中,智能体之间的代价函数耦合、耦合约束、有限通信条件约束(通信失效)等问题会引起智能体的独立控制行为发生冲突,影响智能体控制行为的一致性和系统全局稳定性。所以如何避免多智能体系统控制的冲突,提高控制行为的一致性和协作效率,成为多智能体系统控制的一个重要研究内容,在实际应用中有着重要的意义。
     本论文针对多智能体系统在全局代价函数耦合、耦合约束、通信失效情况下的控制问题开展了分布式预测方法研究。论文主要工作如下。
     针对代价函数耦合情况下的多智能体系统分布式控制问题,研究了基于相容约束和偏差惩罚的分布式预测控制方法。此方法分析了多智能体集中式全局代价函数的分解方法,得到了智能体分布式局部代价函数,构建了有限时域分布式预测控制问题,并为各智能体设计了不同的、时变的相容约束条件,在各智能体局部代价函数中加入设定状态轨迹和预测状态轨迹之间偏差函数项,对偏差进行惩罚,且在各采样时刻使各智能体的相容约束条件相对于前一时刻更强。与传统方法一样,采用性能代价函数作为李亚普洛夫函数分析了闭环稳定性。
     针对耦合约束情况下的多智能体系统分布式控制问题,研究了耦合约束条件的分布式预测控制方法。利用相容约束条件,将耦合约束处理为非耦合约束,并推广到避碰约束和通信距离约束等典型的耦合约束情况,分析了耦合约束成立的充分条件,证明了此方法的可行性和稳定性条件。
     针对多智能体系统复杂协调控制问题,研究了基于动态协调的混杂分布式预测控制方法,将智能体之间的避碰约束处理为基于方位的混杂规则,并在代价函数中引入布尔函数项。为适应复杂时变的协调控制问题,在每个采样时刻,根据各智能体当前位置和目标位置,设计动态协调规则以确定布尔函数项的权值,实现智能体之间的协调。
     针对带通信完全失效的多智能体系统分布式控制问题,研究了双模分布式预测控制方法。此方法将基于相容约束条件分布式预测控制方法和带邻居智能体状态优化的分布式预测控制方法相结合,在正常通信时,基于相容约束条件分布式预测控制方法中,智能体之间通过通信得到邻居智能体的设定状态轨迹;而在通信完全失效时,通过探测方式得到邻居智能体在预测时域的位置和速度信息,将基于邻居智能体状态的预测纳入智能体优化问题中,得到基于邻居智能体状态优化的分布式预测控制问题,从而实现带通信失效情况下的双模分布式预测控制问题。
Multi-agent systems is the forum of control theory and artificial intelligence in which the central interest is to construct a kind of effective cooperation mechanism which enables function independent agent to achieve a complex controlling task, or solve a complex problem. A multi-agent system is composed of many spatial distributed subsystems with decoupled dynamics, such as multi-satellite systems, multi-robot systems, multi-aircraft systems, etc. Under the network environment, the system-level control objective is achieved by cooperation among agents. Cooperation refers to the agreement among the agents: Each agent has a common objective with neighbor agents, and share information online to realize the objective. Agents are function independent (autonomous) in that they are individually capable of sensing their environment and possibly other agents, communicating with other agents, and computing and implementing control actions to meet their portion of the objective.
     Compared to the traditional approach, model predictive control has the ability to redefine cost functions and constraints as needed to reflect changes in the system and/or the environment. Hence, MPC is extensively applied to the cooperative control of multi-agent systems, which makes the agents operate close to the constraint boundaries, and obtain better performance than traditional approaches. However, the research results of centralized model predictive control could not be simply extended to distributed model predictive control. For distributed control problem, the coupled global cost function, coupled constraints, limited communication constraints (communication failure) etc, need to be considered, which could lead to conflictions among the independent control actions, affect the consistency of control actions and global stability of system. Hence, how to avoid conflictions among agents, or improve the consistency and efficiency, becomes an important issue in the area of multi-agent systems, which is very important for engineering applications.
     So this thesis focuses on distributed predictive control (DMPC) for multi-agent systems under the coupled global cost function, coupled constraint, limited communication constraint (complete communication failure). The main work is as follows.
     For the distributed control problem of multi-agent systems with the coupled global cost function, this paper addresses an improved DMPC scheme using deviation penalty and compatibility constraint. This scheme analyzes the decomposition approach for the global and centralized cost function, gets the local and distributed cost function of each agent, establishes the distributed predictive control problem with finite horizon, and designs different and time-varying compatibility constraint for each agent. The deviation between what an agent is actually doing and what its neighbors believe that agent is doing is penalized in the local cost function of each agent. At each sampling instant the compatibility constraint of each agent is set tighter than the previous sampling instant. Like the traditional approach, the performance cost is utilized as the Lyapunov function to prove closed-looped stability.
     For the distributed control problem of multi-agent systems with coupled constraints, this paper addresses an improved DMPC scheme. The coupled constraints are transformed as non-coupled constraints. The results are extended to the typical coupling constraints such as avoidance constraint and limited distance constraint. The sufficient condition for coupled constraints is analyzed. Furthermore, the feasibility and stability of this method are investigated.
     For complex cooperative control problem of multi-agent systems, distributed model predictive control scheme based on the dynamic cooperative rules is addressed. The collision avoidance constraints are transformed as hybrid rules based on the positions, and the Boolean function term is incorporated in the cost function. In order to accommodate the complex time-varying environment, at each sample instant, the dynamic cooperative rules are designed according to the relative positions between the agents and between each agent and its destination, so as to determine the weights in the Boolean function.
     For the distributed control problem of multi-agent systems with complete communication failure, this paper proposes a dual-mode DMPC scheme. This scheme combines the DMPC with compatibility constraint and the DMPC with neighbor agent state optimization. For the normal communication, by using the DMPC with compatibility constraint, each agent gets the assumed state trajectory of its neighbors through communication. For the complete communication failure, by using DMPC with neighbor agent state optimization, each agent only detects the local information (position and velocity), including the prediction of neignbos agent’s state into its optimal problem. Each agent constructs the DMPC schme based on the optimization of neighbor agent state, realizes the dual-mode DMPC of multi-agent systems with complete communication failure .
引文
[1]靳小龙,张世武,多智能原理与技术[M].北京:清华大学出版社, 2003.
    [2] W.Michael, R.J.Nicholas, Intelligent agents: theory and practice [J].Knowledge Engineering Review, 1995, 10(2):115~152.
    [3] B.Burmeister, A.Haddadi, G.Matylis, Application of multi-agent systems in traffic and transportion [J].IEEE Trans on Software Engineering, 1997, 144(1):51~60.
    [4] C, V.Goldman, J.S.Rosenschein, Mutual supervised learning in multi-agent systems [J].Proc of IJCAI’95 Workshop.Berlin, 1996:85~96.
    [5] N.V.Findler.Distributed control of collaborating and learning expert systems for street traffic signals [J].IFAC Distributed Intelligence Systems.Pergamon Press,1991:125~130.
    [6] G.Adorni, A.Poggl.Route guidance as ajust-in-time multi-agent task [J].Applied Artificial Intelligence, 1996, 10(2):95~120.
    [7]王伟.广义预测控制理论及其应用[M].北京:科学出版社, 1998.
    [8]席裕庚著.预测控制[M].北京:国防工业出版社, 1991.
    [9]陈虹,刘志远,解小华.非线性模型预测控制的现状与问题[J].控制与决策, 2001,(16): 385~391.
    [10]丁宝苍著.预测控制理论与方法[M].北京:机械工业出版社,2007.
    [11]钱积新著.预测控制[M].北京:化学工业出版社, 2007.
    [12]陈增强,袁著祉,张燕.基于神经网络的非线性预测控制综述[J].控制工程,2002, (9):7~11.
    [13] S.J. Qin, T.A. Badgewell. A survey of industrial model predictive control technology [J]. Control Engineering Practice, 2003, 11:733~764.
    [14] Cutler C R, Ramaker B L. Dynamic matrix control a computer control algorithm, In:Proceedings of the Joint Automatic Control Conference, San Francisco, USA: AACC. 1980: Paper WP5~B.
    [15] D.W. Clarke, C. Mohtadi, P.S. Tufrs. Generalized predictive contro1 [J]. Automatica, 1987, 23(2):137~160.
    [16] D.W. Clarke, C. Mohtad. Properties of generalized predictive contro1 [J]. Automatica, 1989, 25(6):859~875.
    [17]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状[J].自动化学报, 2008, 10:1215~1234.
    [18] D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Scokaert. Constrained model predictive control: stability and optimality [J]. Automatica, 2000, 36:789~814.
    [19] R.R. Bitmead, M. Gevers, V. Wertz. Adaptive optimal control-The thinking man’s GPC [M]. Englewood Cliffs, NJ: Prentice-Hall, 1990.
    [20] S. J. Qin, T. A. Badgwell. An overview of industrial model predictive control technology [C]. In J. C. Kantor, C. E. Garcia, and B. Carnahan, editors, Fifth International Conference on Chemical Process Control. CACHE, AIChE, 1997:232~256.
    [21] D.Q. Mayne, M.M. Seron,S.V. Rakovic.Robust model predictive control of constrained linear systems with bounded disturbances [J].Automatica,2005,41(2) :219~224.
    [22] D.Q. Mayne, S.V. Rakovic, R. Findeisen, F. Allgower.Robust output feedback model predictive control of constrained linear systems [J]. Automatica, 2006, 42(7):1217~1222.
    [23] W. J. Mao.Robust stabilization of uncertain timevarying discrete systems and comments on“an improved approach for constrained robust model predictive control”[J]. Automatica, 2003, 39(6):1109~1112.
    [24] Y.I. Lee, B. Kouvaritakis. Robust receding horizon predicrive control for systems with uncertain dynamics and input saturation.Automatica, 2000, 36(10):1497~1504.
    [25] Y.I. Lee, B. Kouvaritakis. A linear programming approach to constrained robust predictive contro1 [J]. IEEE Transactionson Automatic Control, 2000, 45(9):1765~1770.
    [26] Y.I. Lee, B. Kouvaritakis. Superposition in efficient robust constrained predictive contro1. Automatica [J].2002, 38:875~878.
    [27] M. Cannon, V. Deshmukh, B. Kouvaritakis. Nonlinear modeI predictive control with polytopic invariant sets [J].Automatica, 2003, 39(8):1487~1494.
    [28] B. Pluymers, J.A. Rossiter, J.A .Suykens, M. B. De. The eficient computation of polyhedral invariant sets for linear system s with polytopic uncertainty [C].In: Proceedings of American Control Conference. Portland. USA: IEEE.2005:804~809.
    [29] Z.Q. Zheng, M. Morari. Robust stability of constrained mode1 predictive contro1 [C]. In: Proceedings of American Control Conference.San Francisco.USA:IEEE.1993:379~383.
    [30] F. C. Cuzzola, J. C. Geromel, M. Morari. An improved approach for constrained robust mode1 predictive contro1 [J].Automatica, 2002, 38(7):1183~1189.
    [31] C. C. Chen, L. Shaw. On receding horizon feedback control [J].Automatica, 1982, 18: 349~352.
    [32] S. S. Keerthi, E. G. Gilbert. Optimal infinite horizon feedback laws for a general class of constrained discrete time systems: Stability and moving-horizon approximations [J]. Journal of Optimization Theory and Application, 1988, 57:256~293.
    [33] D. Q. Mayne, H. Michalska. Receding horizon control of nonlinear systems [J]. IEEE Transactions on Automatic Control, 1990, 35:814~824.
    [34] H. Michalska and D. Q. Mayne. Robust receding horizon control of contrained nonlinear systems [J]. IEEE Transactions on Automatic Control, 1993, 38:1623~1632.
    [35] J.R. Moyne, D.M. Tilbury. The emergence of industrial control networks for anufacturing control, diagnostics, and safety data [J]. Proceedings of the IEEE. 2007, 95:29~47.
    [36] X. G. Wang, C. K. H. Kim. Improved control of pneumatic lumber-handling systems [J]. IEEE Transactions on Control Systems Technology, 2001, 9 (3):458~472.
    [37] R. Scattolini. Architectures for distributed and hierarchical Model Predictive Control–A review [J]. Journal of Process Control, 2009, 19:723~731.
    [38] E.J. Davison and T.N. Chang. Decentralized stabilization and pole assignment for general proper systems [J]. IEEE Transactions on Automatic Control, 1990, 35:652~664.
    [39] S.H. Wang, E. Davison. On the stabilization of decentralized control systems [J]. IEEE Transactions on Automatic Control, 1973, 18:473~478.
    [40] D.D. Siljak. Decentralized Control of Complex Systems [M]. Academic Press, Cambridge, 1991.
    [41] M. Hovd and S. Skogestad. Sequential design of decentralized controllers [J]. Automatica, 1994, 30:1601~1607.
    [42] E.J. Davison and I.J. Ferguson. The design of controllers for the multivariable robust servomechanism problem using parameter optimization methods [J]. IEEE Transactions on Automatic Control, 1981, 26:93~110.
    [43] R. Scattolini, N. Schiavoni. A parameter optimization approach to the design of structurally constrained regulators for discrete-time systems [J]. International Journal of Control, 1985, 42: 177~192.
    [44] A. Iftar. Decentralized estimation and control with overlapping input state and output decomposition [J]. Automatica, 1993, 29:511~516.
    [45] M. Ikeda, D.D. Siljak and D.E. White. Decentralized control with overlapping information sets [J]. Journal of Optimization Theory and Application, 1981, 34:279~310.
    [46] M. Ikeda, D.D. Siljak and D.E. White. An inclusion principle for dynamic systems [J]. IEEE Transactions on Automatic Control, 1984, 43:1040~1055.
    [47] J. Lunze. Feedback Control of Large Scale Systems [M]. Prentice-Hall, 1992.
    [48] N.R. Sandell, P. Varaiya, M. Athans, M.G. Safonov. Survey of decentralized control methods for large scale systems [J]. IEEE Transactions on Automatic Control, 1978, 23:108~128.
    [49] D.D. Siljak. Decentralized control and computations: status and prospects [J]. Annual Reviews in Control, 1996, 20:131~141.
    [50] D.D. Siljak, A.I. Zecevic.Control of large scale systems: beyond decentralized feedback [J].Annual Reviews in Control, 2005, 29:169~179.
    [51] L. Bakule. Decentralized control: an overview [J]. Annual Reviews in Control, 2008, 32:87~98.
    [52] L. Acar. Some examples for the decentralized receding horizon control [C]. In: Proceedings of the 31st IEEE Conference on Decision and Control. Tucson, Arizona, USA, 1992: 1356~1359.
    [53] M.S. Elliott, B.P. Rasmussen. Model-based predictive control of a multi-evaporator vapor compression cooling cycle [C]. In: Proceedings of the American Control Conference. Seattle, USA, 2008:1463~1468.
    [54] L. Magni and R. Scattolini. Stabilizing decentralized model predictive control of nonlinear systems [J].Automatica, 2006, 42:1231~1236.
    [55] D.M. Raimondo, L. Magni and R. Scattolini. Decentralized MPC of nonlinear systems: an input-to-state stability approach [J]. International Journal of Robust and Nonlinear Control, 2007, 17:1651~1667.
    [56] H.K. Khalil. Nonlinear Systems [M]. Prentice-Hall, 1996.
    [57] A. Alessio, A. Bemporad. Decentralized model predictive control of constrained linear systems [C]. In: Proceedings of the European Control Conference. Kos, Greece, 2007: 2813~2818.
    [58] A. Alessio, A. Bemporad. Stability conditions for decentralized model predictive control under packet drop communication [C]. In: Proceedings of the American Control Conference. Seattle, Washington, USA, 2008:3577~3582.
    [59] N. Elia, K.Mitter. Stabilization of linear systems with limited information [J]. IEEE Transactions on Automatic Control, 2001, 46:1384~1400.
    [60]陈庆,李少远,席裕庚.基于全局最优的生产全过程分布式预测控制[J].上海交通大学学报,2005, (39):349~352.
    [61]杜晓宁,席裕庚,李少远.分布式预测控制算法的性能分析[J].控制与决策,2002, 17(2): 226~229.
    [62] Y.Kuwata, A.Richards, T.Schouwenaars, J.P.How. Distributed robust receding horizon control for multivehicle guidance [J]. IEEE Transactions on Control Systems Technology, 2007, 15:627~641.
    [63] R. C. Scott, L. E. Pado. Active control of wind-tunnel model aeroelastic response using neural networks [J]. Journal of Guidance Control and Dynamics, 2000, 23, 6:1100~1108.
    [64] J.B. Rawlings and B.T. Stewart. Coordinating multiple optimization-based controllers: new opportunities and challenges [J]. Journal of Process Control, 2008, 18:839~845.
    [65] A.N. Venkat, J.B. Rawlings, S.J. Wright. Stability and optimality of distributed model predictive control [C]. In: Proceedings of the 46th IEEE Conference on Decision and Control, Seville. Spain, 2005:6680~6685.
    [66] A.N. Venkat, J.B. Rawlings, S.J. Wright. Implementable distributed model predictive control with guaranteed performance properties [C]. In: Proceedings of the IEEE American Control Conference. Minneapolis, USA, 2006:613~618.
    [67] T.S. Basar, J.G. Olsder. Dynamic Noncooperative Game Theory [M]. SIAM, Philadelphia, 1999.
    [68] E. Camponogara, D. Jia, B.H. Krogh and S. Talukdar. Distributed model predictive control [J]. IEEE Control Systems Magazine, 2002, 22:44~52.
    [69] S. Li, Y. Zhang, Q. Zhu. Nash-optimization enhanced distributed model predictive control applied to a shell benchmark problem [J]. Information Sciences, 2005, 170:329~349.
    [70] D. Jia, B. Krogh, Min–max feedback model predictive control for distributed control with communication [C]. In: Proceedings of the IEEE American Control Conference. Anchorage, AK, USA, 2002:4507~4512.
    [71] L. Magni, G. De Nicolao, R. Scattolini and F. Allgower. Robust model predictive control of nonlinear discrete-time systems [J]. International Journal of Robust and Nonlinear control, 2003, 13:229~246.
    [72] W.B. Dunbar. Distributed receding horizon control of dynamically coupled nonlinear systems [J]. IEEE Transactions on Automatic Control, 2007, 52:1249~1263.
    [73] D. Limon, T. Alamo, E.F. Camacho. Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties [C]. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA, 2002:4619~4624.
    [74] L. Chisci, J.A. Rossiter and G. Zappa. Systems with persistent disturbances: predictive control with restricted constraints [J]. Automatica, 2001, 37:1019~1028.
    [75] A.G.O. Mutambara.Decentralized Estimation and Control for Multisensor Systems [M]. CRC Press, 1998.
    [76] A.G.O. Mutambara and H.F. Durrant-Whyte. Estimation and control for a modular wheeled mobile robot [J]. IEEE Transactions on Control Systems Technology, 2000, 8:35~46.
    [77] R. Vadigepalli, F.J. Doyle III. A distributed state estimation and control algorithm for plantwide processes [J]. IEEE Transactions on Control Systems Technology, 2003, 11: 119~127.
    [78] M. Mercang?z, F.J. Doyle III.Distributed model predictive control of an experimental four-tank system [J]. Journal of Process Control, 2007, 17:297~308.
    [79] E. Franco, L. Magni, T. Parisini, M. Polycarpou and D. Raimondo, Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: a stabilizing receding-horizon approach [J]. IEEE Transactions on Automatic Control, 2008, 53:324~338.
    [80] T. Keviczky, F. Borrelli, G.J. Balas, Hierarchical design of decentralized receding horizon controllers for decoupled systems [C]. In: Proceedings of the 43th IEEE Conference on Decision and Control. Atlantis, USA, 2004:1592~1597.
    [81] T. Keviczky, F. Borrelli, K.C. Fregene, D. Godbole and G.J. Balas. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations[J]. IEEE Transactions on Control Systems Technology, 2006, 16:19~33.
    [82] A. Richards, J.P. How. Robust distributed model predictive control[J]. International Journal of Control,2007, 80(9):1517~1531.
    [83] P. Trodden, A. Richards. Robust distributed model predictive control using tubes [C]. In: Proceedings of the 2006 American Control Conference. Minneapolis, USA, 2006:2034~2039.
    [84] W.B. Dunbar and R.M. Murray. Distributed receding horizon control for multi-vehicle formation stabilization [J]. Automatica, 2006, 42:549~558.
    [85] D.Gu. A differential game approach to formation control [J]. IEEE Transactions on Control Systems Technology, 2008, (16):85~93.
    [86] A. Jadbabaie, J. Lin and A.S. Morse.Coordination of groups of mobile autonomous agents using nearest neighbor rules [J]. IEEE Transactions on Automatic Control, 2003, 48: 988~1001.
    [87] B. Johansson, A. Speranzon, M. Johansson, K. Johansson. Distributed model predictive consensus [C]. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems.Kyoto, Japan, 2006:3438~2444.
    [88] G. Ferrari-Trecate, L. Galbusera, M.P.E. Marciandi, R. Scattolini. A model predictive control scheme for consensus in multi-agent systems with single-integrator dynamics and input constraints [C]. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007:1492~1497.
    [89] G. Ferrari-Trecate, L. Galbusera, M.P.E. Marciandi, R. Scattolini. Contractive distributed MPC for consensus in networks of single- and double-integrators [C]. In: Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008: 9033~9038.
    [90] G. Ferrari-Trecate, L. Galbusera, M.P.E. Marciandi, R. Scattolini. Model predictive control schemes for consensus in multi-agent systems with single- and double-integrator dynamics [J]. IEEE Transactions on Automatic Control, accepted for publication.
    [91] Z. Y. Wan, M. V. Kothare. Efficient robust constrained model predictive control with a time varying termina1 constraint set [J]. Systems and Control Letters, 2003, 48(5):375~383.
    [92] B. C. Ding, Y.G. Xi, S.Y. Li. A synthesis approach of online constrained robust model predictive contro1 [J].Automatica, 2004, 40:163~167.
    [93] D. Limon, T. Alamo, F. Salas, Camacho E F. On the stability of constrained MPC without terminal constraint [J]. IEEE Transactions on Automatic Control, 2006, 51:832~836.
    [94] L. Magni, N. G. De, L. Magnani, R. Scottolini. A stabilizing model-based predictive control algorithm for nonlinearsystems [J]. Automatica, 2001,37:1351~1362.
    [95] K.B.Kim. Disturbance attenuation for constrained discrete time systems via receding horizon controls [J]. IEE Transactions on Automatic Control, 2004, 49:797~801.
    [96] A. Casavola, D. Famularo, G. Franz. Robust constrained predictive control of uncertain norm bounded linear systems [J].Automatica, 2004, 40:l865~1876.
    [97] Mosca E. Predictive switching supervisory control of persistently disturbed input-saturated plants [J].Automatica, 2005, (41):55~67.
    [98] B. Pluymers, M. V. Kothare, J. A. K. Suykens, M. B. De. Robust synthesis of constrained linear state feedback using LMIs and polyhedral invariant sets [C]. In: Proceedings of the 2006 American Centrel Conference, Minneapolis, USA: IEEE.2006:881~886.
    [99] J. M. Brave, D. Limon, T. Alame, E. F. Camacho. On the computation of invariant sets for constrained nonlinear systems:an interval arithmetic approach [J]. Automatica, 2005, (41): l583~1589.
    [100] D. Limon, T. Alame, E. F Camacho. Enlarging the domain of attraction of MPC controllers [J]. Automatica, 2005, 41(4):629~635.
    [101] H. Fukushim, R.R.Bitmead. Robust constrained predictive control using comparison model [J].Automatica, 2005, 41(1):97~106.
    [102] G. N. De, L. Magni, R. Scottolini. Stabilizing receding-horizon control of nonlinear time varying systems [J].IEEE Transactions on Automatic Contro1, 1998, 43(7):1030~1036.
    [103] J. W. Lee, W. H. Kwon, J. Choe. On stability of constrained receding horizon control with finite terminal weighting matrix [J].Automatica, 1998, 34(12):1607~1612.
    [104] J. W. Lee.Exponential stability of constrained receding horizon control with terminal ellipsoid constraints [J].IEEE Transactions on Automatic Control, 2000, 45:83~88.
    [105] D. Angeli, A. Cassavola, E. Mosca. Ellipsoidal low demanding MPC schemes for uncertain polytopic discrete time systems [C].In: Proceedings of the 41th IEEE Conference on Decision and Control.Las Vegas, USA: IEEE, 2002:2935~2939.
    [106] L. Chisci, J. A. Rossiter, G.Zappa. Systems with persistent disturbances: predictive controlwith restricted constraints [J].Automatica, 2001, 37(7):1019~1028.
    [107] W.B. Dunbar.Distributed receding horizon control for multiagent systems [M].Ph D thesis, California Institute of Technology, Pasadena, CA, 91125, 2004.
    [108] H.Chen, F. Allgower. A quasi infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].Automatica, 1998, 34(10):1205~1217.
    [109] F. Borrelli, T. Keviczky, G. J. Balas, G. Stewart, K. Fregene and D. Godbole. Hybrid decentralized control of large scale systems [A].in Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science, 2005, Springer Verlag, vol. 3414:168~183.
    [110] J. A. Primbs. The analysis of optimization based controllers [J]. Automatica, 2001, 37, 933~938.
    [111] J. A. Rossiter, Model-Based Predictive Control: A Practical Approach [M]. Boca Raton, FL: CRC, 2003.
    [112] J.M. Maciejowski.Predictive Control with Constraints [M]. Englewood Cliffs, NJ: Prentice-Hall, 2002.
    [113] H. Fukushima, K. Kon, and F.Matsuno. Distributed Model Predictive Control for Multi-Vehicle Formation with Collision Avoidance Constraints [C]. In Proc.44th IEEE Conf. on Decision and Control. December 2005:5480~5485.
    [114] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer and C. J.Taylor. A Vision-Based Formation Control Framework [J]. IEEE Trans. On Rob. And Auto, 2002, 18(5):813~825.
    [115] T. Balch, R. C. Arkin.Behavior-Based Formation Control for multi-robot Teams [J]. IEEE, Trans. on Rob. And Auto, 1998, 14(6), 926~939.
    [116] S. Jongho, H. J. Kim, K. Seungkeun, Y. Yongsoon. Formation flight control under communication failure [C]. Proceedings of the 1st international conference on Robot communication and coordination, Vol. 318, October 2007:112~117.
    [117] T. Keviczky, F. Borrelli, G. J. Balas. Decentralized receding horizon control for large scale dynamically decoupled systems [J]. Automatica, 2006, 42:2105~2115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700