基于跨层的无线传感器网络资源调度与路由算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络的路由选择和链路资源分配是一个联合优化问题,有效解决该问题的方法是采用联合物理层和数据链路层的跨层联合优化机制。由于无线传感器网路所具有的节点能量受限特性以及链路间干扰,使得实现这一目标成为条件受限的非线性优化问题。本文根据最大化效益理论,首先,对影响系统目标优化的分集特性理论进行了分析,其中包括:频率选择型分集、地点分集、时间分集以及成员节点队列分集。然后,针对无线传感器网络系统采用自组织分群的管理机制所需涉及的资源分配和路由节点选择问题,利用最大系统效益函数建立了联合路由选择和链路资源分配的跨层优化模型,并对优化过程中需要解决的几个关键性问题,提出了针对性有效实现算法。
     通过系统性的整体分析可以得出:由于路由链路传输性能决定于链路信道的质量,因此,无线传感器网络中的路由链路建立及链路资源调度问题具有相互影响特点。根据最大系统效益理论,建立了基于最大总体效益函数值的系统资源优化模型。利用效益函数,推导出有效的相关因素数学关系计算方程。此外,设计了能够实现路由链路资源分配公平性的效益函数集,改善了系统资源调度整体性能。该系统模型的建立为后续问题的解决提供了理论分析依据。
     根据有向图理论,对无线传感器网络中的实现有效路由选择机制的具体解决方法进行了分析。针对该问题所需要的资源利用有效性问题,在节点能量受限条件下,提出了一种基于联合物理层和数据链路层的跨层资源分配方案,并设计了基于局部分群管理的路由机制。采用所提出的分群路由管理方式,极大地减少了每个群内的成员节点数据计算和传输任务(包括路由选择)所需的资源开销,较大程度的减少了大量成员节点的负载量,有效降低了成员节点能耗,在不同的网络负载状态下,都能够使系统具有较高的资源分配有效性。
     针对基于OFDM接入的无线传感器网络路由链路频率调度问题,理论分析了影响系统优化模型实现的两个主要因素:同频链路干扰分集和成员节点队列分集。根据理论分析结果,提出了一个动态子载波分配算法。通过对同频链路干扰因素的时间分布相关性预测,该算法确定了有效分配子载波的统计周期间隔,能够为OFDM无线传感器网络群内成员节点提供较好的路由链路传输性能。
     时变的同频链路间干扰导致了链路的不稳定性,使采用子载波复用的OFDM无线传感器网络系统容量最大化问题具有较高的实现复杂度。为解决该问题,通过对基于时间失效的自动放弃策略和基于信噪比淹没的自动放弃策略进行研究,提出了一种基于启发式搜索的子载波分配算法(DSA)。为进一步改进全局公平性,对DSA算法采取了全局公平性控制机制,提出了全局公平调度算法(GPCSA)。理论分析和仿真结果证明:这两个算法能够极大地改善系统传输有效性和公平性。
     通过数学建模分析以及仿真测试,以上提出的算法,在一定的系统状态下,能够使系统资源的调度和路由链路选择得到优化,进一步改进了系统资源的有效性与公平性。
Routing selection and resource allocation over links in wireless sensor networks is a combination optimization problem. The method to solve it effectively is to adopt the cross layer optimization by combining physical layer and data link layer. In addition, since there exist the limited energy in nodes and the interference among links, it becomes a optimization problem with constraints to achieve the optimization objective. According to the maximization utility theory, first, we analyze the diversity characteristic affecting the system optimization, including frequency selection diversity, location diversity, the time diversity and queue diversity of member nodes. Then, considering resource allocation and routing node selection required by the management mechanism based on self-clustering in wireless sensor networks, we establish the cross optimization model by the combination of routing selection and resource allocation over links accordant to the system utility maximization and propose efficient algorithms for several key problems needed during the optimization implementation.
     After analyzing the performance of the system, we conclude that since the routing transmission performance depends on the channel quality of the link, it leads to the effect between selecting routing links and resource scheduling over links. By the utility function, we derive the efficient computation model for the correlative factors. The optimization model for system resource is formulated based on the maximization value of the total utility. Additionally, we design the set of utility function capable of achieving the fairness of resource allocation among links, as a result, improving the total performance of resource scheduling. The optimization model provides the theory analysis evidence for the problems needed to solve behind.
     The implementation methods to achieve the effective routing selection are analyzed by directed graph theory. For the efficient resource allocation required by the problem, we propose a resource allocation scheme based on the combination of physical layer and data link layer using cross layer mechanism and design the routing mechanism based on local clustering. The resource overhead needed by the data transmission of member nodes within each cluster is significantly decreased by the proposed the management method using the routing based on clustering, with the large numbers of load decrease and the efficiently decreased energy consumption of member nodes. The higher performance of resource allocation is achieved under different system loads.
     In order to solve the problem caused by scheduling frequency over routing links in OFDM wireless sensor networks, we analyze two key factors, interference among routing links using the same frequency width that affect the optimization of system model. A scheme for dynamic subcarrier allocation is proposed according to the theory analysis. Through predicting interference factors among the links using the same frequency width, we determine the statistical period for efficient subcarrier allocation, which provide the better transmission performance over routing links in OFDM wireless sensor networks.
     Time-varying co-channel interference results in the instability of link condition, which leads to the higher complexity of the system capacity maximization in OFDM wireless sensor networks using the reuse of subcarrier. To solve it, we present a subcarrier allocation algorithm (DSA) based on heuristic searching mechanism after investigating automatic quitting due to time expiring and automatic quitting due to the higher level of signal to noise ratio. Applying the. global fairness control to DSA, we propose a global fairness scheduling algorithm (GPCSA). It is demonstrated by theory analysis and simulation results that DSA and GPCSA improve the efficiency and fairness of transmission respectively.
     Using the mathematic model analysis and simulation measurement, we obtain the improved efficiency and fairness of system performance and the further optimized resource scheduling and routing link selection under some system conditions.
引文
1 Impact of Wireless Sensor Networks on Future[M]. Technology Review from MIT,1999
    2 E.Royer, C.K.Toh. A Review of Current Rounting Protocols for Ad Hoc Mobile Wireless Networks[J]. IEEE Pers. Commun., 1999( 4): 46-55
    3 Zhou Jieying, Lin Yi, Hu Huiping. Dynamic Zone Based Multicast Routing Protocol for Mobile Ad Hoc Network[C]. Proc. of Wireless Communications, Networking and Mobile Computing, 2007(9): 21-25,1528 - 1532
    4 Ying-Hong Wang, Chih-Hsiao Tsai,Hung-Jen Mao.HMRP:Hierarchy-Based Multipath Routing Protocol for Wireless Sensor Networks[J]. Tamkang Journal of Science and Engineering, Vol. 9, 2006(3): 255-264
    5 Dongsheng Ma, Wang, J.M., Somasundaram, M.N, Zongqi Hu. Design and optimization on dynamic power system for self-powered integrated wireless sensing nodes[C]. Proc. of 2005 ISLPED, 2005(8):303-306
    6 Sanderford, B. Wireless Sensor Networks-battery Operation of Link and Sensor[C]. Proceedings of IEEE 2th ISA, 2002: 169-171
    7 IEEE 802.15.4 Group .IEEE Std 802.15.4a?—2007:Wireless Medium Access Control (MAC) and Physical Layer Specifications for Low-Rate Wireless Personal Area Networks. IEEE Computer Society, 31,August,2007
    8 R.Madan, Shuguang Cui,Andrea J. Goldsmith. Cross-Layer Design for Lifetime Maximization in Interference-limited Wireless Sensor Network[J]. IEEE Transactions on Wireless Communication, vol. 5,2006(11):3144-3152
    9 Carlos F. Garcia-Hernandez, Pablo H. Ibarguengoytia-Gonzalez, Joaquin Garcia-Hernandez[J]. IJCSNS International Journal of Computer Science and Network Security, vol 2007(3):264-273
    10 Andrea J. Goldsmith and Stephen B. Wicker. Design Challenges for Energy-Constrained Ad Hoc Wireless Networks[J]. IEEE Magazine on Wireless Communications Vol. 9,2002(4): 8-27
    11 W. R Heidemann, A. Chandrakasan and H. Balakrishnan. Energy-efficient communication protocols for wireless microsensor networks[C]. Proceedings of the Hawaii International Conference on Systems Sciences, Jan. 2000.
    12 Alex Rogers, Esther David, Nicholas R. Jennings[J]. IEEE TRAN. ON SYSTEMS, MAN, AND CYBERNETICS. VOL. 35, NO. 3, 2005,5:349-359
    13 Tao Shu, Krunz, M. and Vrudhula, S. Joint Optimization of Transmit Power-Time and Bit Energy Efficiency in CDMA Wireless Sensor Networks[J]. IEEE Transactions on Wireless Communication. Vol. 5. 2004(2):3109-3118
    14 Panichpapiboon, S, Ferrari, G. and Tonguz, O.K. Optimal Transmit Power in Wireless Sensor Networks[J]. IEEE Transactions on Mobile Computing. Vol. 5. No. 10. Feb 2006:1432-1447
    15 Parmar S.N, Nandi, S. and Chowdhury, A.R. Power Efficient and Low Latency MAC for Wireless Sensor Networks[C]. Proceedings of IEEE SECON'06, Vol. 3, 2006: 28-32.
    16 Taehong Kim, Noseong Park, Poh Kit Chong, Jongwoo Sung and Daeyoung Kim. Distributed Low Power Scheduling in Wireless Sensor Networks[C]. Proceedings of IEEE ISWPC'07, 2007, 5-7.
    17 Sharma, P. Channel-state based Scheduling in Wireless Sensor Networks for Reliable Transmission[C]. Proceedings of IEEE 19th Parallel and Distributed Processing Symposium, 2005: 4-8.
    18 Byers. J and Nasser G. Utility-based decision-making in wireless sensor networks[C]. Proceeding of IEEE MobiHoC, 2005:143-147.
    19 Nama. H, Mung Chiang and Mandayam. N. Utility-Lifetime Trade-off in Self-regulating Wireless Sensor Networks: A Cross-Layer Design Approach[C]. Proc.of IEEE Communications, Vol.8, 2006: 3511-3516.
    20 Liao. S, Cheng. W., Liu. W. Yang Z. and Ding Y. Distributed Optimization for Utility-Energy Tradeoff in Wireless Sensor Networks[C]. Proceedings of IEEE ICC'07, 2007:3190-3194.
    21 Wei Yu and Jun Yuan. Joint source coding, routing and resource allocation for wireless sensor networks[C]. Proc. of IEEE ICC'05, Vol.2, 2005: 12-16.
    22 Bin Liu and Biao Chen. Joint source-channel coding for distributed sensor networks[C]. Proceedings of IEEE SSC'04, Vol. 2, 2004:1397-1401.
    23 Talukder. A, Bhatt. R and Chandramouli. L. Autonomous resource management and control algorithms for distributed wireless sensor networks[C]. Proceedings of IEEE ACS'05, 2005:19-23.
    24 Xue Liu Qixin Wang and Lui Sha. Optimal QoS Sampling Frequency Assignment for Real-time Wireless Sensor Networks[C]. Proceedings of IEEE 24th RTSS, 2003:308-309
    25 Ing Lin, Biao Chen and Varshney, P.K. Decision fusion rules in multi-hop wireless sensor networks[J]. IEEE Transactions on Aerospace and Electronic System. Vol. 41. No. 12. Feb 2005:475-488.
    26 Ammari, H.M. and Das, S.K. Data Dissemination to Mobile Sinks in Wireless Sensor Networks: An Information Theoretic Approach[C]. Proceedings of IEEE MASSC, 2005:7-10.
    27 Reichenbach, Frank and Salzmann. DLS: A Resource-Aware Localization Algorithm with High Precision in Large Wireless Sensor Networks[C]. Proceedings of IEEE WPNC'07, 2007:247-254.
    28 Marques. A.G., Xing Wang and Giannakis. Minimizing Transmit-Power for Coherent Communications in Wireless Sensor Networks using Quantized Channel State Information[C]. Proc. of IEEE ICASSP'07, 2007:15-20
    29 Zhao Zhiwei, Zhang, Xinming and Sun, Peng. A Transmission Power Control MAC Protocol for Wireless Sensor Networks[C]. Proceedings of IEEE ICN'07, 2007:22-28
    30 Zhen Guo; Mengchu Zhou. Prediction-based object tracking algorithm with load balance for wireless sensor networks[C]. Proc. of IEEE NSC'05, 2005:756-760
    31 Dong Shao-Long and Xing Tao. Cluster-based power efficient time synchronization in wireless sensor networks[C]. Proceedings of IEEE Eletro/Information Technology'06, 2006:147-151.
    32 M. Nunes, A. Grilo, M. Macedo. Interference-Free TDMA Slot Allocation in Wireless Sensor Networks[C]. Proceedings of the 32nd IEEE Conference on Local Computer Networks (LCN 2007), Dublin, Ireland, 2007(10): 239-241
    33 Juejia Zhou and Chundi Mu. A Kind of Application-Specific QoS Control in Wireless Sensor Networks[C]. Proceedings of IEEE Information Acquisition'06, 2006:456-461.
    34 Hui Dong Jiangang Lu and Youxian Sun. Distributed Audio Coding in Wireless Sensor Networks[C]. Proceedings of IEEE Compututional Intelligence and Security'06, Vol. 2,2006: 1695-1699
    35 Tsung-Hsien Lin; Kaiser, W.J. and Pottie, G. J Integrated low-power communication system design for wireless sensor networks[M]. IEEE Magazine on Communication, ,Vol. 42,2006(6): 142-150
    36 Mahmudur Rahman, Halim Yanikomeroglu, Mohamed H. Ahmed. Opportunistic Nonorthogonal Packet Scheduling in Fixed Broadband Wireless Access Networks[J]. EURASIP Journal on Wireless Communications and Networking, Volume 2006:1-11
    37 P. Viswanath, D. N. C Tse, and R. Laroia, Opportunistic Beamforming Using Dumb Antennas[J]. IEEE Trans. Info.Theory, vol. 48, 2002(6): 1277-1294
    38 A. G.Agyei, S.L. Kim. Cross-Layer Multiservice Opportunistic Scheduling for Wireless Networks[J]. IEEE Commu Mag.,2006(6):50-57
    39 H. M. Chaskar ,U. Madhow. Fair Scheduling With Tunable Latency:A Round-Robin Approach[J]. IEEE/ACM Trans. on Networking, Vol. 11, 2003(8): 592-601
    40 P. D. Mitchell, D. Grace, T. C. Tozer. Analytical Model of Round-Robin Scheduling for aGeostationary Satellite System[J]. IEEE Comm Letters, Vol. 7, 2003(11): 546-548
    41 T.Bonald, Flow-Level. Performance Analysis of Some Opportunistic Scheduling Algorithms[J]. Euro. Trans.Telecommun., vol. 16, 2005(1):65-75
    42 A. Jalali, R. Padovani, and R. Pankaj. Data Throughput of CDMA-HDR: A High Efficiency-High Data Rate PersonalCommunication Wireless System[C]. Proc. IEEE VTC 2000-Spring, Tokyo, Japan, 2000(5): 1854-58
    43 P. Bender. CDMA/HDR: A Bandwidth-Efficient High-Speed Wireless Data Service for Nomadic Users[J]. IEEE Commun.Mag., vol. 38, 2000(7): 70-77
    44 H. Balakrishnan. Opportunities in high-rate wireless sensor networking[C]. NSF NOSS Principal Investigator and Informational Meetings, October 2004
    45 A.Woo and D. Culler. A transmission control scheme for media access in sensor networks[C].ACM MobiCom 2001, 221-235
    46 J. Polastre, J. Hill, D. Culler. Versatile low power media access for wireless sensor networks[C]. In Proceedings of theSecond ACM Conference on Embedded Networked Sensor Systems (SenSys), Baltimore,MD, 2004, 11
    47 K. Arisha, M. Youssef, M. Younis. Energy-aware TDMA-based MAC for sensor networks[C]. In IEEE Workshop on Integrated Management of Power Aware Communications, Computing and Networking (IMPACCT 2002), New York City.NY, May 2002
    48 J. Li , G. Lazarou. A bit-map-assisted energy-efficient MAC scheme for wireless sensor networks[C]. In 3rd Int. Symp. onInformation Processing in Sensor Networks (IPSN04), Berkeley,CA, 2004(4):55-60
    49 V. Rajendran, K. Obraczka,. J.Garcia-Luna-Aceves.Energy-efficient, collision-free medium access control for wireless sensor networks[C]. In Proceedings of the First ACM Conference on Embedded Networked Sensor Systems(SenSys), Los Angeles, CA, November 2003.
    50 T. van Dam , K. Langendoen. An adaptive energy-efficient MAC protocol for wireless sensor networks[C]. In Proceedings of the First ACM Conference on Embedded Networked Sensor Systems (SenSys), Los Angeles, CA, November 2003.
    51 A. Warrier , I. Rhee. Stochastic analysis of wireless sensor network MAC protocols[C]. Technical report, Computer Science Department, North Carolina State University, Raleigh, NC,2005.
    52 W. Ye, J. Heidemann, D. Estrin. Medium access control with coordinated adaptive sleeping for wireless sensor networks[J]. IEEE/ACM Trans. Netw., 2004,12(3):493-506.
    53 G. Zhou, T. He, S. Krishnamurthy, J. A. Stankovic. Impact of radio irregularity on wireless sensor networks[C]. In MobiSys'04: Proceedings of the 2nd international conference on Mobile systems, applications, and services, ACM Press,New York, NY, USA, 2004:125-138
    54 A. El-Hoiydi. Spatial TDMA and CSMA with Preamble Sampling for Low Power Ad Hoc Wireless Sensor Networks[J]. In ISCC, 2002(7):685-692
    55 G. D. Krishanamachari, B. Woo, A. Culler. Large Scale Network Discovery: Design Tradeoffs in Wireless Sensor Systems[C]. Poster in Proceedings of the Symposium on Operating Systems Principles (SOSP 2001). Lake Louise, Banff, Canada. 2001.
    56 Lin, M. Marzullo, K. Masini, S. Gossip versus deterministic flooding: Low message overhead and high reliability for broadcasting on small networks.UCSD Technical Report TR CS99-0637.
    57 V.Rodoplu,T.H.Meng.Minimum energy mobile wireless networks[J].IEEE J.Select.Areas Communi.,vol.17,1999(8),1333-1344
    58 L.Li and J.Y.Halpern.Minimum energy mobile wireless networks revisited[C].IEEE International Conference on Communications(ICC),2001.
    59 R.Wattenhofer et al.Distributed topology control for power efficient operation in multihop wireless ad hoc networks[C].IEEE INFOCOM,2001.
    60 L.Li et al..Analysis of a cone-based distributed topology control algorithm for wireless multi-hop networks[C].ACM Symposium on Principle of Distributed Computing(PODC),2001.
    61 J.-H.Chang and L.Tassiulas.Energy conserving routing in wireless ad-hoc networks[C],in Proc.IEEE INFOCOM,2000,22-31
    62 胡宁,张德运.无线传感器网络的能量平衡路由[M].西安交通大学学报,2006,40(6):676-680
    63 J.Pan et al.Topology control for wireless sensor networks[C].MobiCom,2003:126-133
    64 G.Zussman and A.Segall.Energy efficient routing in ad hoc disasterrecovery networks[C].INFOCOM,2003.
    65 F.P.Kelly,A.Maulloo,D.Tan.Rate control for communication networks:shadow prices,proportional fairness and stability[J].Journal of the Operational Research Society,1998(49):237-252
    66 S.H.Low,D.E.Lapsley.Optimization flow control-I:Basic algorithm and convergence[J].IEEE/ACM Trans.Networking,vol.7,1999:861-874
    67 L.Xiao,M.Johansson,S.Boyd.Simultaneous routing and resource allocation via dual decomposition[J].IEEE Trans.Commun.,vol.52,2006(7):1136-1144
    68 F.P.Kelly,A.Maulloo,D.Tan.Rate control in communicationnetworks:Shadow prices,proportional fairness and stability[J].J.Oper.Res.Soc.,1998(49):237-252
    69 H.Yaiche,R.Mazumdar,C.Rosenberg.A game theoretic framework for bandwidth allocation and pricing in broadband networks[J].IEEE/ACM Trans.Netw.,vol.8,2000(5):667-678
    70 S.H.Low,D.E.Lapsley.Optimization flow control-I:Basic algorithm and convergence[J].IEEE/ACM Trans.Netw.,vol.7,1999(6),861-874
    71 S.Kunniyur,R.Srikant.End-to-end congestion control schemes:Utility functions,random losses and ECN marks[C],in Proc.IEEE INFOCOM,Tel-Aviv,Israel,2000(3):1323-1332
    72 S.H.Low,R.Srikant.A mathematical framework for designing a low-loss low-delay Internet[J].Netw.Spatial Econom.,vol.4,2004(1),75-102
    73 R.Srikant,The Mathematics of Internet Congestion Control.Cambridge[D].MA:Birkhauser,2004.
    74 R.M.Salles and J.A.Barria.Utility-based scheduling disciplines for adaptive applications over the internet[J].IEEE Communications letters,2002,6(5):217-219.
    75 T.Kelly.Utility-directed allocation[C].In First Workshop on Algorithms and Architectures for Self-Managing Systems.2003.
    76 王苏生.微观经济理论[M].人民大学出版社,北京,2006:201-322
    77 罗索,诺维格.人工智能:一种现代方法[M].清华大学出版社,北京,2006:322-795
    78 SHENKER,S.Fundamental design issues for the future Internet[J].IEEE J.Select.Areas Commun.,1999(13):1177-1188.
    79 KELLY,F.,Charging and rate control for elastic traffic[J].Europe Trans.On Telecommunications,2002(8):33-37.
    80 KELLY,F.,MAULLO,A.,and TAN,D.Rate control in communication network:shadow prices,proportional fairness and stability[J].Journal of the Operational Research Society,1998(49):237-252.
    81 MACHKIE-MASON,J.K.and VARIAN,H.R.Pricing congestible network resources[J].IEEE J.Select.Areas Commun,2003(13):1141-1149.
    82 ALTMAN,E.,BASAR,T.,JIMENEZ,T.,and N.SHIMKIN.Competitive routing in networks with polynomial cost[C].Proc IEEE INFOCOM,2000(1):1586-1593.
    83 GOODMAN,D.J.and MANDAYAM,N.B.Power control for wireless data.Proc[J].IEEE Personal Commun.,2000(7):48-54.
    84 SARAYDAR,C.U.,MANDAYAM,N.B.,and GOODMAN,D.J.Pricing and power control in a multicell wireless data network[J].IEEE J.Select.Areas Commun.,2001(19):1883-1892.
    85 SHAN,V.,MANDAYAM,N.B.,and GOODMAN,D.J.Power control for wireless data based on utility and pricing[C].Proc IEEE PRIMRC,1998(2):1427-1432.
    86 XIAL,M.,SHROFF,N.B.,and CHONG,E.K.P.A utility-based power control sheme in wireless cellular systems[J].IEEE/ACM,Trans on Commu.2003(11):210-221.
    87 LIU,P.,HONIG,M.,and JORDAN,S.Forward link CDMA resource allocating based on pricing[C].Proc.IEEE WCNC,2000(11):619-623.
    88 SONG,L.and MANDAYAM,N.B.Hierarchical sir and rate control on the forward link for CDMA data users under delay and error constraints[J].IEEE J.Select,Areas Commun.,2001(11):1871-1882.
    89 ZHOU,C.,HONIG,M.L.,and JORDAN,S.Two-cell power allocation for wireless data based on pricing[C].Proc.39~(th) Annual Allertor Conference,2001.
    90 Z.Li,G.Zhu and W.Wand.Improved algorithm of multiuser dynamic subcarrier allocation in OFDM system[C].Proc IEEE ICCT,2003(1):1144-1147
    91 A.W.Roste著.钟义信,李道本译.信息与通信理论[M].人民邮电出版社北京:1979.
    92 A.Mordecai,Nonlinear Programming:Analysis and Methods[M].Englewood Cliffs,N.J..Prentice-Hall,1976.
    93 R.L.Kruse and A.J.Ryba,Data Structures and Program Design in C++.Englewood Cliffs[M].N.J..Prentice-Hall,1999.
    94 N.K.Shankaranarayanan,Z.Jiang,and P.Mishra.User-perceived performance of Web-browsing and interactive data in HFC cable access networks[C].Proc.IEEE ICC,2001,(4):1264-1268.
    95 L.Kleinrock.Queueing System:Computer Application[M].New York.1975(2):56-63.
    96 Xiaojun Lin,Ness B.Shroff,R.Srikant.A Tutorial on Cross-Layer Optimization in Wireless Networks[J].IEEE JSAC,Vol.24,2006(8):1452-1463
    97 T.Bonald,L.Massoulie.Impact of fairness on Internet performance[C],in Proc.ACM Sigmetrics,Cambridge,MA,2001(6):82-91.
    98 J. Mo , J.Walrand. Fair end-to-end window-based congestion control[J]. IEEE/ACM Trans. Netw., vol. 8, 2000(5):556-567
    99 X. Lin , N. B. Shroff. Joint rate control and scheduling in multihop wireless networks[C]. in Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, 2004(12), 1484-1489.
    100 I. Paschalidis, W. Lai, D. Starobinski. Asymptotically optimal transmission policies for low-power wireless sensor networks[C]. in Proc. IEEE INFOCOM, Miami, FL,2005(5), 2458-2469.
    101 M. J. Neely, E. Modiano, C. Li. Fairness and optimal stochastic control for heterogeneous networks[C]. in Proc. IEEE INFOCOM, Miami, FL, 2005(3), 1723-1734.
    102 X. Wu , R. Srikant. Regulated maximal matching: A distributed scheduling algorithm for multi-hop wireless networks with node-exclusivespectrum sharing[C]. in Proc. IEEE Conf. Decision Control, 2005, 5342-5347.
    103 P. Chaporkar, K. Kar, S. Sarkar. Achieving queue length stability through maximal scheduling in wireless networks[C]. in Proc. Inf. Theory Appl. Inaugural Workshop, Univ. California,San Diego,2006:552-557
    104 J. Liu, J. Reich, F. Zhao.Collaborative In-Network Processing for Target Tracking[J]. EURASIP J. Applied Signal Processing, no. 4, Mar. 2003:378-391
    105 T. Vercauteren, D. Guo, X. Wang. Joint Multiple Target Tracking and Classification in Collaborative Sensor Networks[J]. IEEE J. Selected Areas in Comm., vol. 23, 2005(4):714-723
    106 P. Kulkarni, D. Ganesan, P. Shenoy. Multimedia Sensing: The Case For Multitier Camera Sensor Networks[C]. Proc. 15th Int'l Workshop Network and Operating Systems Support for Digital Audio and Video (NOSSDAV '05), June 2005:141-146
    107 W.-C. Feng, E. Kaiser, W.C. Feng. Panoptes:Scalable Low-Power Video Sensor Networking Technologies[J]. ACM Trans. Multimedia Computing, Comm., and Applications, vol. 1, 2005(2):151-167
    108 B. Zitova and J. Flusser. Image Registration Methods: A Survey. Elsevier Image and Vision Computing[J]. vol. 21, 2003(10): 977-1000,
    109 .M. Valera, S.A. Velastin. Intelligent Distributed SurveillanceSystems: A Review[C].IEE Proc.Vision,Image and Signal Processing,vol.152,2005(4):192-204
    110 D.Thirde,M.Borg,J.Aguilera,H.Wildenauer.Robust Real-Time Tracking for Visual Surveillance[J].J.Applied Signal Processing,2006.
    111 L.D.de Cerio,M.Valero-Garcia,A.Gonzalez.Hypercube Algorithms on Mesh Connected Multicomputers[J].IEEE Trans.Parallel and Distributed Systems,vol.13,2002(12):1247-1260
    112 A.Dogan and F.O zguner.Matching and Scheduling Algorithmsfor Minimizing Execution Time and Failure Probability of Applications in Heterogenous Computing[J].IEEE Trans.Parallel and Distributed Systems,vol.13,2002(3):308-323
    113 T.D.Braun,H.J.Siegel,N.Beck,A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems[J].J.Parallel and Distributed Computing,vol.61,2001(6):810-837
    114 S.Giannecchini,M.Caccamo,C.-S.Shih.Collaborative Resource Allocation in Wireless Sensor Networks[C].Proc.Euromicro Conf.Real-Time Systems(ECRTS'04),2004(6):35-44
    115 黄刘生,李虹,徐宏力等.无线传感器网络中基于负载平衡的多路路由[M].中国科技大学学报,vol 36 2006(8):887-892
    116 R.Kumar,V.Tsiatsis,M.B.Srivastava.Computation Hierarchy for In-Network Processing[C].Proc.Second ACM Int'lConf.Wireless Sensor Networks and Applications(WSNA '03),2003(9):68-77
    117 Y.Yu,V.K.Prasanna.Energy-Balanced Task Allocation for Collaborative Processing in Wireless Sensor Networks[J].ACM/Kluwer J.Mobile Networks and Applications,vol.10,2005(2):155-131
    118 Y.Tian,E.Ekici,F.O zguner.Energy-Constrained Task Mapping and Scheduling in Wireless Sensor Networks[C].Proc.IEEE Int'l Workshop Resource Provisioning and Management in SensorNetworks(RPMSN '05),2005(11):211-218
    119 Y.Tian,B.Jarupan,E.Ekici.Real-Time Task Mapping and Scheduling for Collaborative In-Network Processing in DVS-Enabled Wireless Sensor Networks[C].Proc.IEEE Int'l Parallel and Distributed Processing Syrup. (IPDPS '06),2006(4):l-10
    120 O. Younis, M. Krunz, S. Ramasubramanian. Node Clustering in Wireless Sensor Networks: Recent Developments and Deployment Challenges[J]. IEEE Network, vol. 20, 2006(5): 20-25
    121 E. Shih, S. Cho, N. Ickes. Physical Layer Driven Protocol and AlgorithmDesign for Energy-Efficient Wireless Sensor Networks[C]. Proc.ACM MobiCom '01, 2001(7): 272-286
    122 T. Pering, T. Burd, R. Brodersen. Dynamic Voltage Scaling and the Design of a Low-Power Microprocessor System[C]. Proc. Driven Microarchitecture Workshop, 1998, 107-112
    123 J. Pouwelse, K. Langendoen, H. Sips. Dynamic Voltage Scaling on a Low-Power Microprocessor[C]. Proc. ACM MobiCom'01, 2001(7):251-259
    124 Eunchul Yoon, Djordje Tujkovic and Arogyaswami Paulraj. Exploiting channel statistic to improve the average sum rate in OFDMA system[C]. Proc. IEEE, Globecom, 2005( 2): 115-119.
    125 G. Kulkarni, M. Srivastava. Subcarrier and bit allocation strategies for OFDMA based wireless ad hoc networks[C]. Proc. IEEE, Globecom, 2002: 92-96.
    126 G. Kulkarni, M. Srivastava. Subcarrier allocation and bit loading algorithms for OFDMA-based wireless networks[J]. IEEE Trans on Mobile Computing, 2005, 4(6): 652-661.
    127 N. Bambos, S. Chen, and G. Pottie. Channel access algorithms with active link protection for wireless communication networks with power control[J]. IEEE/ACM Trans. Networking, 2000, 8 (5): 583-597.
    128 D. G. Luenberger. Optimization by vector space methods[M]. New York, 2004(3): 21-26.
    129 D. H. Harton and B. S. Gausia. The capacity of a degraded spectral Gaussian broadcast channel[C]. Proc. IEEE Milcom, 2002, 29-34.
    130 Michael Weeks, Gulsah Altun. Efficient, Secure, Dynamic Source Routing for Ad-hoc Networks. Journal of Network and Systems Management[J]. Vol 14, 2006(4),12: 559-581

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700