薤白愈伤组织诱导与草甘膦抗性鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薤白作为一种中药,具有抗菌消炎、抗血小板聚集、抗氧化、降低血压、防止动脉样硬化、抗肿瘤等药理作用,且不良反应少,药源广泛,是一种非常有开发价值的药用植物。但在农业生产中,薤白又是一种较难除去的顽固性杂草。生产实践中发现薤白对优良除草剂草甘膦具有较强的抗性。草甘膦的作用方式是抑制芳香族氨基酸的合成。本文以薤白为材料进行了愈伤组织诱导试验,同时使用6种浓度的草甘膦对其愈伤组织和植株进行了抗性研究,对于揭示薤白草甘膦抗性机制及农作物生产中对其控制和防除具有一定的指导作用。
     试验结果如下:
     (1)薤白愈伤组织的诱导
     MS基本培养基附加2,4-D、6-BA、NAA三种生长调节剂对薤白鳞茎组织进行愈伤组织诱导。在所实施的20个组合培养基中,MS+2,4-D 1.682 mg/L+NAA 1.009 mg/L+6-BA 1.682mg/L诱导效果很好。三者与诱导率(Y)之间的回归方程为Y=65.66—9.69X_1—4.95X_3—5.88X_1~2—14.22X_2~2—16.63X_3~2。运用通用旋转组合设计,通过计算机模拟推测,最佳诱导培养基添加2,4-D,NAA和6-BA三种生长调节剂浓度最适范围分别是0.986~1.141 mg/L,0.930~1.088 mg/L和1.185~1.359 mg/L。
     (2)薤白愈伤组织草甘膦抗性
     薤白愈伤组织以不同浓度的草甘膦处理,表现出较高的草甘膦耐受性。薤白愈伤组织在草甘膦浓度值达到0.072 mol/L才开始出现愈伤组织部分坏死现象,同时在该浓度时愈伤组织的存活率仍为100%,而在草甘膦浓度达到0.096 mol/L时坏死现象加剧,存活率下降至60%。以草甘膦敏感烟草和蕌头为对照材料进行草甘膦处理,烟草愈伤组织在草甘膦浓度为0.012 mol/L时就出现大量坏死现象,在该浓度的成活率仅为20%,蕌头愈伤组织则不能耐受0.024 mol/L的草甘膦,其在该浓度的成活率只为20%。
     (3)薤白植株草甘膦抗性
     田间施用草甘膦,观察薤白植株形态变化。使用草甘膦后薤白叶片在0.011 mol/m~2,0.022 mol/m~2剂量组没有出现枯萎现象,而在0.044 mol/m~2剂量组中虽然出现了枯萎现象,但不是太明显,而在浓度0.088 mol/m~2剂量组出现了比较明显的枯萎现象,但30d后的成活率仍为70%,而在0.167 mol/m~2剂量组中枯萎现象较明显,而30d后的成活率低于50%;测定其叶片叶绿素含量:草甘膦剂量处理组0.011~0.022 mol/m~2的叶绿素含量没有明显的变化,说明草甘膦该剂量对薤白植株的处理的叶绿素含量影响不明显。而0.044 mol/m~2、0.088 mol/m~2和0.167 mol/m~2的叶绿素含量均有不同程度的下降,这与试验观察的薤白植株有枯萎现象相一致。草甘膦剂量越大,叶绿素下降开始的时间越早,下降的幅度也越大。测定其可溶性蛋白含量:对照组中的可溶性蛋白含量维持了稳定的水平;而0.011 mol/m~2和0.022 mol/m~2的可溶性蛋呈现出先降后升的变化,说明薤白在进行草甘膦处理后,促进了薤白植株蛋白质的合成;0.044 mol/m~2和0.088 mol/m~2处理出现了比较大的波动,可能原因是草甘膦处理后薤白植株为了适应恶劣的坏境而增加的蛋白质的合成,所以出现先降后升的现象;0.167 mol/m~2时初期蛋白含量急剧下降,后来下降的趋势有所缓和,最后仅有20%存活。因而可以得出薤白植株耐受草甘膦剂量为:0.088 mol/m~2。
     建立薤白愈伤组织诱导生长调节剂浓度的最优组合,可以为建立一套薤白无性繁殖体系提供理论基础,同时为薤白愈伤组织草甘膦处理提供材料。对薤白愈伤组织草甘膦抗性的确定可以得出薤白对草甘膦的抗性并不是由于薤白植株的特殊外部结构引起的。确定薤白的草甘膦抗性剂量,可以为在农业生产中运用草甘膦对薤白的控制和防除提供最佳方案。
Allium macrostemon Bunge is a Chinese traditional medicine herb which is usedfor aggregating antioxidant, depressing blood pressure, preventing atherosclerosis,antitumor pharmacy and so on. It is low in side-effects but widespread in the wild. Soit has been used as traditional Chinese medicine herb for a long time. But it is actuallya harmful weed in agriculture that is difficulty to be eliminated in field.
     Allium macrostemon Bunge showes strong resistance to glyphosate, a powerfulherbicide usually applied in herbs control. Glyphosate inhibits the synthesis ofaromatic amino acids in plants and be regarded as a safe and environment friendlyherbicide. To learn the mechanism how Allium macrostemon Bunge can resistant toglyphosate, the callus induction conditions for Allium macrostemon Bung.e culture areset. The induced callus are screened on glyphosate media to test its resistance ability.Field resistance test is also carried out under six grades concentration of glyphosatetreatment.
     The results are shown as follows:
     (1) That 2,4-D is the most important factor in callus inducing of Alliummacrostemon Bunge. The regression equation between inducing ratio of callus and thehormones is: Y=65.66-9.69X_1-4.95X_3-5.88X_1~2-14.22X_2~2-16.63X_3~2. Accordingthe equation, the optimal medium and hormone concentration are formulated out bycomputer evaluation. It is: MS+0.986~1.141mg/ L 2,4-D+0.930~1.088mg/LNAA+1.185~1.359mg/L 6-BA.
     (2) The glyphosate resistance of Allium macrostemon Bunge callus: Alliummacrostemon Bunge Callus grow on medium treated with different concentrations ofglyphosate. Allium macrostemon Bunge callus showes high tolerance to the herbicideglyphosate. The survival rate is 100% on 0.072 mol/L and is 60% when theconcentration reachs 0.096 mol/L while the controlling plants tobacco are verysensitive to the herbicide and all the callus putrescence on 0.012mol/L glyphosate medium with in 1 w. And the survival rate of Chinese onion, an other control plant,is 20%in 0.024 mol/L glyphosate. The highest tolerance of Allium macrostemonBunge callus is 0.096 mol/L.
     (3) Treating Allium macrostemon Bunge plant in field and the morphology areobserved. The leaves of Allium macrostemon Bunge are normal when glyphosate of0.011 mol/m~2 and 0.022 mol/m~2 are spraied. But it withering when the concentrationreachs to 0.044 mol/m~2 and the plant appears noticeably withered in a concentrationof 0.088 mol/m~2 glyphosate, However the plant survival more then 70%after 30 daysof the spray. Chlorophyll content in the leaves is test by spectrum. The chlorophyllcontent decreases more when higer glyphosate is applied. Then content showes anegative relationship with the applied glyphosate concentration. The soluble proteincontents in the leaves of different treatment are also analysied. It appears an initialincrease and later decrease in the treatment of glyphosate concentration 0.011 mol/m~2and 0.022 mol/m~2. It appears relatively large fluctuations when the concentration of0.044 mol/m~2, 0.088 mol/m~2 and 0.167 mol/m~2 of glyphosate are applied. It isconclude that Allium macrostemon Bunge field tolerance to glyphosate in theconcentrations of 0.088 mol/m~2 spray.
     It is nessceray to establish an asexual reproduction system of Allium macrostemonBunge to learn its tolerance to glyphosate. The callus culture and inducing alsoprovides a speed propagation method for Allium macrostemon Bunge. The callustolerance of Allium macrostemon Bunge confirmes that the resistance to glyphosate ofthe plant in field is not due to the special machinical reason but may owe to atolerance enzyme EPSPs. The study may be helpful to establish a more efficientmethod to control the weed in field.
引文
1.吴征镒,洪德元.中国植物志[M].第十四卷.北京:科学出版社,1980:265-266.
    2.张卿,高尔.薤白研究进展[J].中国中药杂志,2003,28(2):105-107.
    3.王玉英,高新一.植物组织培养技术手册[M].北京:金盾出版社,2006:1-3.
    4.王刚.百合组织培养及组织培养中的染色体行为[D].西北师范大学硕士论文,2002.
    5. Steward EC., Mapes M. O., Mears K.. Growth and Organized development of cultured cells II organization in cultures growth from freely suspend cells[J]. American Journal of Botany, 1958, 45: 705-708.
    6. Reiner J.. Tuber die Kontrolle der Morphogenes und die Induktion von Adventive-embryonen an Gewebekulturen aus Karotten[J].P 1 ant, 1959, 53: 318-333.
    7.郑企成,朱光耀,陈文华.小麦体细胞无性系子粒胚乳醇溶蛋白的变异[J].核农学报,1991,5(3):134-138.
    8.鲍雪珍,张志忠,沈利爽等.葡萄胚性愈伤组织无性系的建立保持和植株再生的研究[J].山东大学学报,1995,30(1):105-111.
    9.徐子勤,贾敬芬.豆科植物的体细胞杂交[J].植物生理学通讯,1997,33(4):288-291.
    10. Martinelli L., Mandoline G. Genetic transformation and regeneration of transgenetic plant in grape vine (vitis rupestris)[J]. Theor. Appl. Gen., 1994, 88: 621-678.
    11.张松,李红蓉,李滨等.分葱组织培养体细胞胚发生的研究[J].园艺学报,1997,24(3):264-268.
    12.伍宁丰,范云六,苏云余.芽抱杆菌杀虫蛋白的杨树土程植株的建立[J].科学通报,199l,9:705-708.
    13. Avihai P., Ofra P. L., Abu-Abied M., et al. Establishment of an Agrobacterium-mediated transformation system for grape:The role of antioxidants during grape-Agrobacterium interations[J]. Nature Biotechnology, 1996, 14: 624-628.
    14. Raernakers C.J.J.M., Jacobsen E.,Visser R.G.F.. Secondaty somatic embryogenesis and applicationsin plant breeding[J].Euphytical, 1995, 81: 93-107.
    15.罗凤霞,徐桂华,金丽丽等.新铁炮百合微繁的研究[J].沈阳农业大学学报,2000,3 1(3):254-257.
    16.高敏.香水百合的组培快繁[J].广西农业科学,2002(3):120-121.
    17.陈为民,宋为民.卷丹和青岛百合的组织培养及植株分化[J].植物生理学通讯,1982(2):35-36.
    18.黄济明.百合的组织培养和试管内诱发多倍体试验[J].园艺学报,1983,10(2) :125-128.
    19.王家福,陈振光.百合快速繁殖条件优化[J].福建农业大学学报,1999,28(2):152-156.
    20.刘选明、周朴华,屈珠存等.百合鳞片叶离体诱导形成不定芽和体细胞胚[J].园艺学报,1997,24(4):353-358.
    21.王刚,杜捷.兰州百合和野百合组织培养及快速繁殖研究[J].西北师范大学学 报,2002,38(1):69-71.
    22.张文仲.不同激素配比对麝香百合鳞茎芽诱导的影响[J].亚热带植物科学,2002,31(1):21-24.
    23.马惠,郭扶兴,周俊彦等.百合叶片愈伤组织的诱导和植株再生[J].植物生理学通讯,1992,28(4):284-287.
    24.吕启愚,周维燕,董雅一.从大蒜嫩叶诱导愈伤组织及植株再生[J].园艺学报,1995,22:161-165.
    25.张松,张启沛.利用大蒜幼叶进行组织培养微繁的研究[J].园艺学报,1999,35:379.
    26.郑海柔.大蒜叶片愈伤组织的幼苗诱导[J].上海农业科技,1990,35:379.
    27.陈刚,贾敬芬.沙葱的组织培养和植株再生[J].植物生理学通讯,1999,35:379.
    28.陈世儒,黄菊辉.人蒜的离体快繁及脱毒[J].园艺学报,1991,18:245-250.
    29.徐培文,孙慧生,孙瑞杰.人蒜茎尖脱毒及增产效果的研究[J].山东农业科学,1991,6:6-10.
    30.陈典,徐启江.分蘖洋葱茎尖愈伤组织诱导及植株再生[J].园艺学报,2001,28:359-360.
    31. Shuto H.,Abe T., Yarnagata T.. In vitro propagation of plant from root apex-derivde calli in Chinese Chive (Albumtuberosum Rottle) and garlic (A. salivum L.) [J]. Japan J Breed, 1993, 43: 349-354.
    32. Myers J. M., Simon P. W.. Continuous callus production and regeneration of garlic (Allium Sativum L.)using root segments from shoot-derived plantlets[J]. Plant Ce 11 Rep, 1998, 17: 726-734.
    33.李耿光,张兰英.麝香百合茎段组织培养快速繁殖[J].云南植物研究,1983,5(3):327-331.
    34.陈小兰,胡琼华,王红霞.金百合的离体快速繁殖[J].植物生理学通讯,2000,36(4):334.
    35. Pike L M, Yoo K S. A tissue culture technology for the clonal propagation of onion using immature flower buds[J]. Sci. Hort, 1990, 45: 31-36.
    36.贾敬芬,谷祝平,郑国.百合花丝组织培养及其细胞学观察[J].植物学报,1981,23(1):17-21.
    37.于晓英,吴铁明,倪沛等.百合幼胚的离体培养结合植株再生[J].湖南农业大学学报,2000,26(4):286-288.
    38.贾敬芬,陈刚,郝建国.葱属植物离体培养和遗传操作[J].农业生物技术学报,2002,10(2):103-107.
    39.刘明志,林雪艳.激素对百合植株再生的影响[J].广西植物,2002,22(2):167-170.
    40.韦秋吉.2006年中国草甘膦行业状况分析[J].中国农药,2007(1):8-30.
    41.陈云.除草剂草甘膦的性质和应用[J].湖北化工,1995,2:10.
    42.游大慧.白菜型油菜EPSPs全长cDNA的克隆和原核表达[D].四川大学硕士论文,2004.
    43. Kennedy E. R., Jordan P. A.. Glyphosate and 2, 4-D: the impact of two herbicides on Moose browse in forest plantations[J]. Alces, 1985(21): 1-11.
    44. Freedman B.. Controversy over the use of herbicides in. forestry, withparticular reference to glyphosate usage[J]. J Environ Sci health, 1991,C8 (2):277-286.
    45. Pratley J., Urwin N., Stanton R.,et al. Resistence to glyphosate in Lolium rigidum.I. Bioevaluation [J].Weed Sci,1999(47):405.
    46. Jaworski E.G. Mode of aotion of N - phosphono-Methylglycine: inhition of aromatic amino acid biosythesis[J].Agric.Food.Chem, 1972(20):1195-1198.
    47. Steinrucken H.C., Amrhein,N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimicacid-3-phosphatesynthase.Biochem.Biophysl.Res. [J]. Commun., 1980(94): 1207-1212.
    48. Haslam E.. The shikimate pathway[M]. London:Butterworths. 1974:780-783.
    49. Roberts F., Roberts C.W., Johnson J.T.,et al. Evidence for the shikimate pathway in apicompiexan parasites[J].Nature, 1998(393): 801-805.
    50. McConkey G.A.. Targeting the shikimate pathway in the malaria parasite Plasmodium falciparum[J]. AntimicrobAgents Chemother, 1999(43): 175-177.
    51. Bentley R.. The shikimate pathway-ametabolic tree with many branches[J].Crit Rev Biochem Mol Biol, 1990(25):307-84.
    52. Herrmann K., Weaver L.. The shikimate pathway[J]. Annu Rev Plant Physiol PlantMol Biol,1999(50):473-503.
    53. Craig W.R., Fiona R., Russell EL. The Shikimate Pathway and Its Branches in Apicomplexan Parasites[J].The Journal of Infectious Diseases, 2002(185) (Suppll):S25-36.
    54 朱玉.极端污染环境下草甘膦耐受菌株荧光假单胞菌G2的鉴定及其EPSP合成酶基因的克隆[D].中国农业科学院硕士论文,2002.
    55. Lynda G. B.,Celine B.. Subtle effects of herbicide use in the context of genetically modified crops:a case study with glyphosate(Roundup(?))[J].Ecotoxicology, 2003(12):271-285.
    56. Smart C.C.,Amrhein N.. Ultrastructural localisation by protein A-gold immunocytochemistry of 5-enolpyruvylshikimic acid 3-phosphate synthase in a plant cell culture which overproduces the enzyme[J].Planta, 1987, 170: 1-6.
    57. Stallings W.C., Abdel-Meguid S.S., Lim L.W., et al. Strucutre and topological symmetry of the glyphosate target 5-enolp-yruvylshikimate-3-phosphate synthase: A distinctive protein fold[J].Proc.Natl.Acad.Sci.,USA, 1991 (88):5046-5050.
    58.朱玉,于中连,林敏.草甘膦生物抗性和生物降解及其转基因研究[J].分子植物育种,2003,1(4):435-441.
    59.向文胜.抗除草剂草甘膦转基因作物[J].东北农业大学学报,1998(1):92—98.
    60. GinaPries.EPSPSynthase[OL].http://www.arches.uga.edu/~gpries/bcmb8010/structure.htm.2002-09-12/2005-12-31.
    61.苏小泉.抗草甘膦作物的创制和发展[J].世界农业,2004,3:48-50.
    62. Nafziger E.D.,Widholm J.M.,Steinrucken H.C.,et al. Selection and characterization of a carrot line tolerant to glyphosate[j].Plant Physiol, 1984,76:571-574.
    63. Rogers S.G..,Brand L.A.,Holder S.B.,et al. Amplification of the aroA gene from Escherichia coli results in tolerance to the gerbicide glyphosate[J].Applide and Envimmental Microbiology, 1983,46:37-43.
    64. Nafziger E.D.,widholm J.M.,steinrucken H.C.,et al. Selection and characterization of a carrot cell-line tolerant to glyphosate [J]. Plant Physiol, 1984,76:571-574.
    65. Hauptmann,RMdeua, cioppa G.,et al. Expression of glyphosate resistance in carrot somatic hybrid cells through the transfer of an amplified 5-enolpyruvylshi-kimate-3-phosphate synthase gene[J]. Mol Gen Genet,1988, 211:357-363.
    66. Comai L.,Sen L.C.,Stalker D.M.. An altered aro A gene product confers resistance to the herbicide glyphosate [J].science, 1983,221: 270-271.
    67. Comai L.,Facciotti D.,Hiattl W.R.,et al. Expression in plants of a mutant aroA gene from Salmonella typhimurium corfers tolerance to glyphosate[J].Nature, 1985,317:741-744.
    68. Stalker D.M.,Hitatt W.R.,and Comail L.. A single amion acid subsitution in the enzyme 5- enolpyruvylshikmate-3-phosphate synthase confers resistance to the herbicide glyphosate[J].The Journal of Biological Chemistry, 1985,260(8):4724-4728.
    69.向文胜,张文吉,王相晶等.EPSP合成酶的特性及新抑制剂的研究进展[J].农药学学报,2000,2:1-8.
    70. Penaloza-Vazquez A.,Mena G.L.,Herrera-Estrella L., et al. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei[J].Appl.Environm.microbiol. 1995,61 (2): 538-543.
    71. Kent-Moors J., Braymer H.D., Larson A.D. Isolation of a pseudomonas sp.which utilizes the phosphonate herbicide glyphosate[J].Appl Environ Microbiol, 1983,46:316-320.
    72. Pipke R.,Amrhein N.,Jacob G.S.. Metabolism of glyphosate in an Arthrobacter sp. GLP-1 [J]. Eur J Biochem, 1987,(165):267-273.
    73. Jacob G.S., Schaefer J., Stejskal E.O.. Solid-state NMR determination of glyphosate metabolism in a Pseudomonas sp[J].J Biol Chem, 1985,260:5899-5905.
    74. Lorraine-Colwill D.F.,Hawkes T.R.,Williams P.H.. Resistance to gyphosate in Lolium rigidum[J].Pestle Set, 1999,55:486-503.
    75. Baerson S.R.,Rodriguez D.J.,Tran M.,et al. Gyphosate-resistant goosegrass. Identification of a mutation in the target enzym 5-enolpyruvylshi-kimate 3-phosphate synthase[J]. Plant Physiol, 2002,129(3): 1265-1275.
    76.张宏军,王萍,周志强等.杂草对草甘膦的抗性及抗性治理[J].农药科学与管理.2004,25(5):18-22.
    77.梁爱敏.极端草甘膦环境中EPSP合酶基因的克隆及其抗性相关位点的鉴定[D].河北农业大学硕士论文,2004.
    78.苏小泉.转基因作物的风险及其食品安全性的争论[J].现代化业.2003,282:4-5.
    79.谢龙旭,李云锋,徐培林.根癌农杆菌介导的转aroAM12基因棉花植株的草甘膦抗性[J].植物生理与分子生物学学报,2004,30(2):173-178.
    80.何鸣,曾海燕,徐培林等.aroA基因的克隆和优化[J].中山大学学报,2002,41(2):76-79.
    81.文惠玲,汪冶.浅谈百合科植物薤Allium chinensis的开发与利用[J].湖南中 医药导报,2003,9(12):44-45.
    82.纪远中.薤白研究近况及开发前景[J].天津药学,2005,17(1):54-56.
    83.林树坤,张有君.薤白的利用与高产栽培[J].特种经济动植物,2005,10:33.
    84.张卿,高尔.薤白的研究进展[J].中国中药杂志,2003,28(2):105-107.
    85.袁志发,周静芋.试验设计与分析[M].北京:高等教育出版社,2000:366.
    86. Chengalrayan K.,Gallo-meagher M.. Effect of various growth regulators on shoot regeneration of sugarcane[J].In Vitro Cell. Dev. Biol, 2001,37: 434-439.
    87.周宜君,周生闯,刘玉等.植物生长调节剂对植物愈伤组织的诱导与分化的影响[J].中央民族大学学报,2007,16(1):23-28.
    88.李志勇,罗焕亮,郭勇.大蒜愈伤组织诱导条件的优化[J].华南农业大学学报,1999,20(4):54-58.
    89.赵祥云,程廉,邢尤美等.百合珠芽组培及脱毒研究[J].园艺学报,1993,20(3):284-288.
    90.丁路明.2,4-D和6-BA对旱热禾愈伤组织诱导的影响[J].草原与草坪,2003(1):34-37.
    91.林娅,郑玉梅.影响月季愈伤组织诱导和分化的因素[J].分子植物育种.2006,4(2):223-227.
    92.肖波,廖尔华.植物生长物质诱导芦荟叶片愈伤组织效果的研究[J].植物生理科学.2006,22(1):163-165.
    93.龙雯虹,许彬.萝卜诱导愈伤组织的影响因素[J].西南农业大学学报.2006,28(1):131-134.
    94.王红霞,胡琼华,陈小兰.通江百合的组织培养[J].植物生理学通讯,2000,36(2):132.
    95.闻丽,张日清.不同激素配比对油茶花药愈伤组织形成的影响[J].经济林研究.2005,23(4):21-23.
    96.裴雁曦,邢国明,郝建平.大蒜鳞芽组织脱分化条件的分析与预测[J].山西大学学报,1999,22(1):65-70.
    97.程爱芳.百合(Lilium spp)的组培快速繁殖技术研究[J].武汉生物工程学院学报,2006,2(1):27-29.
    98.穆春华.大葱组织培养与种质亲缘关系分析[D].山东农业大学硕士研究生学位论文.2002.
    99. Zaid A.. In vitro brouning of tissues and media with special emphasis to date Palm culture Areview[J].ActeHort, 1987,21 (2):561-566.
    100.崔堂兵,郭勇.植物组织培养中褐变现象的产生机理及克服方法[J].广东农业科学,2001,3:16-18.
    101.高国训.植物组织培养中的褐变问题[J].植物生理学通讯,1999,35(6):501-506.
    102.万志刚,宋卫平,顾福根等.良种白沙枇杷冠玉的组织培养和快繁技术究[J].苏州大学学报,2000,16(4):89-92.
    103.李春瑶,吴国团,唐莲英等.枇杷成年茎段离体培养及植株再生[J].广西师范大学学报,1995,13(2):77-80.
    104.缪耀梅,李开彪,叶添谋.组织培养过程中污染和褐化的防治[J].韶关学院学报,2003,6(24):101-104.
    105.季彪俊.活性炭在水稻花药培养中的作用[J].福建农业大学学报,1998, 27(1): 16.
    106. Sticher L.. Systemic Acquired Resistence[J]. Annu. Rev. Phytopathol,1997, 35:235-270.
    107.罗广华,王爱国,邵从本等.高浓度氧对水稻幼苗的伤害及活性氧防御酶[J].中国科学院华南植物所集刊,1989,34(1):169-176.
    108.王光远,夏镇澳,王六发.洋葱叶肉原生质体再生小植株[J].实验生物学报,1986.19:409-413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700