脊灰病毒Sabin1株疫苗载体构建及在流感通用型疫苗研制中的初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感病毒RNA聚合酶缺少校正功能,导致基因组在复制过程中容易发生突变,人群中因以往感染产生的抗体不能有效地防止新毒株感染,因而每年需要注射流感疫苗,给社会带来沉重的经济负担。如果有一种通用型疫苗,经过全程免疫后,产生广谱性抗体,则能够预防各种变异病毒,或降低感染病毒后疾病的严重程度。甲型流感病毒囊膜上除血凝素(HA)和神经氨酸酶(NA)外,还含有一个分子量较小的基质蛋白M2,其胞外区(M2e)非常保守,是研制通用型疫苗的最佳靶位。由于M2e只含有24个氨基酸,需要以各种措施来增强其免疫原性。本论文拟将口服脊髓灰质炎疫苗(OPV)Sabin1株病毒改造为疫苗载体,采用多聚蛋白融合策略,插入流感M2e基因,将前者作为表达载体和免疫佐剂,提高人体针对M2e的免疫应答,构建一种能抵御各种甲型流感病毒的通用型疫苗
     通过RT-PCR方法扩增了Sabin1株病毒基因组的三个片段f1、f2、f3并分别克隆,在f1和f2、f2和f3片段之间含重叠序列,内有基因组唯一的酶切位点。因此,三片段可以通过酶切和连接获得全基因组。将三个克隆分别测序,与GenBank中序列比较,发现在基因组7440bp中只有三个位点不同,其中26 A→G,355 C→T两个位点处于非编码区,6735 A→G导致聚合酶3D上250位氨基酸由赖氨酸变为精氨酸。说明Sabin1株基因组比较稳定,适合于作为疫苗载体。
     基因组起始密码子(nt743)位于pGEM-f1质粒上,通过重叠PCR方法在之前插入多克隆位点(EcoRI、XmaI、XhoI)和人工蛋白酶切位点(ALFQG)构成的功能盒(Cassette),形成pGEM-f1m质粒;同样,在位于pGEM-f2质粒上P1/P2结合处引入类似序列,构建为pGEM-f2m质粒。连接为基因组后可形成两种基本型载体PV1和PV2。多克隆位点内插入的外源基因随多聚蛋白表达后,在病毒编码的蛋白酶切割后释放外源蛋白。
     为提高载体RNA的转染效果,另外在载体上进行两项改造:基因组前加入锤头型核酶(Rz)基序,合成RNA后发挥核酶功能,去除多余核苷酸,产生PV基因组真正的5’-末端;在基因组后导入poly(A)40结构,后者是PV RNA感染的必要基序。两个基序均以PCR引物延伸方法产生,并通过基因置换方式导入到pGEM-f1m和pGEM-f3中,经测序证明引入的基序与设计序列一致。将改造前和改造后的质粒进行三片段连接,形成八种载体,分别含有不同的功能盒及基序组合。
     将携带各种PV载体的质粒线性化后,以T7 RNA聚合酶体外转录法合成RNA并纯化,通过电泳发现RNA完整性、均一性良好,适合于转染细胞。对含有Rz序列的RNA进行体外切割,经PAGE电泳检测反应进程,确定在合适的缓冲液中作用1.5小时获得最佳切割效果。
     采用电穿孔、脂质体转染法和磷酸钙转染法将提取的PV Sabin1 RNA转染入Vero细胞,以形成的噬斑数目比较转染效率,筛选转染大分子RNA的最佳方法。实验结果证明脂质体Tfx-20的转染效率最佳,达到1.1~1.5×103感染性克隆/μg RNA,对细胞毒性不明显。以Tfx-20转染八种载体RNA,只有同时含有poly(A) 40和Rz基序的载体pPV1RzA和pPV2RzA能有效产生活病毒,约500~800克隆/μg RNA。感染性病毒产生时间与转染RNA量有关,当以10μgRNA转染时,60小时就可以观察到细胞病变;而以1μgRNA转染时,需要4天产生病变效应。只含有poly(A)40基序的载体RNA也可以成功转染,但效率低,当RNA量为1μg时无法得到活病毒。不含两个基序或只含Rz基序的RNA在Vero细胞上无感染性,即使将RNA量增加到30μg,培养10天亦无活病毒产生。
     从霍乱弧菌中扩增霍乱毒素B亚单位(CTB)基因,测序证明正确后,以PCR引物延伸法构建CTB和M2e的融合基因,并在两端分别添加EcoRI和XhoI位点,通过双酶切将融合基因导入到pPV1RzA中,保持正常的编码框架,以建立的方法转染Vero细胞,获得了重组病毒rPV-CTBM2e。另外,扩增SARS-冠状病毒S蛋白的受体结合区基因S-RBD后,以同样方法获得了重组病毒rPV-S-RBD。提取重组病毒RNA,以RT-PCR方法扩增涵盖插入序列的片段并测序,证明两个重组病毒均携带预期片段。
     将重组病毒传代多次,通过RT-PCR方法考察重组病毒的稳定性。rPV-CTBM2e病毒传代12次后仍保持完整的外源基因,而rPV-S-RBD病毒在传代过程中丢失外源基因。rPV-CTBM2e病毒一步生长曲线证明其繁殖有延迟现象,但最终能得到和Sabin1病毒同样的滴度。
     将M2e合成多肽和KLH载体蛋白偶联后免疫Balb/c小鼠,制备了针对M2e多肽的单克隆抗体,以ELISA方法筛选得到7株有活性的单抗。以单抗上清检测感染Vero细胞的流感病毒,发现其中5株能与细胞表面的天然M2e结合,其中两株为强阳性,可用于重组病毒M2e表达的检测。
     将重组病毒感染Vero细胞,通过免疫荧光方法,分别以抗M2e单抗和抗SARS-病毒免疫血清检测,发现在细胞中出现明显的荧光信号,并集中在细胞质中,说明外源蛋白在细胞质中成功表达,与预期结果一致。本研究为研制流感通用型疫苗和SARS-CoV疫苗奠定了基础。
The primary means of controlling influenza virus at the present time is vaccination. The compositions of vaccine are changed yearly according to WHO recommendation. This is because RNA polymerase of influenza virus are less faithful than are DNA polymerases and are not able to correct errors by a proof- reading mechanism, thus mutations occur enough to provide ample source for the selection of naturally accumulated variants. The antibodies exist in human body induced by vaccination or exposure to previously circulating virus could not efficiently prevent the infection of mutated strains. A universal vaccine,which protects effectively against all influenza A strains and provides long- lasting immunity, will definitely be an attractive solution to overcome the threat of this promiscuous virus. It involves a vaccine based on the extra- cellular domain of the influenza M2 protein (M2e), which has remained nearly invariable since the virus was isolated in 1933. However, M2e is less immuno- genic since it is a small peptide of 24 amino acids. In this study, we aim to modify the Sabin 1 poliovirus as a vaccine vector and rescue the recombinant virus carrying the fusion gene of Cholera Toxin B subunit and M2e. Our strategy is to use the live attenuated virus to boost the immunogenicity of this peptide.
     Three fragments of Sabin1 poliovirus were amplified by RT-PCR and cloned into pGEM vectors. The overlapping sequences between neighboring fragments contain unique restriction enzyme sites within the genome. Thus, the 3 fragments could be joined together to form the whole genome by enzyme digestion and ligation. The sequencing results show that three nucleotides are different from the genome sequence in GenBank. Only one mutation, 6735 A→G, results in the change from 250Lysine to 250Arginine on polymerase 3D.
     In order to construct the gonome as a vector, a cassette containing EcoRI, XmaI, XhoI sites and artificial protease site was introduced adjacent before the initial codon of PV ORF. A similar cassette was also inserted into the P1/P2 joint site. Thus, two kinds of basic PV vectors could be derived based on the different insertion sites of extrageneous genes. The modification were carried out on different plasmids and accomplished by overlapping PCR methods.
     To improve the transfection efficiency of vector-derived RNA, further modifications were made on the vectors. A hammer-headed Ribozyme (Rz) motif was added just before the 5’-terminal of genome, thus the transcribed RNA could cleavage itself in vitro, releasing the additional nucleotides derived from plasmid and leaving PV RNA with the authentic 5’-end. A poly(A)40 stretch was patched to the 3’-terminal of genome to stabilize the transcribed RNA. Two modifications were carried out on target plasmids by primer extension PCR and fragment replacement, respectively. The original and derived plasmids were assembled into 8 kinds of vaccine vectors with different combination of various cassettes and motifs.
     The plasmid carrying vectors were linearized by enzyme digestion and were used as templates to synthesize RNAs by T7 RNA polymerase in vitro. Agrose electrophoresis result demonstrated that the dedived RNA are homogenous and intact in size, thus are suitable for transfection. The RNAs carrying Rz motif were subject to self-cleavage in reaction buffer and small Rz released were visulized by PAGE. Rz fragments accumulate as time progress and reach to platform at 1.5 h.
     To optimize the transfection condition, RNAs extracted from Sabin1 virus were transfected into Vero cells through different methods and reagents. The plaques achieved by 1μg RNA at different methods were calculated. The results suggested that liposome Tfx-20 has the highest efficiency with 1.1~1.5×103 infectious clones/μg RNA and exhibits the minimum toxicity on cells. RNAs transcribed from 8 kinds of vectors were transfected into Vero cell using establish- ed method. Only vectors containing both the Rz and poly(A)40 motifs can transfect cells with high efficiency, with 500~800 clones/μg RNA. When 10μg RNAs were transfected, CPE could appear as early as 60 h post- transfection. The RNAs carrying only poly(A)40 can also produce infectious viruses with lower efficiency, while RNA from vectors bearing only Rz or neither of the motifs failed to rescue live viruses on Vero cells.
     Cholera Toxin B subunit (CTB) gene was amplified by PCR and fused to M2e by primer extension PCR. EcoRI and XhoI sites were designed to 5’-and 3’- end of fusion gene, respectively. The gene was inserted into the polylinker site of pPV1RzA by double digestion and re-ligation. Rescued recombinant virus carrying CTBM2e gene, rPV-CTBM2e, was obtained by the established mthod. Similarly, a recombinant virus carrying the receptor binding domain gene from SARS-CoV Spike protein, rPV-S-RBD, was also prepared using the same vector. The foreign inserts were confirmed by RT-PCR and sequencing. rPV-CTBM2e was very stable during the 12 round of passage in Vero cell, while rPV-S-RBD lost the foreign insert quickly in serial passages.
     Monoclonal antibodies against M2e were prepapred by immunizing Balb/c mice with M2e peptide coupling to KLH carrier proteins. 7 clones of McAb were screened by ELISA, and 5 of them can bind to natural M2e displayed on Vero cells, which were infected with influenza virus.
     Vero cells infected with rPV-CTBM2e and rPV-S-RBD were treated with paraformaldehyde and permeated with Triton X-100. The expressed proteins were detected by McAb agsinst M2e and polyclonal antibodies against SARS-CoV and visualized by FITC-labeled secondary antibodies.The fluorescence signals appear mainly in the cytoplasm, thus confirmed the expression of foreign proteins. Our study involves in construction of Sabin1 poliovirus as a vaccine vector with high efficiency and provides a powerful tool for development of universal influenza vaccine and SARS-CoV vaccine.
引文
1. Landsteiner K, Popper E. Mikroscopische pra¨parate von einem menschlichen und zwei affentu¨ckermarker. Wein klin Wschr. 1908, 21:1930.
    2. 张延龄, 张辉主编. 疫苗学.科学出版社.北京.2004年.
    3. Enders JF, Weller TH, Robbins FC, et al. Cultivation of the Lansing strain of poliomyelitis in cultures of various human embryonic tissue. Science,1949, 109:85-87.
    4. Salk JE, Krech U, Youngner JS, et al. Formaldehyde treatment and safety testing of experimental poliomyelitis vaccines. Am J Public Health 1954, 44:563-70.
    5. Furesz J. Developments in the production and quality control of poliovirus vaccines -- historical perspectives. Biologicals. 2006, 34(2):87-90
    6. 王剑锋, 李长贵, 周铁群, 等. 脊髓灰质炎灭活疫苗免疫效果观察. 中国生物制品学杂志. 2001, 14(2):122-123.
    7. Sabin AB, Hennessen WA, Warren J. Ultrafiltration and electron microscopy of three types of poliomyelitis virus propagated in tissue culture. Proc Soc Exp Biol Med 1954, 85(2):359-63.
    8. Sabin AB, Hennessen WA, Winsser J. Studies on variants of poliomyelitis virus. I. Experimental segregation and properties of avirulent variants of three immunologic types. J Exp Med 1954, 99(6): 551-76.
    9. Sabin Albert B. Present status of attenuated live virus poliomyelitis vaccine. Bull N Y Acad Med 1957;33(1):17-39.
    10. Sabin AB. Status of field trials with an orally administered, live attenuated poliovirus vaccine. JAMA.1959, 171:863-8.
    11. Pallansch MA, Sandhu HS. The eradication of polio--progress and challenges. N Engl J Med. 2006,355(24):2508-11.
    12. Racaniello VR. Picornaviridae: The viruses and their replication. Knipe DM, Howley PM(eds). Fields Virology, 4th edi. Lippincott Williams&Wilkins, Philadelphia.
    13. Nomoto A, Kitamura N, Golini F,et al. The 5'-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg. Proc Natl Acad Sci U S A. 1977, 74(12):5345-9.
    14. Pettersson RF, Flanegan JB, Rose JK, et al. 5'-Terminal nucleotide sequences of polio virus polyribosomal RNA and virion RNA are identical. Nature. 1977, 268(5617):270-2
    15. Ambros V, Pettersson RF, Baltimore D. An enzymatic activity in uninfected cells that cleaves the linkage between poliovirion RNA and the 5' terminal protein. Cell. 1978, 15(4):1439-46.
    16. Golini F, Semler BL, Dorner AJ, Wimmer E. Protein-linked RNA of poliovirus is competent to form an initiation complex of translation in vitro. Nature. 1980, 287(5783):600-3.
    17. Barton DJ, O'Donnell BJ, Flanegan JB. 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis.EMBO J. 2001,20(6):1439-48.
    18. Wimmer E, Nomoto A.Molecular biology and cell-free synthesis of poliovirus. Biologicals. 1993, 21(4):349-56.
    19. Ohlmann T, Rau M, Morley SJ, Pain VM. Proteolytic cleavage of initiation factor eIF-4 gamma in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of uncapped mRNAs.Nucleic Acids Res. 1995,23(3):334-40.
    20. Jacobson SJ, Konings DA, Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol. 1993 Jun;67(6):2961-71.
    21. Todd S, Towner JS, Brown DM, Semler BL. Replication-competent picornaviruses withcomplete genomic RNA 3' noncoding region deletions. J Virol. 1997,71(11):8868-74.
    22. Spector DH, Baltimore D. Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci U S A. 1974 , 71(8):2983-7.
    23. Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989, 56(5):855-65.
    24. Pallansch MA, Kew OM, Semler BL, et al. Protein processing map of poliovirus. J Virol. 1984, 49(3):873-80.
    25. Kitamura N, Semler BL, Rothberg PG, et al. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature. 1981, 291(5816):547-53.
    26. Racaniello VR, Baltimore D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci U S A. 1981, 78(8):4887-91.
    27. Hellen CU, Facke M, Krausslich HG, et al. Characterization of poliovirus 2A proteinase by mutational analysis: residues required for autocatalytic activity are essential for induction of cleavage of eukaryotic initiation factor 4F polypeptide p220. J Virol. 1991, 65(8):4226-31.
    28. Wright PJ, Cooper PD. Poliovirus proteins associated with the replication complex in infected cells. J Gen Virol. 1976, 30(1):63-71.
    29. Novak JE, Kirkegaard K. Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J Virol. 1991,65(6):3384-7.
    30. Ida-Hosonuma M, Sasaki Y, Toyoda H, et al. Host range of poliovirus is restricted to simians because of a rapid sequence change of the poliovirus receptor gene duringevolution. Arch. Virol. 2003,148 (1), 29– 44.
    31. Deatly AM, Taffs RE, McAuliffe JM, et al. Characterization of mouse lines transgenic with the human poliovirus receptor gene. Microb Pathog. 1998,25 (1):43-54.
    32. Mendelsohn C, Johnson B, Lionetti KA, et al. Transformation of a human poliovirus receptor gene into mouse cells. Proc Natl Acad Sci U S A. 1986, 83(20):7845-9.
    33. Ren R, Racaniello V. Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J. Virol. 1992, 66, 296– 304.
    34. Iwasaki A, Welker R, Mueller S, et al. Immunofluorescence analysis of poliovirus receptor expression in Peyer’s patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J. Infect. Dis. 2002, 186 (5):585– 592.
    35. Bodian D, Horstmann DH. Polioviruses. In: Horsfall, F.L., Tamm, I. (Eds.), Viral and Rickettsial Infections of Man. 1965.Lippincott, Philadelphia, pp. 430– 473.
    36. Gromeier M, Alexander L, Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (6):2370– 2375.
    37. Kauder SE, Racaniello VR. Poliovirus tropism and attenuation are determined after internal ribosome entry. J. Clin. Invest. 2004, 113 (12):1743–1753.
    38. Ida-Hosonuma M, Iwasaki T, Yoshikawa T, et al. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J. Virol. 2005, 79 (7):4460–4469.
    39. Sabin AB. Oral poliovirus vaccine: history of its development and use and current challenge to eliminate poliomyelitis from the world. J. Infect.Dis. 1985. 151:420 – 436.
    40. Kawamura NM, Abe KS, Komatsu T, et al. Determinants in the 5-noncoding region of poliovirus Sabin1 RNA that influence the attenuation phenotype. J. Virol. 1989,63: 1302–1309.
    41. Moss EG, O’Neill R E, Racaniello VR. Mapping of attenuating sequences of an avirulent poliovirus type 2 strain. J. Virol. 1989, 63:1884–1890.
    42. Westrop GD, Wareham KA, Evans DMA, et al. Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J. Virol. 1989, 63:1338–1344.
    43. Macadam AJ, Stone DM, Almond JW, et al.The 5’ noncoding region and virulence of poliovirus vaccine strains. Trends in Microbiology.1994, 2(11):449-454.
    44. Taffs RE, Chumakov KM, Rezapkin GV, et al. Genetic stability and mutant selection in Sabin 2 strain of oral poliovirus vaccine grown under different cell culture conditions.Virology. 1995, 209(2):366-73.
    45. Macadam AJ, Pollard SR, Ferguson G, et al. The 5' noncoding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology. 1991, 181(2):451-8.
    46. Who Expert Committee on Biological Standardization. 53rd Meeting, Geneva, February 17~21, 2003.
    47. Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981, 214(4523):916-9.
    48. van der Werf S, Bradley J, Wimmer E, et al. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986, 83 (8):2330-4.
    49. Kaplan G, Lubinski J, Dasgupta A, et al. In vitro synthesis of infectious poliovirus RNA. Proc Natl Acad Sci U S A. 1985, 82(24):8424-8.
    50. Colbere-Garapin F, Christodoulou C, Crainic R, et al. Addition of a foreign oligopeptide to the major capsid protein of poliovirus. Proc Natl Acad Sci U S A. 1988,85 (22):8668-72.
    51. Evans DJ, McKeating JM, Meredith KL,et al. An engineered poliovirus chimaera elicitsbroadly reactive HIV-1 neutralizing antibodies. Nature. 1989, 339:385- 388.
    52. Jenkins O, J Cason KL, Burke D, et al. An antigen chimera of poliovirus induces antibodies against human papillomavirus type16. J. Virol. 1990, 64:1201-1206.
    53. Lemon SM, Barclay M, Ferguson PM, L et al. Immunogenicity and antigenicity of chimeric picornaviruses which express hepatitis A virus (HAV) peptide sequences: evidence for a neutralization domain near the amino terminus of VP1 of HAV. Virology.1992, 188:285-295.
    54. Murdin AD, Su H, Manning DS, et al. A poliovirus hybrid expressing a neutralization epitope from the major outer membrane protein of Chlamydia trachomatis is highly immunogenic. Infect Immun. 1993, 61(10):4406-14.
    55. Lee SG, Kim DY, Hyun BH, et al. Novel design architecture for genetic stability of recombinant poliovirus: the manipulation of G/C contents and their distribution patterns increases the genetic stability of inserts in a poliovirus-based RPS-Vax vector system.J Virol. 2002, 76(4):1649-62.
    56. Moldoveanu Z, Porter DC, Lu A, et al. Immune responses induced by administration of encapsidated poliovirus replicons which express HIV-1 gag and envelope proteins.Vaccine. 1995, 13(11):1013-22.
    57. Porter DC, Wang J, Moldoveanu Z, et al. Immunization of mice with poliovirus replicons expressing the C-fragment of tetanus toxin protects against lethal challenge with tetanus toxin.Vaccine. 1997,15 (3):257-64.
    58. van Kuppeveld FJ, de Jong A, Dijkman HB, et al. Studies towards the potential of poliovirus as a vector for the expression of HPV 16 virus-like-particles. FEMS Immunol Med Microbiol. 2002, 34(3):201-8.
    59. Crotty S, Lohman BL, Lu FX, et al. Mucosal immunization of cynomolgus macaqueswith two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. J Virol. 1999, 73 (11):9485-95.
    60. Crotty S, Miller CJ, Lohman BL, et al. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol. 2001, 75(16): 7435-52.
    61. Alexander L, Lu HH, Wimmer E. Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene.Proc Natl Acad Sci U S A. 1994, 91(4):1406-10.
    62. Molla A, Jang SK, Paul AV, et al. Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature. 1992, 356 (6366):255-7.
    63. 王军志主编. 生物技术药物研究开发和质量控制. 2002年, 科学出版社,p180-199
    64. Gromeier M, Alexander L, Wimmer E, et al. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. P roc N at l A cad Sci U SA , 1996; 93: 2370~ 2375.
    65. Mandl S, Hix L, Andino R. Preexisting immunity to poliovirus does not impair the efficacy of recombinant poliovirus vaccine vectors. J Virol. 2001, 75(2):622-7.
    66. Mueller S, Wimmer E. Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J Virol. 1998, 72(1):20-31.
    67. EY, Florez P, Gromeier M. Structural determinants of insert retention of poliovirus expression vectors with recombinant IRES elements. Virology, 2003, 311(2):241-53.
    1. 黄祯祥主编. 医学病毒学基础及实验技术. 北京:科学出版社,1990 年.
    2. Fouchier RAM, Munster V, Wallensten A, et al. Characterization of a novel Influenza A virus hemagglutinin subtype(H16) obtained from black-headed gulls. J Virol. 2005, 79 (5):2814-22.
    3. Field’s Virology. 4th edition. David MK, Peter MH. Lippincott Williams&Wilkins. 2001, Philadelphia, USA.
    4. World Health Organization. Recommendations for production and control of influenza vaccine (inactivated). 54th meeting of the WHO Expert Committee on Biological Standardization, November17-21, 2003.
    5. 张延龄, 张辉主编. 疫苗学. 北京:科学出版社.2004 年.
    6. 戚凤春, 盛军. 流感疫苗的研究进展. 中国生物制品学杂志.2004, Vol 17(3):190-2.
    7. Harper SA, Fukuda K, Cox NJ, et al. Using live, attenuated influenza vaccine for prevention and control of influenza: supplemental recommendations of the Advisory Committee on Immunization Practices (ACIP).MMWR Recomm Rep. 2003, 52 (RR- 13):1-8.
    8. Belshe RB, Nichol KL, Black SB, et al. Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5-49 years. Clin Infect Dis. 2004, 39(7):920-7.
    9. Prevention and Control of Influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. 2004, 53 (No. RR-6):1--40.
    10. EMEA, CPMP/BWP/214/96. Note for guidance on harmonization of requirements for influenza vaccines.1997, March 12.
    11. Ulmer, JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza byinjection of DNA encoding a viral protein. Science. 1993, 259:1745–9.
    12. Jeffrey B. Ulmer, Fu TM, et al. Protective CD41 and CD81 T Cells against Influenza Virus Induced by Vaccination with Nucleoprotein DNA. J Virol. 1998, 72(7): 5648–53
    13. Montgomery DL, Shiver JW, Leander KR, et al. DNA Cell Biol. 1993; 12:777–83.
    14. Raz E, Carson DA, Parker SE, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci USA. 1994, 91:9519–23.
    15. Harriet L, Robinson, Christine A, et al. DNA Immunization for Influenza Virus: Studies Using Hemagglutinin- and Nucleoprotein-Expressing DNAs.The Journal of Infectious Diseases. 1997, 176(Suppl 1):S50–5
    16. Chen Z, Yoshikawa T, Kadowaki S. Protection and antibody responses in different strains of mouse immunized with plasmid DNAs encoding influenza virus haemagglutinin, neuraminidase and nucleoprotein. Journal of General Virology.1999, 80:2559–64.
    17. Epstein SL, Tumpey TM, Misplon JA, et al. DNA Vaccine Expressing Conserved Influenza Virus Proteins Protective against H5N1 Challenge Infection in Mice. Emerging Infectious Diseases. 2002, 8(8):796-801.
    18. 王军志主编. 生物技术药物研究开发和质量控制. 2002 年, 科学出版社,p180-200.
    19. Lamb RA, Zebedee SL, Richardson CD. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985, 40:627-33.
    20. Pinto LH, Holsinger LJ, Lamb RA. Influenza virus M2 protein has an ion channel activity. Cell. 1992, 69: 517-28.
    21. Belshe RB, Smith MH, Hall CB, et al. Genetic basis of resistance to rimantadine emerging during treatment of influenza virus infection. J Virol. 1988, 62(5):1508-12
    22. Kitahori Y, Nakano M, Inoue Y. Frequency of amantadine-resistant influenza A virusisolated from 2001-02 to 2004-05 in Nara Prefecture.Jpn J Infect Dis. 2006, 59(3):197-9.
    23. Fiers W, Neirynck S, Deroo T. Soluble recombinant influenza vaccines. Philos Trans R Soc Lond B Biol Sci. 2001, 356(1416):1961-3.
    24. Zebedee SL, Lamb RA Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol. 1988, 62(8):2762-72.
    25. Treanor JJ, Tierney EL, Zebedee SL, et al. Passively transferred monoclonal antibody to the M2 Protein inhibit influenza A virus replication in mice. J Virol.1990, 64:1375-7.
    26. Slepushkin VA, Katz JM, Black RA, et al. Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine. 1995, 13(15):1399-1402.
    27. Frace AM, Klimov AI, Rowe T, et al. Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine. 1999, 17(18):2237-44.
    28. Liu W, Zou P, Chen YH. Monoclonal antibodies recognizing EVETPIRN epitope of influenza A virus M2 protein could protect mice from lethal influenza A virus challenge. Immunol Lett. 2004, 93(2-3):131-6.
    29. Neirynck S, Deroo T, Saelens X. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med. 1999, 5(10):1157-63.
    30. Fiers W, De Filette M, Birkett A, et al. A "universal" human influenza A vaccine. Virus Res. 2004, 103(1-2):173-6.
    31. Fan J, Liang X, Horton MS, et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine. 2004, 22(23 -24):2993-3003.
    32. Ernst WA, Kim HJ, Tumpey TM, et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine. 2006,24(24): 5158-68.
    33. Jegerlehner A, Schmitz N, Storni T, et al. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J Immunol. 2004, 172 (9):5598-605.
    1. Racaniello VR. Picornaviridae: The viruses and their replication. Knipe DM, Howley PM(eds). Fields Virology, 4th edi. Lippincott Williams&Wilkins, Philadelphia.
    2. 张延龄,张辉主编. 疫苗学.科学出版社.北京.2004 年.
    3. Racaniello VR, Baltimore D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. PNAS USA, 1981, 78(8):4887-91.
    4. Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981, 214(4523):916-9.
    5. Nomoto A, Omata T, Toyoda H, et al. Complete nucleotide sequence of the attenuated poliovirus Sabin I strain genome. PNAS. USA. 1982, 79(19):5793-7.
    6. Kawamura NM, Abe KS, Komatsu T, et al. Determinants in the 5-noncoding region of poliovirus Sabin1 RNA that influence the attenuation phenotype. JVirol.1989, 63:1302–1309.
    7. Sabin AB. Status of field trials with an orally administered, live attenuated poliovirus vaccine. JAMA.1959, 171:863-8.
    8. Colbere-Garapin F, Christodoulou C, Crainic R, et al. Addition of a foreign oligopeptide to the major capsid protein of poliovirus. Proc Natl Acad Sci U S A. 1988, 85(22):8668-72.
    9. Moldoveanu Z, Porter DC, Lu A, et al. Immune responses induced by administration of encapsidated poliovirus replicons which express HIV-1 gag and envelope proteins.Vaccine. 1995, 13(11):1013-22.
    10. van Kuppeveld FJ, de Jong A, Dijkman HB, et al. Studies towards the potential of poliovirus as a vector for the expression of HPV 16 virus-like-particles. FEMS Immunol Med Microbiol. 2002, 34(3):201-8.
    11. Alexander L, Lu HH, Wimmer E. Polioviruses containing picornavirus type 1 and/or type2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene.Proc Natl Acad Sci U S A. 1994, 91(4):1406-10.
    12. Ren R, Racaniello V. Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J. Virol. 1992, 66, 296– 304.
    13. Andino R, Silvera D, Suggett SD, et al. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science, 1994, 265(5177): 1448-51.
    14. van der Werf S, Bradley J, Wimmer E, et al. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986, 83(8):2330-4.
    15. Kaplan G, Lubinski J, Dasgupta A, et al. In vitro synthesis of infectious poliovirus RNA. Proc Natl Acad Sci U S A. 1985, 82(24):8424-8.
    16. Spector DH, Baltimore D. Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci U S A. 1974 , 71(8):2983-7.
    17. Barton DJ, Morasco BJ, Flanegan JB. Assays for polioviruspolymerase, 3D(Pol), and authentic RNA replication in HeLa S10 extracts. Methods Enzymol. 1996, 275:35–57.
    18. 郑晓飞 主编. RNA实验技术手册. 北京,科学出版社,2004年.
    19. Barton DJ, Morasco BJ, Flanegan JB. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J. Virol. 1999, 73:10104–10112.
    20. Herold J, Andino R. Poliovirus requires a precise 5' end for efficient positive-strand RNA synthesis. J Virol. 2000,74(14):6394-400.
    21.萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯 T,等. 分子克隆实验指南,第二版. 金冬雁 等译. 北京,科学出版社,1992年. P327-33.
    22. 黄庆生,马文煜,姜绍淳,等. 乙脑病毒全长 cDNA 的扩增克隆及体外转录制备感染性 RNA 的研究. 中国病毒学,2000 年第 15 卷 4 期:330-4.
    23. van Kuppeveld FJ, de Jong A, Dijkman HB, et al. Studies towards the potential ofpoliovirus as a vector for the expression of HPV 16 virus-like-particles. FEMS Immunol Med Microbiol. 2002, 34(3):201-8.
    24. Crotty S, Lohman BL, Lu FX, et al. Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. J Virol. 1999, 73 (11) :9485-95.
    25. Crotty S, Miller CJ, Lohman BL, et al. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol. 2001, 75(16):7435-52. 26. Kitamura N, Semler BL, Rothberg PG, et al. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature. 1981, 291(5816):547-53.
    27. Hellen CU, Facke M, Krausslich HG, et al. Characterization of poliovirus 2A proteinase by mutational analysis: residues required for autocatalytic activity are essential for induction of cleavage of eukaryotic initiation factor 4F polypeptide p220. J Virol. 1991, 65(8):4226-31.
    1. Crotty S, Lohman BL, Lu FX, et al. Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. J Virol. 1999,73(11): 9485-95.
    2. Mueller S, Wimmer E. Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J Virol. 1998, 72(1):20-31.
    3. Andino R, Silvera D, Suggett SD, et al. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science, 1994, 265(5177): 1448-51.
    4. Spector DH, Baltimore D. Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci U S A. 1974, 71(8):2983-7.
    5. Herold J, Andino R. Poliovirus requires a precise 5' end for efficient positive-strand RNA synthesis. J Virol. 2000,74(14):6394-400.
    6. Barton DJ, Morasco BJ, Flanegan JB. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J. Virol. 1999, 73:10104–10112.
    7. van der Werf S, Bradley J, Wimmer E, et al. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986, 83(8):2330-4.
    8. Kaplan G, Lubinski J, Dasgupta A, et al. In vitro synthesis of infectious poliovirus RNA. Proc Natl Acad Sci U S A. 1985, 82(24):8424-8.
    9. Promega Corporation. RiboMaxTM Large Scale RNA production system-SP6 and T7. Techical Bullitin No.166.
    10. Gurevich VV, Pokrovskaya ID, Obukhova TA, et al. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal Biochem. 1991, 195 (2) :207–13.
    11. Beckler, GS. Production of milligram amounts of highly translatable RNA using theRiboMAX? System. Promega Notes,1992, 39:12–6.
    12. Promega Corporation. SV total RNA isolation system-instructions for use of products z3100, z3101 and z3105. Part# TM048. 2005, August
    13. 萨姆布鲁克 J,弗里奇 EF,曼尼阿蒂斯 T,等. 分子克隆实验指南,第二版. 金冬雁 等译,科学出版社,北京,1992年. p304-333.
    14. 郑晓飞主编. RNA 实验技术手册. 北京,科学出版社,2004 年.
    15. Promega Corporation. Tfx?-10, Tfx?-20 and Tfx?-50 reagents for the transfection of eukaryotic cells. Techical Bullitin No.216. c
    16. 黄祯祥主编. 医学病毒学基础及实验技术. 北京:科学出版社,1990 年.
    17. Teterina NL, Levenson E, Rinaudo MS, et al. Evidence for functional protein interactions required for poliovirus RNA replication. J Virol. 2006, 80(11):5327-37.
    18. Colbere-Garapin F, Jacques S, Drillet AS, et al. Poliovirus persistence in human cells in vitro. Dev Biol (Basel). 2001, 105:99-104.
    19. Macadam AJ, Ferguson G, Stone DM, et al. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication. J Virol. 2006,80(17):8653-63.
    20. 国家药典委员会编. 中华人民共和国药典,2005年版,三部. 北京,化学工业出版社,2004年.
    21. 王军志主编. 生物技术药物研究开发和质量控制. 2002年, 科学出版社,p653-668
    22. Furesz J, Fanok A, Contreras G, et al. Tumorigenicity testing of various cell substrates for production of biologicals. Dev Biol Stand. 1989, 70:233-43.
    23. Levenbook IS, Petricciani JC, Elisberg BL. Tumorigenicity of Vero cells. J Biol Stand. 1984 ,12(4):391-8.
    24. Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981, 214(4523):916-9.
    1. World Health Organization. Recommendations for production and control of influenza vaccine (inactivated). 54th meeting of the WHO Expert Committee on Biological Standardization, November17-21, 2003.
    2. Field’s Virology. 4th edition. David M.K., Peter M.H., Lippincott Williams&Wilkins. 2001, Philadelphia, USA.
    3. Fiers W, Neirynck S, Deroo T. Soluble recombinant influenza vaccines. Philos Trans R Soc Lond B Biol Sci. 2001, 356(1416):1961-3.
    4. Neirynck S, Deroo T, Saelens X. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med. 1999, 5(10):1157-63.
    5. Fiers W, De Filette M, Birkett A, et al. A "universal" human influenza A vaccine. Virus Res. 2004, 103(1-2):173-6.
    6. Li WH, Moore MJ, Vasilieva NY, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003, 426:450–4.
    7. Prabakaran P, Xiao X, Dimitrov DS. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem Biophys Res Commun. 2004, 314:235–41.
    8. Jiang S, He Y, Liu S. SARS Vaccine Development. Emerging Infectious Diseases, 2005 , 11(7):1016-20.
    9. Wong SK, Li W, Moore MJ, et al. A 193-amino-acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2003, 279:3197–201.
    10. Wong SK, Li W, Moore MJ, et al. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004, 279(5): 3197-201
    11. van den Brink EN, Ter Meulen J, Cox F, et al. Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol. 2005, 79:1635–44.
    12. Sui J, Li W, Murakami A, et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA, 2004, 101(8):2536-2541
    13. He Y, Zhu Q, Liu S, et al. Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines. Virology. 2005, 334:74–82.
    14. He Y, H Lu, Siddiqui P, et al. Receptor-binding domain of SARS coronavirus spike protein contains multiple conformational-dependant epitopes that induce highly potent neutralizing antibodies. J. Immunol. 2005, 174:4908–4915.
    15. He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 2004, 324:773–781.
    16. Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004, 428:561–4.
    17. Wang S, Chou TH, Sakhatskyy PV, et al. Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J Virol. 2005, 79:1906–10.
    18.Bisht H, Roberts A, Vogel L, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A. 2004, 101:6641–6.
    19.Bukreyev A, Lamirande EW, Buchholz UJ, et al. Mucosal immunization of African greenmonkeys(Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004, 363:2122–7.
    20. Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004, 303:1666–9.
    21. 李娟,万延民,许四宏,等. 5 株 SARS-CoV 部分基因序列比较分析. 中华微生物学和免疫学杂志. 2004, 24(5):400-3.
    22. 章谷生, 容秉培主编. 单克隆抗体在医学上的应用. 上海:上海科学技术出版社,1987年.
    23. Lamb RA, Zebedee SL, Richardson CD. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985. 40:627-33.
    24. World Health Organization. WHO/IVB/04.10. Polio laboratory manual 4th edition, 2004.
    25. Kitamura N, Semler BL, Rothberg PG, et al. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature. 1981, 291(5816):547-53.
    26. Racaniello VR, Baltimore D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci U S A. 1981, 78(8):4887-91.
    27. Murdin AD, Su H, Manning DS, et al. A poliovirus hybrid expressing a neutralization epitope from the major outer membrane protein of Chlamydia trachomatis is highly immunogenic. Infect Immun. 1993, 61(10):4406-14.
    28. van Kuppeveld FJ, de Jong A, Dijkman HB, et al. Studies towards the potential of poliovirus as a vector for the expression of HPV 16 virus-like-particles. FEMS Immunol Med Microbiol. 2002, 34(3):201-8.
    29. Alexander L, Lu HH, Wimmer E. Polioviruses containing picornavirus type 1 and/or type2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A. 1994, 91(4):1406-10.
    30. Andino R, Silvera D, Suggett SD, et al. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science, 1994, 265(5177): 1448-51.
    31. Mueller S, Wimmer E. Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J. Virol. 1998.72:20-31.
    32. Lee SG, Kim DY, Hyun BH, et al. Novel design architecture for genetic stability of recombinant poliovirus: the manipulation of G/C contents and their distribution patterns increases the genetic stability of inserts in a poliovirus-based RPS-Vax vector system. J Virol.2002, 76(4): 1649-62.
    33. Furesz J. Developments in the production and quality control of poliovirus vaccines -- historical perspectives. Biologicals. 2006, 34(2):87-90.
    34. Dea-Ayuela MA, Rama-Iniguez S, Bolas-Fernandez F. Vaccination of mice against intestinal Trichinella spiralis infections by oral administration of antigens microencapsulated in methacrilic acid copolymers. Vaccine, 2006, 24 (15): 2772-80.
    35. 张延龄,张辉主编. 疫苗学.科学出版社.北京.2004年.
    37. Deatly AM, Taffs RE, McAuliffe JM, et al. Characterization of mouse lines transgenic with the human poliovirus receptor gene. Microb Pathog. 1998, 25(1):43-54.
    37. Mendelsohn C, Johnson B, Lionetti KA, et al. Transformation of a human poliovirus receptor gene into mouse cells. Proc Natl Acad Sci U S A. 1986, 83(20):7845-9.
    38. Dragunsky E, Nomura T, Karpinski K, et al. Transgenic mice as an alternative to monkeys for neurovirulence testing of live oral poliovirus vaccine : validation by a WHO collaborative study. Bullitin WHO. 2003, 81(4):251-262.
    39. Saha S, Yoshida S, Ohba K, et al. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus. Virology. 2006, 354(1):48-57.
    40. Cox RJ, Hovden AO, Brokstad KA, et al. The humoral immune response and protective efficacy of vaccination with inactivated split and whole influenza virus vaccines in BALB/c mice. Vaccine. 2006, 24(44-46):6585-7.
    41. Holmgren, J. Actions of cholera toxin and the prevention and treatment of cholera. Nature, 1981, 292:413–7.
    42. Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev, 1992. 56:622–647.
    43. Gonzalea RA, Sanchez JHolmgren J, et al . Immunological characterization of a-rotavirus neutralizing epitope fused to the cholera toxin B subunit. Gene, 1993, 133 (2):227-32.
    44. 钟辉,曹诚,李平,等. 恶性疟原虫DNA 疫苗效果的评估.遗传学报,2000,27 (2) :95.
    45. Neirynck S, Deroo T, Saelens X. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med. 1999, 5(10):1157-63.
    46. Fan J, Liang X, Horton MS, et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine. 2004, 22(23-24): 2993-3003.
    47. Ba¨ckstro¨m M, Lebens M, Scho¨del F. Insertion of a HIV-1-neutralizing epitope in a surface-exposed internal region of the cholera toxin B-subunit. Gene, 1994, 149:211–217.
    48. Czerkinsky C, Russell MW, Lycke N, et al. Oral administration of a streptococcal antigen coupled to cholera toxin B subunit evokes strong antibody responses in salivary glands and extramucosal tissues. Infect. Immun. 1989, 57:1072–1077.
    49. Dertzbaugh MT, Elson CO. Comparative effectiveness of the cholera toxin B subunit andalkaline phosphatase as carriers for oral vaccines. Infect. Immun. 1993, 61:48–55.
    50. Bergquist C, Lagerg?rd T, Lindblad M, et al. Local and systemic antibody responses to dextran-cholera toxin B subunit conjugates. Infection and Immunity, 1995, 63(5): 2021 –2025.
    51. 王军志主编. 生物技术药物研究开发和质量控制. 2002年, 科学出版社,p653-668
    52. Couch RB. Nasal vaccination, Escherichia coli enterotoxin, and Bell's palsy. N Engl J Med. 2004, 350(9):860-1
    53. Zurbriggen R, Metcalfe IC, Gluck R, et al. Nonclinical safety evaluation of Escherichia coli heat-labile toxin mucosal adjuvant as a component of a nasal influenza vaccine. Expert Rev Vaccines. 2003, 2(2):295-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700