基于虚拟仪器技术的电化学气体传感器特性测试系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今气体传感器技术发展日新月异,应用日益广泛,电化学气体传感器作为其中重要的一个分支,也得到了广泛的应用,但在气体浓度精确测量中主要存在两方面的问题:交叉灵敏度问题和气体传感器的特性漂移问题。这些问题长期以来一直困扰着人们,尤其在一些需要进行长期在线监测的场合。本文以导师项目(为某电力公司开发一套完整的环境参数监测系统)中的子项目为课题,开发了一套完善的电化学气体传感器性能参数测试系统,可获得传感器的最佳工作点,为由交叉灵敏度和特性漂移引起测量误差的修正补偿提供依据。
     根据实际测试需求,设计了测试电化学气体传感器系统的总体方案,由增强型51单片机构成的下位机与基于虚拟仪器技术的上位机共同组成测试系统,利用定电位电解二氧化硫传感器对该系统进行了相应的实验验证。下位机分为硬件部分与软件部分,主要包括下位机芯片的选择、下位机与上位机通讯端口的选择与实现、下位机模拟端口的配置、数据采集的实现以及与上位机通讯软件的设计;上位机主要是利用虚拟仪器技术,实现了仪器界面的设计和各功能模块软件的编写,具体包括串口通信设计、通道参数配置、零点漂移测量、线性相关测量、温度漂移测量、气体选择性测量、响应/恢复时间测量、结果数据存储以及报表生成等功能模块。
     通过对定电位电解二氧化硫传感器各种特性参数的实际测量得出:传感器的最佳工作温度为20℃左右;零点漂移为总量程的±2.3%;在气体浓度小于72.3ppm时,线性相关系数为0.993;响应时间为15s;恢复时间为19s;气体选择性方面,分别对浓度为100ppm的一氧化碳、硫化氢、一氧化氮进行了测量,传感器的输出电压值依次为0.227V、0.233V、0.208V。从实验结果可以看出,此系统可以很好地测量气体传感器各种特性的完整参数和曲线,为气体传感器的进一步研究和应用提供可靠的依据。
Nowadays, gas sensor technology develops quickly and becomes more widely available. As one of the branches, electrochemical gas sensor is also widely applied. But on the aspect of precise measurement of gas concentration, there are two main problems. One is cross-sensitivity, the other is characteristic drift of gas sensor. These problems have puzzled people for a long time, particularly on a long-term on-line gas monitoring. This paper focuses on the sub-item of the supervisor's research project (develop a comprehensive environmental parameters monitoring system tor a power company), and develops a comprehensive test system for electrochemical gas sensor performance parameters. Therefore the best point of gas sensor can be available so as to provide a basis for the amendments compensation of measurement error caused by cross-sensitivity and characteristic drift.
     Taking into account the actual testing requirements, the author presented an overall scheme testing electrochemical gas sensors system, which is mainly made up of the enhanced 51 MCU and PC based on the virtual instrument technique. Moreover, the corresponding experimental verification for the designed system is also given by means of the fixed electric potential electroanalysis sulfur dioxide sensor. Slave computer is divided into the design of hardware and software parts, including the choice of chip for slave computer, the choice and implementation of communications port, the configuration of slave computer analog ports, the realization of data acquisition and the design of communication software. The program of PC realized the design of the instrument interface and the compilation of functional modules software primarily by virtue of virtual instrument technique. These modules include the serial communication design, channel parameters configuration, zero shift measurement, linear correlation measurement, temperature drift measurement , cross-sensitivity measurement, response / recovery time measurement, data storage, and the report program generator.
     It can be educed from the measurement of various characteristic parameters of the fixed electric potential electroanalysis sulfur dioxide sensor that the best operating temperature of the sensor is about 20℃, the zero shift takes up±2.3% of the full scale. When the gas concentration is less than 72.3 ppm, the linearly dependent coefficient is 0.993; response time is 15 s; and recovery time is 19 s. As for cross-sensitivity, the author separately measured CO, H_2S, and NO with the concentration of 100 ppm, the sensor output values are 0.227 V, 0.233 V, and 0.208V in sequence. From the experimental results, it can be seen that the integrity of the various parameters and curves of the gas sensor can be measured with this system, and it can provide a reliable basis for further study and application.
引文
[1]任蕙茹,王洁.电流型NO_2气敏传感器性能研究[J].分析仪器,2002(2):7-11.
    [2]全宝富,张爽,刘晓宁,等.CO_2传感器的制作及特性[J].传感器技术,2002,21(10):11-12.
    [3]丁晖,刘君华,申忠如,等.气体传感器特性漂移抑制的研究[J].计量学报,2002,3(1):69-73.
    [4]张子谦.抑制SnO_2传感器温度干扰的研究[J].工业仪表与自动化装置,2006(4):27-29.
    [5]王彩君,吴兴惠,张硕,等.气敏传感器线性化电路的设计[J].传感技术学报,1996(4):23-26.
    [6]苏润,徐献芝,朱梅,等.传感器自补偿桥路信号采集的研究[J].信号与系统,2004(5):27-30.
    [7]王彩君,李艳丰,黄惠珍.多功能转换器在气敏传感器线性化电路中的应用[J].电子技术应用,1996(8):52-53.
    [8]李利平,刘彦民,庞志锋,等.传感器输出特性校正方法与多参数测量的研究[J].仪器仪表学报,1999,20(5):537-540.
    [9]马戎,周王民,陈明.气体传感器的建模及特性分析[J].测控技术,2004,23(9):3-4.
    [10]张洪泉,郭宗文,韩德维,等.H_2传感器气敏特性数学模型研究[J].信息技术,2000(10):6-9.
    [11]吕峰洁,张永瑞,杨刚.基于最小二乘法的气体传感器精度的研究[J].电子科技,2007(6):36-38.
    [12]刘海燕,简弃非.纳米气体传感器灵敏度--温度曲线的拟合[J].华南理工大学学报,2004,32(6):27-30.
    [13]李学金.气--热敏复合元件的温度补偿[J].电子元件与材料,1998,17(3):16-17.
    [14]曹建安,刘君华,张进勇.SnO_2传感器的温度补偿特性研究[J].传感器与微系统,2006,25(7):30-32.
    [15]王化祥,张淑英.传感器原理及应用[M].天津:天津大学出版社,1999.
    [16]周求湛,钱志鸿,刘萍萍,等.虚拟仪器与LabVIEW 7 Express程序设计[M].北京:北京航空航天大学出版社,2004.
    [17]邓焱,王磊.LabVIEW 7.1测试技术与仪器应用[M].北京:机械工业出版社,2004.
    [18]焦世统,董克俭.虚拟仪器的基本原理及其应用[J].科技情报开发与经济,2004,14(9): 172-173.
    [19]徐赟.虚拟仪器和传统仪器的比较[J].今日电子,2005(9):71-72.
    [20]National Instrument Corporation,LabVIEW 7 Express Getting Started with LabVIEW,April 2003Edition.
    [21]陈冠玲,吴小滔.基于LabVIEW的虚拟仪器系统及其构成[J].世界仪表与自动化,2003,7(1):65-66.
    [22]陈小林.基于LabVIEW的虚拟仪器的设计[J].温州师范学院学报,2004,25(2):73-76.
    [23]姚素芬,赵建强,冯超琼.基于LabVIEW传感器实验平台的开发,仪器仪表学报,2005(8):466-467.
    [24]赵易彬,周以琳.基于LabVIEW的数据采集系统,青岛科技大学学报,2005(5):452-454.
    [25]李文军,田瑞利,易利鹏.基于LabVIEW的数据采集与信号处理系统,现代电子技术,2005(20):10-11,17.
    [26]应怀樵.虚拟仪器与计算机采集测试分析仪器的发展和展望[J].测控技术,2000,19(8):4-6.
    [27]张兢,卢凤兰,余成波.基于DAQ数据采集卡的虚拟仪器通用硬件平台设计[J].重庆工学院学报,2001,15(2):42-44.
    [28]周元庆,刘海龙.基于Windows的串行通信及单片机采集程序设计[J].计算机应用,2000,20(6):57-59.
    [29]马伟,麦云飞.基于MCS-51与LabVIEW的数据采集系统[J].工业控制计算机,2007,20(9):27-28
    [30]Silicon Laboratories Inc.C8051F120 Mixed Signal ISP Flash MCU Family.www.silabs.com.
    [31]National instruments Corporation.G-Programming Reference Manual.1998.
    [32]Tom Williams.Graphical tool speed instrumentation software development.Computer Design,1996(3):61-71
    [33]Qin,Shuren.Virtual instruments and its latest development[J].Journal of Vibration,Measurement &Diagnosis,2000(20):123-129.
    [34]Jim Baker.How to Call win32 Dynamic Link Libraries(DLLs)from LabVIEW.National instruments Application Note 088.www.ni.com
    [35]杨乐平,李海涛,赵勇,等.LabVIEW高级程序设计[M].北京:清华大学出版社,2003.
    [36]National Instruments Corporation.LabVIEW User Manual.April 2003 Edition.
    [37]王定远,胡吉朝,李媛.基于MScomm32和LabVIEW的串口通信技术[J].国外电子测量技 术,2006,25(4):61-64.
    [38]National Instruments Corporation.Using ActiveX and LabVIEW.www.ni.com.
    [39]汪翠英,裴锋.LabVIEW中Word报告生成功能开发[J].仪器仪表用户,2005,12(1):94-96.
    [40]张仁辉.基于ActiveX技术的LabVIEW与Word通信实现[J].仪器仪表用户,2007,14(5):92-93.
    [41]National Instruments Corporation.Database Connectivity Toolset User Manual[Z].2001.
    [42]蔡肯,梁晓莹,李杨.基于虚拟仪器技术的测试与数据管理系统[J].仪表技术,2004(6):43-44.51.
    [43]National Instruments Corporation.LabVIEW Data Storage.www.ni.com.
    [44]孙海燕,胡继胜.用LabVIEW实现虚拟仪器测试系统与数据库之间的数据交换[J].工业控制计算机,2002.15(3):61-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700