ICF实验中子探测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温高密度热核点火是ICF研究的核心问题。根据劳森判据,激光聚变过程中,燃料面密度<ρR>≥0.4g/cm~2时才有可能实现热核点火。因此,随着ICF研究的日益深入,<ρR>的诊断变得越来越重要。神光-Ⅲ原型将主要进行二维效应非对称内爆,这种条件下的中子产额是很低的。考虑到制备氚靶昂贵的价格和安全性,无论是国际上进行的内爆实验还是将来在神光-Ⅲ原型上进行的内爆实验,都是以充纯氘燃料为主,这种条件下的中子产额更低,神光-Ⅲ原型上进行的内爆实验,估计次级中子产额只有10~5—10~6。通过测量充纯氘燃料靶丸的次级中子能谱,可以给山高压缩状态卜的<ρR>。同时,通过次级中子能谱,还能分析影响ICF内爆的各种物理过程,达到了解各种内爆中靶丸的压缩程度、燃料的燃烧情况和优化各种靶及黑腔的设计的目的。为了在这样低的中子产额条件下获得离子温度T_i和<ρR>,需要建立一套大面积中子探测器阵列测量中子的飞行时间谱。大面积中子探测器阵列系统目前几乎是国际上使用的唯一探测手段,已成为诊断T_i利<ρR>的标准技术。美国、日本和英国都在进行这种技术的研究,并建造了几套探测器阵列系统。
     在神光-Ⅲ原型上进行的ICF实验对大面积中子探测器阵列的探测指标要求为:其次级DT中子探测水平达到4×10~5,中子飞行时间谱时间分辨对应的中子能量分辨(FWHM)达到90keV。根据这些要求,结合神光-Ⅲ原型装置实验现场的条件,并参考国外ICF实验装置中大面积中子探测器阵列的设计和达到的性能指标,可以计算出神光-Ⅲ原型的大面积中子探测器阵列的规模为:960个通道、飞行距离16.67米、DT中子探测效率约为20%;同时要求大面积中子探测器阵列测得的中子飞行时间谱总的时间分辨要求达到1.0ns,其中,对电子学系统总体时间分辨更是要求达到100ps。
     由于神光-Ⅲ原型的控制、测量及数据采集设备大多是基于标准VME机箱而设计,为了能实现中子探测器阵列与ICF实验数据采集和处理系统的无缝对接,同时保证系统有较高的可靠性、较强的互换性和可维护性,其电子学系统将基于VME 6U标准机箱来设计。中子探测器阵列的复杂的电子学系统被划分为几个测量模块,每个模块都只需要实现某一个或几个功能,几个模块连接起来,就能组成一套完整的测量系统。
     对大面积中子探测器阵列技术的研究,首先是通过建立一套多通道中子探测器阵列的原型来完成的。为了进行<ρR>诊断技术的原理性探索,本论文设计了一个16通道的探测器平和电子学系统的原型。原型的研制包括探测器的研制、电子学系统的设计和探测系统一致性的匹配。如果原型系统设计成功并经测试满足需求,则整个960通道的中子探测器阵列将会由原型系统经过简单的复制得到。
     针对原型系统的需求,研制和加工了一套16通道的电子学系统的原型,包括四个主要的测量组件:放大定时甄别器、成形放大器、ADC和TDC,编写了用于电子学原型测试、调试和修正的软件。各组件调试成功后,对各电子学组件性能进行了单个测试,并将电子学系统联合起来作了总体时间分辨的测试,测试结果表明,电子学系统在量程、一致性、串扰和稳定性等方面都达到了设计要求,电子学时间分辨达到了100ps,也能满足使用需求。此外,为了模拟ICF实验时中子探测器阵列的运行情况,用宇宙线击中闪烁体并在两个光电倍增管中产生的信号作为电子学系统的输入,对整个探测器和电子学系统作了整体性能测试,并对采集到的测试数据作了幅度游动效应的修正。最终结果表明,中子探测器阵列原型的总体时间分辨约为225ps,满足实验的需要。如果考虑实验装置的尺寸导致的两个光电倍增管输出信号的时间差异对时间分辨的影响,时间分辨还能更好。
     本论文的主要创新之处在于:
     (1)开展了ICF中子能谱测量方法的研究,在国内尚属首次。国内此前还没有ICF实验在高压缩密度状态下<ρR>诊断的相关报道。而国际上目前都是采用大阵列中子探测器来测量次级中子能谱,并通过次级中子能谱来诊断<ρR>,这个技术已成为ICF诊断<ρR>的标准技术。
     (2)建立了用飞行时间法测量中子能谱的16通道原型系统,着重探讨了原型系统中的关键组件——16通道VME放大定时甄别器组件,成功地解决了超快PMT的信号读出和匹配问题,以及信号的快甄别问题,其幅度放大指标和时间甄别指标均达到了设计要求。
     (3)为了测试16通道原型系统的性能,建立了完整的测试平台,并对探测器和电子学组件的测试方法进行了探索,成功地对原型系统的性能进行了测试,与采用ORTEC公司的测试平台得到的测试结果比较,测试结果完全一致。
High temperature and high density of thermonuclear ignition is the core issue in ICF research field. According to Lawson criterion, during the laser fusion process, Fuel areal density <ρR>≥0.4g/cm2 when will it be possible to achieve thermonuclear ignition. Therefore, as the ICF study deepens, <ρR> diagnosis has become increasingly important. Non-symmetric two-dimensional implosion will be the main effect of SG-III prototype, under which the neutron yield is very low. Considering the high price and safety of tritium fuel target, either on the international implosion experiments or the implosion experiments on SG-III prototype in the future, the main targets are filled with pure deuterium fuel, under such conditions, the neutron yield is much lower. The secondary neutron yield of the implosions experiments on SG-III prototype is estimated only 10~5-10~6. <ρR> in high compression state can be given by measuring the secondary neutron spectrum of pure deuterium fuel implosion. And, by measuring the secondary neutron energy spectrum, we can analyze various physical processes which can influence the ICF implosion, to understand the various implosion target compression and the combustion of fuels, to optimize the design of various targets and black cavity. To get the ion temperature Ti and the fuel density <ρR> under such low neutron yield, we need to establish a large area neutron detector array to measure the time-of-flight neutron spectrum. Large area neutron detector array system is almost the only means of detection in the world, It has become the technical standards of diagnosis of Ti and <ρR>. The United States, Japan and the United Kingdom are carrying out such technology, and have constructed several detector array systems.
     The ICF experiments on the SG-III prototype have some requests on the large area neutron detector array system: the secondary DT neutron detection level can be 4×10~5, the neutron energy resolution corresponding to the neutron time-of-flight spectrum can reach 90keV. In response to these requests, with SG-III prototype device field conditions and the reference to foreign ICF Experimental Device large neutron detector array and the design of performance indicators, we can calculate the size of SG-III prototype large area neutron detector array: 960 channels, the flight distance is 16.67 meters, and the DT neutron detection efficiency is about 20%. Meanwhile, the total time resolution of measured time-of-flight spectrum of the large area neutron detector array is required 1.0ns. Among them, overall time resolution of the electronic system is asking 100ps.
     Since the control, measurement and data acquisition equipment of SG-III prototype are mostly based on the standard VME bus design, In order to achieve good communication between the neutron detector array and ICF experiment data acquisition and processing systems, and to ensure high reliability, strong interoperability and maintainability, Its electronic system will be based on standard 6U VME bus design. The complex electronic system was divided into several measurement modules. Each module only needs to achieve a certain function or several, several connected modules will compose a comprehensive measurement system.
     The research on the large area neutron detector array, the first is to establish a set of multi-channel neutron detector array prototype. For the principle Exploration of <ρR> diagnosis, In this paper the design of a 16-channel detector and the electronic system prototype is described. Development of a prototype includes the detector development, electronic system design and the consistency matching of the detection system. If the prototype system is designed successfully and tested to find meet the demand. The entire 960 channels of neutron detector array will be composed of duplicated prototype systems.
     According to the requests of the prototype system, a 16 channel electronic system prototype is designed and processed, including four main components of measurement: Amplifier Timing Discriminator, Shaping Amplifier, ADC and TDC. And the electronic test, debug and correction software of the prototype is also prepared. After the individual test of the each component, the four main components are connected and tested. The test results show that the electronic system can meet the design requirements in the range, consistency, stability and crosstalk. The time resolution of the electronic system can reach 100ps, which can meet the demand either. Furthermore, in order to simulate the real operation of the neutron detector in ICF experiment, using the output signals from two PMT following a large scintillator as the input signals of the electronic system, we test the performance testing for the entire detector and electronic system as a whole, as well as amplitude walk correction for the acquired data. Final results show that the overall time resolution of the neutron detector array prototype is about 225ps which meets the experimental needs. If considered the timing differences of the two PMT output signal bringing on by the size of experimental device, the time resolution can better.
     The primary innovation in the thesis is as follows.
     (1) The research on ICF neutron spectroscopy method of measurement is launched, which is the first of its kind in China. Previously China has no related reports of <ρR> diagnosis under high density compression in ICF experiment. And currently foreign research organization are using large area neutron detectors array to measure the secondary neutron energy spectrum, through which <ρR> can be diagnosed. This technology has become <ρR> diagnosis technology standards in ICF experiments.
     (2) A 16 channel prototype of the neutron time-of-flight measurement system is established. The focus is on the key component of the system—Amplifier Timing Discriminator component. The ultrafast PMT signal read out and matching and fast discrimination of signal are successfully resolved. The amplitude and timing performance both meet the design requirements.
     (3) In order to test the 16 channel prototype system, a complete test platform is constructed, and the exploration for test methods of detector and electronic system is done either. The test results of the performance of the prototype system are the same as the results using the test platform of ORTEC company.
引文
[1] J.Roth,李中兴译,聚变能引论,清华大学出版社,1993
    [2] H.Γ.巴索夫等,华欣生译,稠密等离子体诊断学,《强激光与粒子束》杂志社,1992
    [3] 傅依备等,惯性约束聚变与强激光技术,中国工程物理研究院核物理与化学研究所(内部发行),1992
    [4] 王淦昌.惯性约束核聚变,科学中国人,1995年第6期,p4-6
    [5] 于敏,胡仁宇,杜祥琬,江文勉,郑绍唐,力光伦.中国工程物理研究院的核物理、核技术及相关学科的研究,核物理动态,1995,12(4):1-5
    [6] 陈家斌译,激光等离子体相互作刚与惯性约束聚变,中国工程物理研究院激光聚变研究中心,2000
    [7] J. D. Lawson. Proc. Physics. Soc. B70, 1957. 6.
    [8] H. Brysk, Fusion Neutron Energies and Spectra, Plasma Phys. 1973, 15: 611-617
    [9] 粒子探测技术,中国科学技术大学近代物理系讲义
    [10] M. B. Nelson and M.D. Cable. LaNSA: A large neutron scintillator array for neutron spectroscopy at Nova, Rev. Sci. Instrum. 1992, 63(10): 4874-4876
    [11] N. Izumi, K. Yamaguchi, T. Yamagajo, T. Nakano, T. kasai, T. Urano, H. Azechi, and S. Nakai. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments, Rev. Sci. Instrum. 1999, 70(1): 1221-1224
    [12] Edward I.Moses,国家点火装置:实验计划的现状与未来,劳伦斯利弗莫尔国家实验室,2002
    [13] V. Yu. Glebov et al., Prototypes of National Ignition Facility neutron time-of-flight detectors tested on OMEGA, Rev. Sci. Instrum. 2004, 75(10): 3559-3562
    [14] Robert E. Chrien, David F. Simmons, Dale L. Holmberg, Neutron time-of-flight ion temperature diagnostic for inertial-confinement-fusion experiments, Rev. Sci. Instrum. 1992, 63 (10): 4886-4888
    [15] R. G Walt, R. E. Chrien, K. A. Klare, T. J. Murphy, D. C. Wilson, and S. Haan, A sensitive neutron spectrometer for the National Ignition Facility, Rev.Sci.Instrum. 2001,72(1):846-849
    [16] 虞孝麒.核电子学方法,中国科学技术大学近代物理系讲义
    [17] 王芝英、楼滨乔等,核电子技术原理,原子能出版社,1989年
    [18] 金革,陈家斌,大面积中子探测器阵列原型研制,报告于中国工程物理研究院2006年会议
    [19] 陈家斌,大面积中子闪烁探测器阵列研制方案,报告与中国工程物理研究院2005年会议
    [20] L. Heilbronn, Y. Iwata, H. Iwase, Off-line correction for excessive constant-fraction-discriminator walk in neutron time-of-flight experiments, Nuclear Instruments and Methods in Physics Research A 2004, 522: 495-503
    [21] Protel DXP中的多通道设计
    [22] 金革.多通道系统中的信号串扰现象,电子测量技术,1999年第1期,p1-3
    [23] VME Bus Datasheet
    [24] AD8131AR Datasheet
    [25] AD96687BR Uatasheet
    [26] William R. Blood, Jr. MECL System Design Handbook, ON Semiconductor, Fourth Edition, May 1988
    [27] LM1086 Datasheet
    [28] LM1117 Datasheet
    [29] LM337 Datasheet
    [30] Specification No. JENF24304-0007D. MuRATA Part No: BNX002-01. Reference Specification. Fukui Murata Manufacturing Co., Ltd.
    [31] TLV5619IDW Datasheet
    [32] AD8001AR Datasheet
    [33] 张岳华、李锋、金革、虞孝麒、江晓,惯性约束核聚变实验中子飞行时间谱仪的时间测量插件,核技术,2007,30(3):227-230
    [34] 杨存榜,ICF实验数据综合采集处理和管理系统,中国科技大学博士学位论文,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700