超快激光光丝阵列产生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率超快激光脉冲在光学介质中传输引起的成丝现象是当前科学研究领域的前沿问题。在成丝过程中,超快激光脉冲可以保持高强度长距离(长至千米量级)传输。一般认为,激光成丝现象的物理机制主要是光学克尔效应引起的自聚焦与等离子体散焦效应间的动态平衡。激光成丝过程包含丰富的非线性过程,如自聚焦、光致电离、强度钳制、自相位调制、自陡峭与时空聚焦等,它在远程遥感、激光引雷、脉冲压缩等领域具有光明的应用价值。
     当入射激光脉冲峰值功率远大于自聚焦闽值功率时,由于出射激光脉冲本身强度分布的不均匀性或传输介质的折射率扰动,实验中通常会观察到分布无序不均匀的多丝现象。多丝间会随间距、交叉角度、相位的不同而发生相互排斥、吸引、融合与能量的交换等互作用过程,最终导致多丝数量与空间分布不规律性。在实际应用中,如白光阵列、微波通道、精密微加工中,则需要多丝空间分布规律,因此近年来对超快激光多丝控制已成为相关领域的研究热点。面向这一学科发展的前沿方向,本论文重点研究了光丝阵列的产生机理。
     本文首先研究了利用轴锥镜聚焦超快激光脉冲在甲醇溶液中产生光丝阵列的动力学过程。实验结果表明,光丝阵列中光丝分布于轴锥镜聚焦产生的贝塞尔光束的中心零级与次级圆环上。理论研究结果表明轴锥镜聚焦条件下,激光强度空间分布的非柱对称性是光丝阵列产生的主要原因。
     本文又以半圆形相位板、四分之一圆形相位板与八分之一圆形相位板为例,研究了利用相邻单元相位差为π的相位板产生光丝阵列的机理。研究结果揭示光丝阵列的空间分布图案由相位板的几何结构决定,而光丝间间距、长度等参数则可通过使用不同焦距的透镜来调控。研究结果进一步证明,如果利用轴锥镜代替透镜聚焦光束后产生的光丝阵列其间距几乎不随传输距离发生变化,且光丝长度被延长,研究成果为产生具有光子晶体结构和特性的光丝阵列提供了新的技术途径。
     本文最后研究了无电离超快激光多光通道自引导传输的机理。研究结果显示激光成丝结束后,光束被分成多个显著的毫米量级的光斑,光斑以很小的发散角进行传输,并被低强度的厘米量级的背景能量池所环绕,其传输的发散角甚至小于一个拥有相同直径(FWHM)与功率大小的光斑非线性传输的发散角。理论揭示背景能量池仍然是维系这一非线性传输过程的主要物理机制。
Ultrafast laser filamentation occurs when high power femtosecond laser pulses propagate in optical medium. During fialmentation, ultrafast laser pulses can propagate long distances without significantly losing peak intensity. The major physical mechanism of filamentation is a dynamic balance between the optical Kerr effect induced self-focusing and the de-focusing effect caused by either plasma diffraction or high-order-Kerr-effect. Fruitful nonlinear processes are involved during filamentation, inculding self-focusing, photonization, intensity clamping, self-phase modulation, self-steepening, and space-time focusing, etc. Due to the bright prospects in the wide range of applications, such as remote sensing, lightning control and pulse compression, ultrafast laser filamenatation has attracted considerable interest.
     When the laser power is higher than the critical power for self-focusing, multi-filamentation can be frequently observed in practice due to the perturbation in the intensity distribution of the initial beam pattern or the refractive index perturbation of the optical media. Depending on the phase differences, crossing angles or distances among them, multiple filaments will interact with each other, manifesting as repelling, attraction, fusion or energy exchange etc. As a consequence, multiple filaments are normally distributed disorderly in space. However, in some specific applications, such as white light array, filament assisted microwave guiding and massive micro-fabrication using filament arrays, spatial regularization of multiple filaments are demanded. Therefore control of multiple filamentation has become a hot research in related field recently. In this dissertation, we focus on the filament array generation mechanism.
     Firstly, this dissertation studied the filament array generation dynamics by focusing ultrafast laser pulses with axicon in methanol. The experimental results demonstrate multiple filaments are located on the central spot and ring structures of the quasi-Bessel beam created by the axicon. The outcome of simulation suggests the cylindrical symmetry breaking in the initial beam profile is the main reason for the filament array generation when focusing ultrafast laser pulses with the axicon.
     Secondly, we study the filament arrays generation mechanism in air by using three kinds of step phase plates with π phase lag, namely, the semicircular phase plate, the quarter-circle phase plate, and eight-octant phase plate. Experimental results and simulations show that the spatial arrangement of the filament array is determined by the geometrical shapes of the phase plates. The separation distances and the length of the filmanet array can be controlled by different focal lenses. The study results further indicate that by using an axicon, filament array in the form of ring shape could be realized. The separation distances between filaments are almost independent of the propagation distance, while the lengths of the filaments could be significantly elongated at the same time. Our research has provided a new technical approach to produce a filament array potentially possessing photonic crystal structure and characteristics.
     At the end, we study the self-guided propagation mechanism of multiple light channels without ionization at the post-filamentation stage. The experimental results show that after the filament was ended, the laser beam was divided into multiple distinguished millimeter-scale spots with larger low intensity energy background surrounded. These spots propagated with low divergence which is even significantly lower than that given by a nonlinear propagation of a laser beam with similar diameter (FWHM) and power. The corresponding numerical simulation reveals that the low intensity energy background is the main mechanism to support this nonlinear propagation process.
引文
[1]R. Y. Chiao, E. Garmire, C. H. Townes. Self-trapping of optical beams. Physical Review Letters,1964,13(15):479-482.
    [2]M. Hercher. Laser-induced damage in transparent media. J. Opt. Soc. Am,1964,54(563): 0030-3941.
    [3]J. Marburger. Self-focusing:theory. Progress in Quantum Electronics,1975,4:35-110.
    [4]D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 1985,56(6):219-221
    [5]P. Maine, D. Strickland, P. Bado, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. of Quant. Electron.,1988,24(2):398-403
    [6]A. Braun, G. Korn, X. Liu, et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett.,1995,20(1):73-75.
    [7]E. T. J. Nibbering, P. F. Curley, G. Grillon, et al. Conical emission from self-guided femtosecond pulses in air. Opt. Lett.,1996,21(1):62-64.
    [8]B. La Fontaine, F. Vidal, Z. Jiang, et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air. Physics of Plasmas,1999,6(5): 1615-1621.
    [9]M. Rodriguez, R. Bourayou, G. Mejean, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses. Physical Review E,2004,69(3):036607.
    [10]A. Chiron, B. Lamouroux, R. Lange, et al. Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics,1999,6(3):383-396.
    [11]W. Liu, S. A. Hosseini, Q. Luo, et al. Experimental observation and simulations of the self-action of white light laser pulse propagation in air. New Journal of Physics,2004,6: 1-22
    [12]N. Akozbek, M. Scalora, C. M. Bowden, et al. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air. Opt. Commun.,2001, 191(3):353-362
    [13]H. Yang, J. Zhang, Y. Li, et al. Characteristics of self-guided laser-plasma channels generated by femtosecond laser pulses in air. Phys. Rev. E.,2002,66(1):016406
    [14]N. Akozbek, A. Iwasaki, A. Becker, et al. Third-Harmonic Generation and Self-Channeling in Air Using High-Power Femtosecond Laser Pulses. Phys. Rev. Lett.,2002,89(14): 143901.
    [15]P. Corkum, C. Rolland, T. Srinivasan-Rao. Supercontinuum generation in gases. Physical Review Letters,1986,57(18):2268-2271.
    [16]R. R. Alfano. The Supercontinuum Laser Source, New York:Springer,1989
    [17]S. L. Chin, A. Brodeur, S. Petit, et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). JNOPM,1999,8(1):121-146
    [18]S. L. Chin, S. Petit, F. Borne, et al. The white light supercontinuum is indeed an ultrafast white light laser. J. Appl. Phys.,1999,38(2A):126-128
    [19]S. L. Chin, W. Liu, F. Th6berge, et al. Some Fundamental Concepts of Femtosecond Laser Filamentation. Springer Series in Chemical Physics,2008,89:243-264
    [20]S. L. Chin, T.-J. Wang, C. Marceau, et al. Advances in intense femtosecond laser filamentation in air. Laser Physics,2012,22 (1):1-53
    [21]J. Kasparian, M. Rodriguez, G. Mejean, et al. White-light filaments for atmospheric analysis. Science,2003,301(5629):61-64
    [22]R. W. Boyd, Nonlinear Optics, Second Edition, Academic Press,2002.
    [23]M. Born and E. Wolf, Principles of Optics. Oxford Pergamon Press:3rd edition,1965.
    [24]J. H. Marburger, Self-focusing:Theory. Prog. Quantum Electronics,1975,4:35-110
    [25]V. I. Talanov, Focusing of light in cubic media. Sov. Phys. JEPT Lett.,1970,11:199
    [26]S. L. Chin, S.A. Hosseini, W. Liu, et al. The propagation of powerful femtosecond laser pulses in opticalmedia:physics, applications, and new challenges. Can. J. Phys.,2005, 83(9):863-905
    [27]A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep.,2007,441(2):47-189
    [28]J. E. Rothenberg, Space-time focusing:breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses. Opt. Lett.,1992,17(19): 1340-1342
    [29]J. K. Ranka and Alexander L. Gaeta, Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. Opt. Lett.,1998,23(7):534-536
    [30]G. Fibich and G. C. Papanicolaou, Self-focusing in the presence of small time dispersion and nonparaxiality. Opt. Lett.,1997,22(18):1379-1381
    [31]S. L. Chin, From multiphoton to tunnel ionization, in S.H. Lin, A.A. Villaeys and Y. Fujimura, eds., Advances in Multiphoton Processes and Spectroscopy,2004,16:249
    [32]A. Brodeur, S. L. Chin. Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett.,1998,80:4406-4409
    [33]A. Brodeur, S. L. Chin. Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B,1999,16(4):637-650
    [34]A. Talebpour, J. Yang, and S. L. Chin, Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse. Opt. Commun., 1999,163(1):29-32
    [35]J. Kasparian, R. Sauerbrey, and S.L. Chin, The critical laser intensity of self-guided light filaments in air. Appl. Phys. B,2000,71(6):877-879
    [36]A. Becker, N. Akozbek, K. Vijayalakshmi, et al. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B,2001,73(3): 287-290
    [37]W. Liu, S, Petit, A. Becker, et al. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun.,2002,202(1):198-197
    [38]I. G. Koprinkov, Ionization variation of the group velocity dispersion by high-intensity optical pulses. Appl. Phys. B,2004,79(3):359-361
    [39]A. Braun, G. Korn, X. Liu, et al. Self-channeling of high-peak-power femtosecond laser-pulses in air. Opt. Lett.,1995,20(1):73-75
    [40]E. T. J. Nibbering, P. F. Curley, G. Grillon, et al. Concial emission from self-guided fmtosecond pulses in air. Opt. Lett.,1996,21(1):62-64
    [41]H. R. Lange, G. Grillon, J. F. Ripoche, et al. Anomalous long-range propagation of femtosecond laser pulses through air:moving focus or pulse self-guiding?. Opt. Lett.,1998, 23(2):120-122
    [42]A. Brodeur, C. Y. Chien, F. A. Ilkov, et al. Moving focus in the propagation of ultrashort laser pulses in air. Opt. Lett.,1997,22(5):304-306
    [43]O. G. Kosareva, V. P. Kandidov, A. Brodeur, et al. From filamentation in condensed media to filamentation in gases. J. Nonlinear Optic. Phys. Mat.,1997,6(4):485-494
    [44]S. L. Chin, A. Brodeur, S. Petit, et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). J. Nonlinear Optic. Phys. Mat.,1999,8(1):121-146
    [45]M. Mlejnek, E. M. Wright, and J. V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett.,1998,23(5):382-384
    [46]M. Mlejnek, M. Kolesik, J. V. Moloney, et al. Optically turbulent femtosecond light guide in air. Phys. Rev. Lett.,1999,83(15):2938-2941
    [47]S. A. Hosseini, Q. Luo, B. Ferland, et al. Competition of multiple filaments during the propagation of intense femtosecond laser pulses. Phys. Rev. A,2004,70(3):033802
    [48]V. I. Bespalov, V. I. Talanov. Filamentary structure of light beams in nonlinear liquids. JETP Lett.,1966,3:307-312
    [49]S. L. Chin, A. Talebpour, J. Yang, et al. Filamentation of femtosecond laser pulses in turbulent air. Appl. Phys. B,2002,74(1):67-76
    [50]S. L. Chin, S. Petit, W. Liu, et al. Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air. Opt. Commun.,2002,210(3):329-341
    [51]S. Carrasco, S. Polyakov, H. Kim, et al. Observation of multiple soliton generation mediated by amplification of asymmetries. Phys. Rev. E,2003,67(4):046616
    [52]G. Fibich, and B. Ilan. Vectorial and random effects in self-focusing and in multiple filamentation. PhysicaD,2001,157(1):112-146
    [53]G. Schwarz, C. Lehmann, and E. Scholl. Symmetry-breaking multiple current filamentation in n-GaAs. Physica B,1999,272(1):270-273
    [54]A. Dubietis, G. Tamosauskas, G. Fibich, et al. Multiple filamentation induced by input-beam ellipticity. Opt. Lett.,2004,29(10):1126-1128
    [55]K. Cook, A. K. Kar, and R. A. Lamb. White-light supercontinuum interference of self-focused filaments in water. Appl. Phys. Lett.,2003,83(19):3861-3863
    [56]M. Chateauneuf, S. Payeur, J. Dubois, et al. Microwave guiding in air by a cylindrical filament array waveguide. Appl. Phys. Lett.,2008,92(9):091104.
    [57]M. N. Shneider, A. M. Zheltikov, and R. B. Miles. Long-lived laser-induced microwave plasma guides in the atmosphere:Self-consistent plasma-dynamic analysis and numerical simulations. J. Appl. Phys.,2010,108(3):033113
    [58]V. V. Valuev, A. E. Dormidonov, V. P. Kandidov, et al. Plasma channels formed by a set of filaments as a guiding system for microwave radiation. J. Commun. Technol. El.,2010, 55(2):208-214
    [59]O. G. Kosareva, T. Nguyen, N. A. Panov, et al. Array of femtosecond plasma channels in fused silica. Opt. Commun.,2006,267(2):511-523
    [60]C. P. Hauri, W. Kornelis, W. F. Helbing, et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B,2004,79(6): 673-677
    [61]X. Chen, Y. Leng, J. Liu, et al. Pulse self-compression in normally dispersive bulk media. Opt. Commun.,2006,259(1):331-335
    [62]J. S. Liu, R. X. Li, and Z. Z. Xu. Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion. Phys. Rev. A,2006,74(4):043801
    [63]S. Akturk, A. Couairon, M. Franco, et al. Spectrogram representation of pulse self compression by filamentation. Opt. Express,2008,16(22):17626-17636
    [64]A. Couairon, J. Biegert, C. P. Hauri, et al. Self-compression of ultra-short laser pulses down to one optical cycle by filamentation. J. Mod. Opt.,2008,53(1-2):75-85
    [65]O. G Kosareva, I. N. Murtazin, N. A. Panov, et al. Pulse shortening due to filamentation in transparent medium. Laser Phys. Lett.,2007,4(2):126-132
    [66]G Fibich, S. Eisenmann, B. Ilan, et al. Control of multiple filamentation in air. Opt. Lett., 2004,29(15):1772-1774
    [67]Q. Luo, S. A. Hosseini, W. Liu, et al. Effect of beam diameter on the propagation of intense femtosecond laser pulses. Appl. Phys. B,2004,80(1):35-38
    [68]O. G. Kosareva, N. A. Panov, N. Akozbek, et al. Controlling a bunch of multiple filaments by means of a beam diameter. Appl. Phys. B,2005,82(1):111-122
    [69]X. D. Sun, S. Q. Xu, J. Y. Zhao, et al. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air. Opt. Express,2012,20(4):4790-4795
    [70]B. Gaarde M and A. Couairon. Intensity Spikes in Laser Filamentation:Diagnostics and Application. Phys. Rev. Lett.,2009,103(4):043901
    [71]Z. Q. Hao, J. Zhang, T. T. Xi, et al. Optimization of multiple filamentation offemtosecond laser pulses in air using a pinhole. Opt. Express,2007,15(24):16102-16109
    [72]Y. Fu, H. Xiong, H. Xu, et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate. Opt. Lett.,2009,34(23):3752-3754
    [73]S. Akturk, B. Zhou, M. Franco, et al. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon. Opt. Commun.,2009,282(1):129-134
    [74]P. Polynkin, M. Kolesik, A. Roberts, et al. Generation of extended plasma channels in air using femtosecond Bessel beams. Opt. Express,2008,16(20):15733-15740
    [75]Z. M. Song, Z. G. Zhang, T. Nakajima. Transverse-mode dependence of femtosecond filamentation [J]. Opt. Express,2009,17(15):12217-12229
    [76]N. A. Panov, O. G Kosareva and I. N. Murtazin. Ordered filaments of a femtosecond pulse in the volume of a transparent medium. J. Opt. Technol.,2006,73(11):778-785
    [77]C. P. Hauri, J. Gautier, A. Trisorio, et al. Two-dimensional organization of a large number of stationary optical filaments by adaptive wave front control. Appl. Phys. B,2008,90(3): 391-394
    [78]P. Rohwetter, M. Queisser, K. Stelmaszczyk, et al. Laser multiple filamentation control in air using a smooth phase mask. Phys. Rev. A,2008,77(1):013812
    [79]L. Liu, C. Wang, Y. Cheng, et al. Fine control of multiple femtosecond filamentation using a combination of phase plates. J. Phys. B:At. Mol. Opt. Phys.,2011,44(21):215404
    [80]Y. Fu, H. Gao, W. Chu, et al. Control of filament branching in air by astigmatically focused femtosecond laser pulses. Appl. Phys. B,2011,103(2):435-439
    [81]G Mechain, A. Couairon, M. Franco, et al. Organizing Multiple Femtosecond Filaments in Air. Phys. Rev. Lett.,2004,93(3):035003
    [82]J. S. Liu, H. Schroeder, S. L. Chin, et al. Ultrafast control of multiple filamentation by ultrafast laser pulses. Appl. Phys. Lett.,2005,87(16):161105
    [83]H. Schroeder, J. Liu, and S. L. Chin. From random to controlled small-scale filamentation in water. Opt. Express,2004,12(20):4768-4774
    [84]T. D. Grow and A. L. Gaeta. Dependence of multiple filamentation on beam ellipticity. Opt. Express,2005,13(12):4594-4599
    [85]D. Majus, V. Jukna, G. Valiulis, et al. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams. Phys. Rev. A, 2009,79(3): 033843
    [86]D. Majus, V. Jukna, G. Tamosauskas, et al. Three-dimensional mapping of multiple filament arrays. Phys. Rev. A,2010,81(4):043811
    [87]Q. Luo, W. Liu, S. L. Chin. Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B,2003,76(3):337-340
    [88]H. L. Xu, W. Liu, and S. L. Chin. Remote time-resolved filament-induced breakdown spectroscopy of biological materials. Opt. Lett.,2006,31(10):1540-1542
    [89]J. Kasparian, R. Sauerbrey, D. Mondelain, et al. Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett., 2000,25(18):1397-1399
    [90]P. Rairoux, H. Schillinger, S. Niedermeier, et al. Remote sensing of the atmosphere using ultrashort laser pulses. Appl. Phys. B,2000,71(4):573-580
    [91]S. L. Chin and K. Miyazaki. A comment on lightning control using a femtosecond laser. Jpn. J. Appl. Phys.,1999,38(4):2011
    [92]D. Comtois, C. Y. Chien, A. Desparois, et al. Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse. Appl. Phys. Lett.,2000,76(7): 819-821
    [93]H. Pepin, D. Comtois, F. Vidal, et al. Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses. Phys. Plasma,2001,8(5): 2532-2539
    [94]M. Rodriguez, R. Sauerbrey, H. Wille, et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments. Opt. Lett.,2002,27(9):772-774
    [95]T. Fujii, M. Miki, N. Goto, et al. Leader effects on femtosecond-laser-filament-triggered discharges. Phys. Plasmas,2008,15(1):013107
    [96]J. Kasparian, R. Ackermann, Y.-B. Andre, et al. Electric events synchronized with laser filaments in thunderclouds. Opt. Express,2008,16(8):5757-5763
    [97]K. Sugiyama, T. Fujii, M. Miki, et al. Laser-filament-induced corona discharges and remote measurements of electric fields. Opt. Lett.,2009,34(19):2964-2966
    [98]Z. Zhang, X. Lu, W. X. Liang, et al. Triggering and guiding HV discharge in air by filamentation of single and dual fs pulses. Opt. Express,2009,17(5):3461-3468
    [99]X. Liu, X. Lu, Z. Zhang, et al. Triggering of high voltage discharge by femtosecond laser filaments on different wavelengths. Opt. Commun.,2011,284(22):5372-5373
    [100]B. Forestier, A. Houard, I. Revel, et al. Triggering, guiding and deviation of long air spark discharges with femtosecond laser filament. AIP Advances,2012,2(1):012151
    [101]S. B. Leonov, A. A. Firsov, M. A. Shurupov, et al. Femtosecond laser guiding of a high-voltage discharge and the restoration of dielectric strength in air and nitrogen. Phys. Plasmas,2012,19(12):123502
    [102]R. Ackermann, A. K. Stelmaszczyk, P. Rohwetter, et al. Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions. Appl. Phys. Lett., 2004,85(23):5781-5783
    [103]J. Kasparian, L. Woste, and J. Wolf. Laser-based weather control. Opt. Photon. News, 2010,21(7):22-27
    [104]P. Rohwetter, J. Kasparian, K. Stelmaszczyk, et al. Laser-induced water condensation in air. Nat. Photon,2010,4(7):451-456
    [105]Y. Petit, S. Henin, J. Kasparian, et al. Influence of pulse duration, energy, and focusing on laser-assisted water condensation. Appl. Phys. Lett.,2011,98(4):041105
    [106]S. Hennin, Y. Petit, P. Rohwetter, et al. Field measurements suggest the mechanism of laser-assisted water condensation. Nat. Commun.,2011,2:456
    [107]M. Petrarca, S. Henin, K. Stelmaszczyk, et al. Multijoule scaling of laser-induced condensation in air. Appl. Phys. Lett.,2011,99:141103
    [108]J. Kasparian, P Rohwetter, L Woste, et al. Laser-assisted water condensation in the atmosphere:a step towards modulating precipitation?. J. Phys. D:Appl. Phys.,2012, 45(29):293001
    [109]J. J. Ju, J. S. Liu, C. Wang, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber. Opt. Lett.,2012,37(7):1214-1216
    [110]J. J. Ju, J. S. Liu, C. Wang, et al. Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation. Appl. Phys. B,2012,1-6
    [111]M. Alshershby, Z. Q. Hao, and J. Q. Lin. Guiding microwave radiation using laser-induced filaments:the hollow conducting waveguide concept. J. Phys. D:Appl. Phys.,2012,45(26):265401
    [112]M. Alshershby, Z. Q. Hao, and J. Q. Lin. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding. Phys. Plasmas,2013,20(1):013501-013508
    [113]S. Tzortzakis, G. Mechain, G. Patalano, et al. Concatenation of plasma filaments created in air by femtosecond infrared laser pulses. Appl. Phys. B,2003,76(5):609-612
    [114]C. D'Amico, A. Houard, M. Franco, et al. Conical Forward THz Emission from Femtosecond Laser Beam Filamentation in Air. Phys. Rev. Lett.2007,98(23): 235002-235006
    [115]V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation). Appl. Phys. B,2003,77(2-3):149-165
    [116]P. N. Butcher, D. Cotter. The elements of nonlinear optics (Reprint ed.). Cambridge University Press,1991,216-248
    [117]T. Brabec, and F. Krausz. Nonlinear Optical Pulse Propagation in the Single-Cycle Regime. Phys. Rev. Lett.,1997,78(17):3282-3285
    [118]S. Chi and Q. Guo. Vector theory of self-focusing of an optical beam in Kerr media. Opt. Lett.,1995,20(15):1598-1600
    [119]G. Fibich and B. Ilan. Deterministic vectorial effects lead to multiple filamentation. Opt. Lett.,2001,26(11):840-842
    [120]A. Hasegawa and F. Tappert. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett.,1973,23(3): 142-144
    [121]R. H. Hardin and F. D. Tappert. Applications of the split-step Fourier method to the numerical solution of non-linear and variable coefficient wave equations. SIAM Rev. Chronicle,1973,15:423
    [122]B. Zhou, S. Akturk, B. Prade et al. Revival of femtosecond laser plasma filaments in air by a nanosecond laser. Opt. Express,2009,17(14):11450-11456
    [123]O. G Kosareva, A. V. Grigor'evskii, and V.P. Kandidov. Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse. Quantum Electron.,2005,35(11):1013-1014
    [124]M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett.,2010,97(8): 081102
    [125]M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, et al. High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams. Opt. Express,2010,18(2): 566-574
    [126]J.-M. Manceau, A. Averchi, F. Bonaretti, et al. Terahertz pulse emission optimization from tailored femtosecond laser pulse filamentation in air. Opt. Lett.,2009,34(14):2165-2167
    [127]J. H. Mcleod. The Axicon:A New Type of Optical Element. J. Opt. Soc. Am.,1954,44(8): 592
    [128]J. H. Mcleod. Axicons and Their Uses. J. Opt. Soc. Am.,1960,50(2):166
    [129]J. Durnin, J. J. Miceli, Jr., and J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett.,1987, 58(15):1499-1501
    [130]D. McGloin and K. Dholakia. Bessel beams:Diffraction in a new light. Contemporary Phys.,2005,46(1):15-28
    [131]Z. Bouchal, J. Wagner and M. Chlup. Self-reconstruction of a distorted nondiffracting beam. Opt. Commun.,1998,151(4):207-211
    [132]V. G. Chavez, D. McGloin, H. Melville, et al. Simultanoeus micromanipulation multiple planes using a self reconstructing light beam. Nature,2002,419(6903):145-147
    [133]Z. Ding, H. Ren, Y. Zhao, et al. High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett.,2002,27(4):243-245
    [134]M. Rioux, R. Tremblay and P. A. Belanger. Linear, annular, and radial focusing with axicons and applications to laser machining. Appl. Opt.,1978,17(10):1532-1536
    [135]I. Manek, Y. B. Ovchinnikov and R. Grimm. Generation of a hollow laser beam for atom trapping using an axicon. Opt. Commun.,1998,147(1-3):67-70
    [136]W. Liu and S. L. Chin. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation. Phys. Rev. A,2007,76(1): 013826
    [137]P. Bejot, J. Kasparian, S. Henin, et al. Higher-order Kerr terms allow ionization-free filamentation in gases. Phys. Rev. Lett.,2010,104(10):103903
    [138]P. Bejot, E. Hertz, J. Kasparian, et al. Transition from plasma-driven to Kerr-driven laser filamentation. Phys. Rev. Lett.,2011,106(24):243902
    [139]W. Liu, S. L. Chin, O. Kosareva, et al. Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol). Opt. Commun.,2003,225(1-3):193-209
    [140]G. Fibich, N. Gavish, and X. P. Wang. New singular solutions of the nonlinear Schrodinger equation. Physica D,2005,211(3-4):193-220
    [141]L. Berge, C. Gouedard, J. Schj(?)dt-Eriksen, et al. Filamentation patterns in Kerr media vs. beam shape robustness, nonlinear saturation and polarization states. Physica D,2003, 176(3-4):181-211
    [142]T. D. Grow, A. A. Ishaaya, L. T. Vuong, et al. Collapse dynamics of super-Gaussian beams. Opt. Express,2006,14(12):5468-5475
    [143]G. Mechain, A. Couairon, Y.-B. Andre, et al. Long-range self-channeling of infrared laser pulses in air:a new propagation regime without ionization. Appl. Phys. B,2004,79(3): 379-382
    [144]E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B,1997, 14(3):650-660
    [145]M. Kolesik, D. Mirell, J.-C. Diels, et al. On the higher-order Kerr effect in femtosecond filaments.2010, Opt. Lett.35(21):3685-3687
    [146]P. Polynkin, M. Kolesik, E. M. Wright, et al. Experimental tests of the new paradigm for laser filamentation in gases. Phys. Rev. Lett.,2011,106(15):153902
    [147]M. Petrarca, Y. Petit, S. Henin, et al. Higher-order Kerr improve quantitative modeling of laser filamentation. Opt. Lett.,2012,37(20):4347-4349
    [148]Z. X. Wang, C. J. Zhang, J. S. Liu, et al. Femtosecond filamentation in argon and higher-order nonlinearities. Opt. Lett.,2011,36(12):2336-2338
    [149]O. Kosareva, J.-F. Daigle, N. Panov, et al. Arrest of self-focusing collapse in femtosecond air filaments:high order Kerr or plasma defocusing?. Opt. Lett.,2011,36(7),1035-1037
    [150]P. Polynkin, M. Kolesik, J. V. Moloney, et al. Curved Plasma Channel Generation Using Ultraintense Airy Beams. Science,2009,324(5924):229-232
    [151]D. G. Papazoglou, S. Suntsov, D. Abdollahpour, et al. Tunable intense Airy beams and tailored femtosecond laser filaments. Phys. Rev. A,2010,81(6):061807
    [152]X. Yang, J. Wu, Y. Peng, et al. Plasma waveguide array induced by filament interaction. Opt. Lett.,2009,34(24):3806-3809
    [153]J. Liu, W. X. Li, H. F. Pan, et al. Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air. Appl. Phys. Lett.,2011,99(15):151105
    [154]S. P. Kuo and J. Faith. Interaction in air Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma. Phys. Rev. E,1997,56(2):2143-2150
    [155]O. Sakai, T. Sakaguchi, and K. Tachibana. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas. Appl. Phys. Lett.,2005,87(24):241505
    [156]C. Ruiz, J. San Roman, C. Mendez, et al. Observation of Spontaneous Self-Channeling of Light in Air below the Collapse Threshold. Phys. Rev. Lett.,2005,95(5):053905
    [157]N. A. Panov, V. A. Makarov, V. Yu. Fedorov, et al. Filamentation of arbitrary polarized femtosecond laser pulses in case of high order Kerr effect. Opt. Lett.,2013,38(4): 537-539
    [158]H. T. Wang, C. Y. Fan, H. Shen, et al. Relative contributions of higher-order Kerr effect and plasma in laser filamentation. Opt. Commun.,2013,293:113-115
    [159]W. Liu, Q. Luo, F. Theberge, et al. The influence of divergence on the filament length during the propagation of intense ultra-short laser pulses. Appl. Phys. B,2006,82(3): 373-376
    [160]B. Prade, M. Franco, A. Mysyrowicz, et al. Spatial mode cleaning by femtosecond filamentation in air. Opt. Lett.,2006,31(17):2601-2603
    [161]W. Liu, F. Theberge, E. Arevalo, et al. Experiment and simulations on the energy reservoir effect in femtosecond light filaments. Opt. Lett.,2005,30(19):2602-2604
    [162]W. Liu, J.-F. Gravel, F. Theberge, et al. Background reservoir:its crucial role for long-distance propagation of femtosecond laser pulses in air. Appl. Phys. B,2005,80(7): 857-860
    [163]S. Eisenmann, J. Penano, P. Sprangle, et al. Effect of an Energy Reservoir on the Atmospheric Propagation of Laser-Plasma Filaments. Phys. Rev. Lett.,2008,100(15): 155003
    [164]Y. P. Chen, F. Theberge, O. Kosareva, et al. Evolution and termination of a femtosecond laser filament in air. Opt. Lett.,2007,32(24):3477-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700