地下水源热泵系统井群优化与机组性能实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类进入21世纪,全世界范围内比以往任何时候都要关注能源、环境和可持续发展之间的关系。要实现可持续发展,必须尽可能地利用清洁的可再生能源,提高能耗的使用率。建筑能耗在国家的总能耗中占有重要的部分,发达国家的建筑能耗一般占总能耗的30%~40%,我国占26.7%。因此加大建筑节能,对我国的可持续发展战略有着重要的意义。地下水源热泵空调技术利用全年温度比较恒定的地下水作为冷热源,运行时机组效率较之其他空调系统较高,而且它可将多余的冷或热排放到土壤里,不会对大气造成热污染,有较高的环保价值和经济价值,但是这种系统仍然需要解决一些问题以便于其推广。
     本课题研究的主要目的在于优化地下水源热泵的井群系统以及通过实验研究不同的运行机制对于地下水源热泵性能的影响。井群如何布置是地下水源热泵系统推广应用的关键问题之一,决定井群布置的理论基础是含水层水—热迁移规律。本文首先全面总结了含水层水—热迁移的模拟模型,概述了不同模型及不同的数值方法在环境、地质、暖通等领域的应用;在此基础之上,通过数值模拟试验,寻求井出口流速(流量)和井间距离对热贯通量的影响,优化井群分布;最后通过热泵性能试验,分析了井水进口温度和进出口温差对热泵性能的影响。本文通过对地下水源热泵系统的地下井群分布优化研究和地面机组性能的分析,为地下水源热泵空调系统的设计、施工与运行管理提供决策依掘。
     本文的研究内容主要有以下几个方面:
     1.全面总结概述了地下水-热迁移模型和数值方法在环境、地质、暖通等领域的研究进展,通过分析使其成为本文研究所采用研究手段的理论基础。并且提出了通过放射性示踪这种工程试验方法研究地下水-热迁移的可行性。
     2.提出了解耦分析井间热贯通的两步分析法。分析含水层的热迁移主要包括:(1) 通过固相的热传导;(2) 通过液相的热传导;(3) 通过液相的热对流三个方面,通过分析含水层水-热迁移模型,得出液相的热对流即水迁移才是带来热迁移的主要原因,鉴于此,提出了两步分析法。首先,通过含水层的热扩散模型预测最小影响半径;然后,基于在稳态、不可压流场中流线和迹线重合,提出分析井间热贯通量的流线分析法,确定井群之间的热贯通程度。
Entering 21st century, the mankind pays more close attention to the relationship among energy , environment and sustainable development than ever in the whole world. It must utilize clean regenerated energy as much as possible to realize sustainable development, and improve the rate of utilization of energy consumption. Building energy consumption occupies the important part in the total energy consumption of the country, the building energy consumption of the developed country generally takes total energy consumption 30% - 40%,and the proportion of our country is 26.7%. Strengthen building save-energy have a important meaning for sustainable development in our country. GWSHP system make the groundwater as cold source or hot source, and its cop is higher than other air conditioners system, the system can discharge the surplus cold or heat into soil at the same time, so it has higher environmental protection value.
    This article optimize the well group designs of system and research the influence of difference work mechanisms for GWSHP system through experiment. It is the key question that how does the well group arrange to application GWSHP system and the well group arrangement decided based on the water - heat moving law of GWSHP. This paper comprehensive summarize water - heat moving models on aquifer and sum up the research evolvement that many models and simulation methods apply to environmental science, HVAC and Geological Sciences; Based on this, upon data simulation experiment, find out influence of flow rate at well outlet and the distance between wells on heat penetration, and optimize the placement of wells; eventually analyze the influence of well water temperature at inlet and difference between outlet temperature and inlet's on heat pump's performance, this paper Optimize the well-group profile for GWSHP system and analyse the performance of ground machine, offer the decision basis for design, operation and management of GWSHP system.
    The sum total of study on the subject is contained in this paper: 1 comprehensive summarize water - heat moving models on aquifer and sum up the
引文
[1] 邹源.夏热冬暖地区居住建筑热工性能及能耗的模拟分析.[西安科技大学硕士论文],2004
    [2] 丁爱军,高翔.水源热泵空调系统设计中若干技术问题的探讨,全国暖通空调制冷2000年学术年会,2000;
    [3] 王芳等.我国水源热泵的应用研究现状,全国暖通空调制冷2002年学术年会,2002;
    [4] 李新国.水源热泵应用低温低热的节能效果分析,天津大学学报,1997,05;
    [5] 汤建成.联结于热泵的土壤热源的有效利用,华中理工大学硕士学位论文,武汉,1996;
    [6] S. P. Kavanaugh. Using Existing Standards to Compare Energy Consumption of Ground-Source Heat Pumps With Conventional Equipment, ASHRAE Transaction, Vol. 98, Part2, 1005-1010, 1992;
    [7] R. L. Douglas Cane, S. Blair Clemes, Andrew Morrison. Operating Experiences with commercial Rroud-Source Heat Pump-Part1, ASHRAE Transaction, Part1, 911-916,1996;
    [8] Y. -Y. Yan, T. -F. Lin. Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Plate Heat Exchanger, Transaction of the ASME Journal of Heat Transfer, Vol. 121, Feb. 118S-127, 1999;
    [9] D. Winkelmann, B. Thonon, H. Aurcher, A. Bontemps. Two-Phase Flow Characteristics of a Corrugated Channel, 20th International Congress of Refrigeration, IIR/IIF, Sydeny, Vol. Ⅱ: Paper 426, 1999;
    [10] Xuan Bai, Ty A. newell: An Investigation of Two-Phase flow Characteristics in Chevron-Style Flat Plate Heat Exchangers, eighth International. Refrigeration Conference at Purdue University, West Lafayette, IN, USA-July 25-28, 87-94, 2000;
    [11] 殷平.地源热泵在中困,机电暖通,2001,1/2;
    [12] 沈雪峰,徐文华.闭式深井水水源热泵集中式空调系统及其特性浅析,全国??暖通空调制冷1994年学术年会论文集,1994;
    [13] 丁力行等。水源热泵在湖南地区的应用经济性分析,流体机械,No.12,2000;
    [14] 吕金杨,陈显余.深井蓄热地下水热泵系统,全国暖通空调制冷1998年学术年会论文集,1998;
    [15] 张昆峰,码芳梅,会六一.井水热泵系统冬季工况运行的数值模拟分析,,全国暖通空调制冷1996年学术年会论文集,1996;
    [16] 何克源.天然冷源水在空凋中的应用,节能技术,No.4,1997;
    [17] 韩厚德,卢士勋.地下冷源在制冷空调工程中的应用研究,制冷学报,1997,02:
    [18] 李新国等.地源热泵供暖空调的经济性,太阳能学报,2001,10;
    [19] 郭志军等.水源热泵系统的概论分析,低温与特气,2001,05;
    [20] 邬小波.地下含水层储能和地下水源热泵系中地下水回路与网灌技术现状.暖通窄调,2004.1:1~5;
    [21] 邬小波.中圈地下含水层储能空调——历史与与景.见:第二届中日上海环境保护决策和技术交流论文集.1998;
    [22] 邬小波,马捷.中国地下含水层储能技术及其发展.能源研究与信息.1999.4:8~12
    [23] Markku jokela, IEA-BCSANNEX30bringsimulation in toapplication. Subtask 2, design Process Analysis, Final report;
    [24] Gran Helstrm, IEA ECES Implementing Agreement Annex 8: UTESS, Subtask 4: UTESS Design and Analysis Tools, Final Report, November 2000;
    [25] Andrew D. Chiasson, Master Thesis: Advances in Modeling of Ground-source Heat Pump Systems, Oklahoma State University, December 1999;
    [26] T. Heat sources technology , economy and environment [J]. International Journal of Refrigeration, 2002, 25: 428-438;
    [27] 葛永乐.实用节能技术[M].上海:上海科学技术出版社,392-417;
    [28] Zehua liu etc. Inter-well Water-Heat Moving Law Study of Groundwater Source [teat Pump Based on The Radiotracer Test. The 4th International Conference On Sustainable Energy Technologies, 2005, 501-505;[29] DEERMAN J D , KAVANAUGH S P. Simulation of verti-cal u-tube ground-coupled heat pump systems using the cylindrical heat source solution [J]. ASHRAE Transacations: Research, 1998, 104: 287-295:
    [30] KONIKOW L F. Use of numerical models to simulate groundwater flow and transport [A]. US Geological Survey. USA: Reston, Virginia. 2000: 75-115;
    [31] 江春波,杜丽惠.非均匀介质的三维渗流有限元模型[J].清华大学学报,1999,39(11);
    [32] 张旭.土壤源热泵的实验及相关基础理论研究[J].现代空调,2000,(3);
    [33] Chiasson, A D Advances in modeling of ground-source heat pump systems [D]: [Master's thesis]. USA: Oklahoma State University. 1999;
    [34] 张志辉等.地下热水运移中自然对流的研究.水文地质工程地质,1995,(4):16-18:
    [35] 王锦国.地下水热量迁移模拟的EBM—FAM耦合法.水文地质,1999,(5):21~25:
    [36] Prickett, T. A., Naymick, T. G., Lonnquist, C. G., 1981. A "randomwalk" solute transport model for selected groundwater quality evaluations. Illinois State Water Survey, Bulletin, vol. 65, 103 pp.
    [37] Kinze]bach, W. K. H. Modelling of the transport of chlorinated hydrocarbon solvents in groundwater: a case study. Water Science and Technology 17, 1985, 13-21;
    [38] Kinzelbach, W. K. H. Groundwater modelling: an introduction with sample programs in basic, Developments in water science, Elsevier, Amsterdam, 1986, 333 pp;
    [39] Ackerer, P., 1988. Random-wa]kmethodtosimu]atepollutant transport in alluvial aquifers or fractured rocks. In: Custodio, E. (Ed). Groundwater flow and quality modelling, pp. 475-486;
    [40] Uffink, G., 1988. Modelling of solute transport with the random walk method. In: Custodio, E. (Ed). Groundwater flow and quality modelling,??pp. 247 - 265;
    
    [41] Thompson, A. F. B., Gelhar, L. W., 1990. Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. Water Resources Research 26 (10), 2541-2562;
    [42] S. Chevalier, O. Banton. Modelling of heat transfer with the random walk method.Part 1. Application to thermal energy storage in porous aquifers. Journal of Hydrology 222 (1999), 129-139;
    [43] C. Porkel. Finite element simulation of circulation in large scale thermal energy storage basins. Advances in Wafer Resources, Vol. 18, No. 3, pp. 147-158,1995;
    [44] Daniels, H., Validation of Finite Element Simulation of the Hydrothermal Behaviour of an Arttjicial Aquifer against Field Performance, VZZth CMWR, Boston, Vol. 2, 1988, pp. 3 19-24;
    [45] Daniels, H. & Rouve, G., Ktinstlicher Aquifer-warmespeicher der Universitat Stuttgart; Berechnung des thermischen Verhaltens, SchluSbericht zum For-schungsvorhaben in Auftrag der Universitlt Stuttgart, 1987;
    [46] Daniels, H., Forkel, C. & RouvC, G., Berechnung eines kiinstlichen Grundwasserwarmespeichers; BMFT Forder-kennzeichen Nr. 0328187 C, SchluDbericht, 1992;
    [47] Gray, D. D. & Giorgini, A., The validity of the Boussinesq approximation for liquids and gases. Znt. J. Heat Mass Transfer, 19 (1976) 545-51;
    [48] Gartling, D. K. &Hickox, C. E., A numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous media. Znt. J. Num. Meth. Fluids, 5 (1985):995-1013;
    [49] Bear J. Dynamics of fluids in porous media . AmericanElsevier Publishing Company Inc.,1972;
    [50] Sudicky E A, Mclaren R G. The Laplace Transform Galerkin technique large-scale simulation of mass transport in discretely fractured porous formations. Water Resources Research, 1992, (2);
    [51] Chen H T, then C K. Hybrid Laplace transform/finite-element methodfor tow dimensional beat conduction. Thermophys., Vol. 2, (1);
    [52] XUE Yuqun, XIE Chunhong, LI Qingfen. Aquifer thermal energy storage: a numerical simulation offield experiments in china [J]. Water Resources Research, 1990, (10);
    [53] Gran Helstrm, IEA ECES Implementing Agreement Annex 8: UTESS, Subtask 4: UTESS Design and Analysis Tools, Final Report, November 2000;
    [54] 夏位荣等.《油气田开发地质学》,石油工业出版社,1999年7月;
    [55] Calhoun Ⅱ, TomG., "Case History of Radioactive Tracers and Techniques in Fairway Field", JPT 1970, p1217;
    [56] Champion, C. A., etal, "SomeRecent Applications of Radioactive Tracers on Determining Subsurface Flow Behavior". SPE 1246;
    [57] D'Hooge, J. A., et al., "Interwell Radioactive Tracers——An Effective Reservoir Evaluation Tool: West Sumatra Field Results", SPE 8434. 1979;
    [58] Bjornstad, T.. "Recent and Current Oil Field Tracer Development. for Interwell Application", Proceedings from the 20d Tracer Workshop, University of Texas at Austin, Nov. 14-15, 1994;
    [59] Zhang, P. R&D of New Tracers for Inter-Well Waterflood Tracing Studies of the Oil Field, report, the2"d Research Co-coordinating Meeting of the CRP on "Radiotracer Technology for Engineering Unit Operation Studies and Unit Processes Optimization", IAEA, in Krakow, Poland. July 19-23. 1999;
    [60] Melo, M. A. "Using Tracers to Characterize Petroleum Reservoirs: Application to Carmopolis Field, Brazil", SPE 69474, 2001;
    [61] Core. GL. et al. "Radioactive TracerTechniques". JPT(1965). 8. 12;[62] Brigham, W. E., et al., "Prediction of Tracer Behavior in Five-Spot Flow" SPE 1145, 1965;
    [63] 张培信.放射性井间示踪测试研究.[中国原子能研究院博士论文],2002;
    [64] 汀亿.解决住宅供热空调需求的水源热泵系统,全国暖通空调制冷2000年学术文集,2000.10:127-131;
    [65] Nagano K, Mochida T, Ochifuji K. Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage [J]. Applied Thermal Engineering, 2002, 22: 1299-1311;
    [66] guscheck T A, Oughtyand C D, Tsang C F. Prediction and analysis of a field experiment on multilayered aquifer thermal energy storage system with strong buoyancy flow[J]. Water Resour Res, 1983, 19 (5): 1307-1315;
    [67] Molson J W, Frindand E O, Palmer C D. Thermal energy storage in an unconfined aquifer, 2. Model development, validation and application [J]. Water Resour Res, 1992, 28(10): 2857-2867;
    [68] 徐伟等译.地源热泵工程指南.2001,北京:中国建筑工业出版社:
    [69] 王明育,马捷,万曼影.地下含水层人工储能耦合模型分析计算.能源技术,2004.1:1-4;
    [70] Thore berntsson. Heat sources—technology, economy and environment [J]. International Journal of refrigeration, 2002, 25: 428-438;
    [71] BurkhardSanner, ConstantineKarytasas, Dimitrios Mendrinos, LadislausRybach. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothmic 32 (2003) 579-588;
    [72] 辛长征,朱颖心.深井回灌式水源热泵井群运行的地下含水层传、蓄热性能模拟研究,全国暖通空调制冷2002年学术文集,2002.10;
    [73] 陆震,范林,李大庆.热泵技术的工质与市场,节能技术,NO.4,1997;
    [74] 吴业正。制冷原理及设备.西安交通大学出版社,2002,2;[75] 蒋能照。空调用热泵技术及应用.机械工业出版社,1997;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700