建筑结构湿过程对室内环境的影响及其分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类居住环境是目前社会与技术发展极其关注的重大问题。建筑围护结构的热湿传递对于建筑结构的使用性能与人居环境的安全存在着巨大的威胁。此外,随着建筑能耗分析技术的发展,人们开始考虑一些从前未曾考虑的因素对空调负荷的影响。建筑围护结构和室内物体的吸放湿过程是十分重要的影响因素之一。室内表面材料可以吸收室内产湿量的三分之一左右,对室内空气湿度有很大的调节作用。潮湿的室内环境为霉菌的滋长提供了有利条件,高湿环境下的人体舒适性问题较以往更受关注。而在暖湿地区对吸放湿过程的研究显得尤为重要。
     本文首先重点阐述了霉菌对建筑的影响与控制和湿度对人体舒适性的影响两个方面。霉菌生长使墙体表面装饰材料因霉变而损坏剥落,严重影响墙体的使用寿命和美观,霉菌的生长还导致室内空气品质变差,威胁到人体的健康。本文介绍了用数学模型预估霉菌生长的基本方法,并提出控制霉菌生长的基本措施,提出我国中南和南方地区进行霉菌对建筑影响方面研究的重要性;接着本文从热平衡、皮肤滋润感、皮肤对衣着的触摸感、以及从呼吸系统的局部热感觉、空气品质等角度讨论了空气湿度对人体舒适感的影响,给出了相应的数学模型以便从理论上对空气湿度与人体舒适感的关系做出量化评价。
     建筑墙体的湿传导过程受到热传导过程、蒸汽扩散、液态扩散、表面扩散、Knudsen扩散、毛细流、纯水力流动等多种因素的影响,在数学上很难描述,求解就更困难了。有关学者提出了各种分析建筑湿传导过程的方法,但因过于复杂而难以付诸实用。本文提出建筑内表面吸放湿特性传递函数分析方法。用传递函数方法证明了当材料的Biot数极大(Bi→∞)时,其表面对空气环境的湿响应瞬时达到平衡状态;当材料的Biot数极小(Bi→0)时,可用集总参数模型分析其表面的吸放湿过程;在材料的Biot数介于两者之间(0《Bi《∞)时,通过与实验结果和数值解的比较表明:可用传递函数及其解法很准确地计算在吸放湿性范围内建筑内表面材料中任意处的吸放湿流量及水蒸气分压对室内空气相对湿度的复杂变化的响应。
     文中最后用室内表面材料吸放湿过程传递函数的简化模型,提出了对室内空气湿度及空调负荷进行模拟的理论基础。论证了将此方法应用于模拟软件中的可行性。
The human residential environment is a significant problem that is currently focused social and technological attentions upon. Moisture and heat transfer in building enclosure structures is a threat to the service performance of building structures and the residential environment. Furthermore, as the development of the building energy consumption analysis technology, people commence to consider other factors that affect the air-conditioning load. The absorption and desorption of moisture by building enclosure and indoor furnishings is an important factor, as one third of the moisture generated in a room could be absorbed by its surface, which greatly temper the indoor air humidity. As mold and mildew growth furiously in damp buildings, more attention focus on body comfort in high humidity environment, and it has a significant influence on air-conditioning load, it important to do studies on heat and moisture transfer in building enclosures, especially in hot humid climates.
    In the beginning of this thesis two important aspect: the affect of mold growth in buildings and its control, indoor humidity and human health was discussed. Mold growing in buildings destroys building enclosures and shortens the construction's life. It also attaints the wall surface and affects its appearance. Furthermore, it links to bad indoor air quality (IAQ), and threat human's health. Considering the essential conditions for mold growing and spreading, mathematics models were developed in order to predict the possible intensity of mold propagation in a specific environment. Some pertinent measures had put forward. Finally, this paper stressed its importance to start the research on these aspects, especially for Mid-South and South China; In succession, based on thermal balance, skin moist, the friction between skin and clothing and respiratory comfort, this paper discussed the affect of air humidity on human comfort. Simultaneity, some useful mathematical models had been presented for comfort predicting.
    It is hard to describe the moisture transfer process and the equations solution is difficult, as it is affected by all kinds of factors such as: the heat transfer process, the vapor diffusion, the liquid diffusion, the diffusion on surface, the Knudsen diffusion, the capillary diffusion, the pure water-vapor diffusion and so on. In this paper, a transfer function method has been described to calculate dynamic moisture absorption and desorption by building materials in the hygroscopic range, and the dynamic
引文
[1] 贾春霞.严寒地区外贴苯板复合墙体热湿传递研究.哈尔滨工业大学硕士学位论文.哈尔滨哈尔滨工业大学土木工程学院,2002:1-7
    [2] 苏向辉.多层多孔结构内热湿耦合迁移特性研究.南京航空航天大学博士学位论文.南京:南京航空航天大学人机与环境工程学院,2002:1-6
    [3] 陶智,康宁.建筑结构中的湿迁移.力学进展,1994,24(4):441-458
    [4] R. Li, J. F. Bond. Heat of desorption of water from cellulosic materials at high temperature, Drying Techonol, 1995, 10: 999-1012
    [5] Win-Jin Chang, Cheng-I Weng. An analytical solution to coupled heat and moisture transfer in porous materials. Heat and Mass Transfer, 2000(43): 3621-3632
    [6] A. Bensoussan, J. L. Lions, G Papanicolou. Asymptotic Analysis of Periodic Structure. NorthHolland, The Amsterdan, 1978: 210-220
    [7] J. L. Lion. Some Method in the Mathematical Analysis of system and Their Control. Beijing: Science Press, 1981: 150-155
    [8] 苏向辉,昂海松,许锋.多孔介质传热传湿过程多层不连续问题的数值分析.南京航空航天大学学报,2003,35(1):39-43
    [9] 王补宣,方肇洪.含湿毛细多孔介质的传热与传湿和热质迁移特性测定方法的探讨.工程热物理学报,1985,69(1):60-62
    [10] Wang Buxuan, Han Lizhong. Plane Heat Source Method for Simultaneous Measurement of Thermal Diffusivity Alpha and Conductivity lambda of Insulating Materials with Constant Heat Eate. Engineering Thermophysics, 1980, 1(2): 155-165
    [11] 王补宣.工程传热传质学(下册).北京:科学出版社,2002
    [12] Buxuan Wang, W. P. Yu. On the Heat and Mass Transfer in Moist Porous Media. In: Heat Transfer Science and Technology. Proceeding of the International Symposium on Heat Transfer, Beijing, 1985, 245-252
    [13] 唐鸣放,陈启高.空气渗透对房屋围护结构多孔材料层湿度的影响.重庆建筑大学学报,1997,19(4):77-80
    [14] 陈永成,陈启高.围护结构吸湿区湿分布的分析解.重庆建筑大学学,1997,19(3):16-22
    [15] 陈永成,陈启高.建筑墙体潮湿区湿度计算方法研究.重庆建筑大学学??报,1997,19(4):30-38
    [16] 曹礼群,罗剑兰.多孔复合介质周期结构热传导和质扩散问题的多尺度值方法.工程热物理学报,2000,2l(5):610-614
    [17] 张月刚.红砖—岩棉复合墙体热湿传递研究.哈尔滨建筑工程学院硕士学位论文.1988:26-50
    [18] 陈际阳.寒冷地区红砖—岩棉内保温复合墙体热湿传递的研究.哈尔滨建筑工程学院硕士学位论文.1990:30-42
    [19] 季杰.严寒地区建筑墙体湿迁移对能耗的研究.哈尔滨建筑工程学院博士学位论文.1991:10
    [20] 韩吉田,施明恒,虞维平等.同时测定含湿多孔介质热湿迁移特性的参数估计法.计量学报,1995,16(2):153-160
    [21] 季杰,高举文,葛新石等.一种测量含湿多孔体中动态湿分布的方法.中国科学技术大学学报,1994,24(3):300-304
    [22] 韩吉田,归柯庭,施明恒等.多孔介质局部含湿量测试技术的研究.传感技术学报,1997,12(4):75-78
    [23] Anne V. Baughman, Edward A. Arens. Indoor Humidity and Human Health—Part Ⅰ: Literature Review of Health Effects of Humidity-Influenced Indoor pollutants. ASHRAE Transactions, 1996, 102(1): 193-211
    [24] 贾永英.建筑墙体热质耦合传递数值模拟.大庆石油学院硕士学位论文.大庆:大庆石油学院热能工程系,2002:1-2
    [25] Kusuda T. Indoor Humidity Calculation. ASHRAE Transactions, 1983, 89(2): 728-738
    [26] Cummings J B, Kamel A A. Whole-building moisture experiments and data analysis. Contract Report DOE/SF/16305-1, UC-59, Florida Solar Energy Center, 1988
    [27] Martin T, Verschoor J. Cyclical moisture desorption/absorption by building construction and furnishing materials. Symposium on Air Infiltration, Ventilation and Moisture transfer. Building Thermal Envelope Coordinating Council, FortWorth, Texas, 1986
    [28] 肖实.霉菌一个值得注意的问题.海外防水,2003(6):32-34
    [29] American Hotel and Motel Association. Mold and mildew in hotel and motel guest rooms in hot and humid climates. Washington, DC: Hospitality Lodging 111 & Travel Research Foundation, 1991
    [30] Jerry Michael Sipes. Analytical, Experimental and Numerical Analysis of Moisture Movement in Walls Exposed to Hot and Humid Climates. Ph. D thesis.??Department of Mechanical and Nuclear Engineering College of Engineering, Kansas State University, 1998
    [31] Bjurman J. Thermal insulation materials, microorganisms and the sick Building Syndrome. Indoor Air '93: Proceedings of the 6th International Conference on Air Quality and Climate, July4-8, Helsinki, Finland, 1993, vol. 4: 339-344
    [32] Bayer C. W., S. Crow. Detection and characterization of microbially produced volatile organic compounds. Indoor Air '93: Proceedings of the 6th International Conference on Air Quality and Climate, 1993, July 4-8, Helsinki, Finland, vol. 6: 297-302
    [33] Flannigan B., E. M. McCabe, F. McGarry. Allergenic and toxigenic micro-organisms in houses. Journal of Applied Bacteriology, Symposium Supplement, 1991, vol. 70: 61S-73S
    [34] 项翠琴,陈纪刚,张云英等.上海市冬季不良建筑物综合征的流行病学调查.预防医学文献信息.2001,7(4):397-398
    [35] Western Wood Products Association. Mold, Cause, Effect and Response. https://www.scrthq.org/secure/documents/fwci_mold_series_1.pdf. THE FOUNDATION OF THE WALL AND CEILING INDUSTRY, 2002(3): 31
    [36] Hyeun Jun Moon. Assessing Mold Risks in Buildings under Uncertainty. Ph. D thesis. Georgia Institute of Technology, August, 2005
    [37] Adan O. C. G. On the Fungal Defacement of Interior Finishes. Ph. D Thesis. Eindhoven University of Technology, 1994: 233
    [38] Baughman A, Arens E.. Indoor Humidity and Human Health-Part1: Literature Review of Health Effects of Humidity-Influenced Indoor Pollutants. ASHRAE Transaction, 1996, Vol. 102(1): 193-211
    [39] Griffin D. H. Fungual physiology. New York: Wiley and Sons, 1981
    [40] 陈友明,陈在康.多孔体围护结构热湿同时传导基本方程及其线性化.应用基础与工程科学学报,1997,5(2):166-171
    [41] 陈友明,陈在康.建筑围护结构线性热湿同时传导的频域解法.应用基础与工程科学学报,1998,6(42):367-382
    [42] Burch D. M. An analysis of moisture accumulation in walls exposed to hot and humid climates[C]. ASHARE Transactions, 1993, 99(2): 1013-1022
    [43] Tenwolde A. Steady-state one-dimensional water vapor movement by diffusion and convection in a multilayer wall[C]. ASHARE Transactions, 1985, 91(1A): 322-342
    [44] Sedlbauer K. Prediction of Mould Fungus Formation on the Surface of and Inside Building Component. University of Stuttgart, Fraunhofer Institute for Building??Physics, Ph.D Thesis. Stuttgart, Germany, 2001
    [45] Targo Kalamees. Estonian Climate Analysis for Selecting Moisture Reference Years for Hygrothermal Calculations. Journal of THERMAL ENV.&BLDG. SCI., 2004, 27(3): 199-220
    [46] Hukka A, Viitanen H. A mathematical model of mould growth on wooden material. Wood Science and Technology, 1999, 33(6):475-485
    [47] Cunninghan M J. A new analytical approach to the long term behavior of moisture concentration in building cavities-I: Non-condensing cavity.Building and Environment, 1983, 18:109-116
    [48] Cunningham M J. Further analytical study of cavity moisture concentration. Building and Environment, 1984, 19:21-29
    [49] Cunningham M J. The moisture performance of framed structures—a mathematical model. Building and Environment, 1988, 23(2): 123-135
    [50] TenWolde A. The Kiepper and MOISTWALL moisture analysis methods for walls. Proceedings of the ASHARE-DOE Conference on Thermal Performance of the Exterior Envelopes of Buildings II, Las Vegas, NV., December, 1982
    [51] Burch D M, TenWolde A. A computer analysis of moisture accumulation in the walls of manufactured housing. ASHRAE Transactions, 1993, 99(2):977-990
    [52] Hens H, Janssens A. Inquiry on HAMCAT CODES, International Energy Agency, Heat, Air and Moisture Transfer in Insulated Envelope Parts, Report Annex 24, Task 1, Modeling, 1993
    [53] Kunzel H.M, Kiessl K. Calculation of Heat and Moisture Transfer in Exposed Building Components. Int. J. Heat Mass Transfer, 1997, Vol.40(l):159-167
    [54] Lotz W.A. Moisture problems in buildings in hot humid climates[J]. ASHARE Journal, April, 1989:26-27
    [55] Berglund L.G. Comfort and Humidity. ASHRAE Journal, 1998(8):35-41
    
    【56】金招芬,朱颖心主编.建筑环境学.第一版.北京:中国建筑工业出版社,2001:102
    [57] De Dear R.J, Knudsen H. N., Fanger P.O. Impact of air humidity on thermal comfort during step-changes. ASHRAE Trans, 1989, 95:336-350
    [58] Marc E. Fountain, Edward Arens, Tengfang Xu. An Investigation of Thermal Comfort at High Humidities. ASHRAE Transactions, 1999, 105(2):94-103
    [59] Mole R.H. The relative humidity of the skin. Journal of Physiology, 1948, 107:399-411
    [60] Gwosdow A.R, Stevens J.C, Berglund L.G et al. Skin friction and fabricsensations in neutral and warm environments. Textile Research Journal, 1986, 56(9): 574-580
    [61] Toftum J, Fanger P. O. Air Humidity Requirements for Human Comfort. ASHARE Trans, 1999, 105(2): 641-647
    [62] CAREY J, SIMONSON. Heat and Mass transfer Between Indoor Air and a Permeable and Hygroscopic Building Envelope: Part Ⅰ—Field Measurements. Journal of THERMAL ENV. &BLDG. SCI., 2004, 28(1): 63-101
    [63] 田元嫒,许为全.热湿环境下人体热反应的实验研究.暖通空调,2003,33(4):27-30
    [64] 董胜璋,牛冠明,杨正焱.相对湿度对空调环境至适温度影响的研究.环境与健康杂志,1995,12(1):16-18
    [65] 彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,2000:44-173
    [66] 黄文璋.雙曲函数及反三角函数http://www.math.nuk.edu.tw/cbme/math/calculus/cal2/c5_6/bud.htm, 2002
    [67] Youming Chen, Zaikang Chen. Transfer Function Method to Calculate Moisture Absorption and Desorption in Buildings. Building and Environment, 1998, 33(4): 201-207
    [68] Youming Chen, Shengwei Wang. Transfer function model and frequency domain validation of moisture sorption in air-conditioned buildings. Building and Environment, 2001 (36): 579-588
    [69] Kerestecioglue A, Fairey P, Chandra S. Algorithms to predict detailed moisture effects in buildings. Thermal Performance of the Exterior Envelopes of Building ⅲ, Proceedings of the ASHARE/DOE/BTECC Conference, Florida, 1985: 606-619
    [70] Kerestecioglu A, Swami M, Kamel A. Theoretical and computational investigation of simultaneous heat and moisture transfer in buildings: effective penetration depth theory. ASHARE Transactions, 1990, 96(1): 447-454
    [71] Cunning M J. Effective penetration depth and effective resistance in moisture transfer. Building and Environment, 1992, 27(3): 397-386
    [72] EI Diasty R, Fazio P, Budoiwi I. Dynamic modeling of moisture absorption and desorption in buildings. Building and Environment, 1993, 18(1): 21-32
    [73] 陈友明,王盛卫,张泠.系统辨识在建筑热湿过程中的应用.北京:中国建筑工业出版社.2004:97-137
    [74] Thomas W C, Burch D M. Experimental validation of a mathematical model for predicting water vapor sorption at interior building surfaces. ASHARE??Transactions, 1990, 96(1): 487-496
    [75] Kerestecioglue A, Gu L. Theoretical and computational investigation of simultaneous heat and moisture transport in buildings: 'evaporation and condensation' theory. ASHARE Transactions, 1990, 96: 445-464
    [76] Philip J R, DeVries D R. Moisture movement in porous material under temperature gradient. Transactions of America. Geophysical Union, 1975, 38(2): 222-232
    [77] Luikov A V. Heat and mass transfer in capillary porous bodies. Pergamon Press, 1996
    [78] 陈友明,陈在康.考虑吸放湿的室内环境及空调负荷模拟分析.湖南大学学报,1998,25(6):70-74
    [79] 陈友明,陈在康,陈晓晖.建筑内表面吸放湿过程对室内环境和空调负荷影响的仿真研究.暖通空调,1999,29(5):5-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700