场地类型对设计反应谱平台值的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计反应谱的确定是抗震设计的基础,也是确定地震荷载的重要方法之一,反应谱平台值是确定设计反应谱形状的重要参数之一,我国现行建筑抗震设计规范(GB50011-2001)在确定设计反应谱的平台值αmax(即地震影响系数最大值)时只考虑了场地基本烈度(或设计基本地震加速度)的影响,而与场地无关,破坏性地震震害以及近年来的研究结果表明,反应谱形状不仅与地震动强度有关,而且和场地密不可分。随着震害经验以及场地强震记录资料的积累,场地对设计反应谱平台值的影响引起了人们的广泛关注和研究兴趣,是当前岩土工程抗震领域研究的热点问题之一。本文在已有研究的基础上就这一问题开展一些研究,进行初步的探索后完成了如下主要工作。
     1.系统地学习和总结了场地对设计反应谱平台值影响研究现状,较详细地介绍了本文反应谱平台值的确定方法。
     2.研究了中国大陆境内数百个场地钻孔资料,在此基础上,选取和构造了若干个有代表性的典型场地剖面,按照建筑抗震设计规范规定的方法进行场地分类并作为计算剖面,确定了相应的计算模型和有关参数,用于计算的场地模型既有工程意义也有广泛的代表性。利用目前工程上广泛应用的一维土层地震反应分析技术并结合所选取的土层剖面来研究场地类型对反应谱平台值的影响。
     3.研究了不同场地在不同强度地震动输入对设计反应谱平台值的影响。通过统计分析法给出了四类场地在不同地震动输入情况下的反应谱平台值的统计平均值,一元线性回归分析方法给出了不同场地反应谱平台值与输入地震动的关系式。
     4.本文以西昌市防震减灾规划中有代表性的场地为例,通过工程钻探和岩土测试等手段确定场地的计算模型及相关的计算参数,通过概率地震危险性分析确定其输入地震动,计算给出50年超越概率为3%、10%和63%设计反应谱的平台值。与第三章所得出的结果进行对比分析,得出一些对西昌市防震减灾规划有意义的结论。
     最后,总结了本文的研究工作并对今后的研究问题进行了简要的讨论和展望。
Determination of the design response spectrum is the basis of seismic design, also is one important method to determine earthquake loading, response spectrum platform value is one of the important parameters to difine the design response spectrum shape.Seismic design of buildings (GB50011-2001) in our country when we determine the value of design spectrum platform (the maximum seismic effect coefficient), the only effects considered is the basic intensity (or the design of the basic seismic acceleration), have nothing to do with the site conditions, destructive earthquakes and recent seismic studies show that the the shape of response spectrum is related not only the intensity of ground motion, but also the closely related site. Following experience with earthquake damage and the accumulation of earthquake records with information on site conditions, the effect of design response spectrum platform value by site has aroused wide attention and research interest, is one of the hot issues of geotechnical earthquake engineering research at present. This paper on the base of some studies carried out some research on this issue, has completed the initial exploration and got the following major tasks.
     1. The studies of the site effect on the design response spectrum platform value were systematically studied and summarized, the method of determining the response spectrum value platform is expounded in detail.
     2. Tthe hundreds of site borehole data in the chinese mainland were studed, on this basis, a number of representative and typical site profile were selected orconstructed, and According to the method of the seismic design of buildings site classification is conducted, this profile is as calculated profile,at the same the corresponding computational model and the parameters were determined,the calculated modes are both meaning and representative works. The study of the site on response spectrum platform value use this method which is the current widely used the soil seismic response analysis in engineering and combine with the selected type of soil profile.
     3. The different sites and ground motion input effects on the design response spectrum platform value were reseached. Statistical analysis platform values were given by four different sites and earthquake input, the relations of different site response spectrum platform and ground motionwere given by linear regression analysis.
     4. In this paper, as the representative site in Xichang City Earthquake Disaster Mitigation Planning a example, the calculation model and related parameters were determined by engineering drilling and geotechnical test, the input ground motions were determined by probabilistic seismic hazard analysis, the design spectrum platform values of a 50-year probability of exceedance of 3%, 10% and 63% were given. And the results compared with the third chapter, draw some meaningful conclusions about Xichang City Earthquake Disaster Mitigation Planning.
     Finally, this article summarizes the research work and research issues are briefly discussed and proposed in future.
引文
[1 ]中华人民共和国建设部.建筑抗震设计规范GB50011-2001[S],北京:中国建筑工业出版社,2001.
    [2 ]薄景山,李秀领,李山有.场地条件对地震动影响研究的若干进展[J].世界地震工程,2003,19(2):11~15.
    [3 ]林建生,陈俊峰,林子健,谢文杰,何星源.场地地震安全性评价中确定设计地震动参数方面若干问题的研究[J]..世界地震工程,2006,22(4):150~159.
    [4 ]薄景山,翟庆生,吴兆营,齐文浩.三种土层结构反应谱特征周期的统计分析[J].地震工程与工程振动, 2004,24(3):124~129.
    [5 ]薄景山,李秀领,刘德东,刘红帅.土层结构对反应谱特征周期的影响[J].地震工程和工程振动,2003,23(5):42~45.
    [6 ]李媛媛,徐扬,吴东.覆盖层厚度对反应谱峰值的影响[J].地震地磁观测与研究,2006,27(4):33~38.
    [7 ]刘红帅,薄景山,吴兆营,刘德东.土体参数对地表加速度峰值和反应谱的影响[J].地震研究,2005,28(2):167~171.
    [8 ]薄景山,翟庆生,吴兆营,齐文浩.基于土层结构的场地分类方法[J].地震工程与工程振动,2004,24(4):46~49.
    [9 ]杨伟林.厚软场地的地震动特征及设计反应谱研究[J].防灾减灾工程学报,2004,24(4):406~411.
    [10]林建生.设计地震动参数选取中有关影响因素的研究[J].现代地震工程进展, 2002,138~147,南京..
    [11]薄景山,翟庆生,吴兆营,齐文浩.基于土层结构的场地分类方法[J].地震工程与工程振动,2004,24(4):46~49.
    [12]李秀领.土层结构对地表地震动参数影响的研究[D].哈尔滨:中国地震局工程力学研究所,2003.
    [13]日本阪神大地震考察,地震出版社,1995.
    [14]周锡元.土质条件对建筑物所受地震荷载的影响[A],中国科学院工程力学研究所地震工程研究报告集[C].第二集,科学出版社,1965.
    [15]陈达生.关于地面运动最大加速度与加速度反应谱的若干资料[A],中国科学院工程力学研究所地震工程研究报告集[C].第二集,科学出版社,1965.
    [16]章在墉,居荣初.关于标准加速度反应谱问题[A],中国科学院土木建筑研究所地震工程研究报告集[C].第一集,科学出版社,1965.
    [17]陈达生,卢荣俭,谢礼立.抗震建筑的设计反应谱[A],中国科学院工程力学研究所地震工程研究报告集[C].第三集,科学出版社,1977,78~89.
    [18]薄景山.场地分类和设计反应谱调整方法研究[R].中国地震局工程力学研究所博士后研究报告.1998.
    [19]李小军,彭青.不同类别场地地震动参数的计算分析[J].地震工程与工程振动,2001,21(1):29~36.
    [20]李小军,彭青,刘文忠.设计地震动参数确定中的场地影响考虑[J].世界地震工程,2001,17(4):34~41.
    [21]窦立军,杨柏坡.场地分类新方法的研究[J].地震工程与工程振动,2001,21(4):l0~17.
    [22]余湛,石树中,沈建文,刘峥.从中国、美国、欧洲抗震设计规范谱的比较探讨我国的抗震设计反应谱[J].震灾防御技术,2008,3 (2): l36~144.
    [23]薄景山,翟庆生,吴兆营,齐文浩.三种土层结构反应谱平台值的统计分析[J].地震工程与工程振动,2004,24(2):23~28.
    [24]薄景山,李秀领,刘德东,刘红帅.土层结构对反应谱平台值的影响[J].地震工程和工程振动,2003,23(4):29~33.
    [25]廖振鹏,李小军.地表土层地震反应的等效线性化解法[M],廖振鹏.地震小区化—理论与实践[C].北京:地震出版社,1989.
    [26]吕红山.基于地震动参数的灾害风险分析[D].北京:中国地震局地球物理研究所,2005,33~48.
    [27]耿淑伟.抗震设计中的地震动输入参数的研究[D].哈尔滨:中国地震局工程力学研究所,2005,44~69.
    [28]赵艳,郭明珠,李化明等.对比分析中国有关场地条件对设计反应谱最大值的影响[J].地震地质,2009,31(1):186~196.
    [29]李广军,赵艳,王文军等.场地条件对设计反应谱最大值的影响[J].工程抗震与加固改造,2009,31(1):114~118.
    [30]周锡元,齐微,徐平等.震级、震中距和场地条件对反谱特性影响的统计分析[J].北京工业大学学报,2006,32(2):97~103.
    [31]廖振鹏,李大华.设计地震反应谱的双参数标定模型[A].廖振鹏.地震小区化—理论与实践[C].北京:地震出版社,1989.
    [32]胡聿贤.地震安全性评价技术教程[M].地震出版社,1999, 9.
    [33]高会生,李新叶,胡智奇.Matlab原理与工程应用[M].北京:电子工业出版社.
    [34]四川赛思特科技有限责任公司西昌高速公路配套客运站工程场地地震安全性评价报告[R],2008.
    [35] European Committee for Standardization Eurocode 8:Design of Structures for Earthquake Resistance Part 1:General Rules,Seismic Actions and Rules for Buildings DRAFT No.6 Version for Translation (Stage 49),January 2003.
    [36] Crouse C B,McGuire J W.Site response studies for purpose of revising NEHRP seismic provisions[J].1996Earth—quake Spectra,12(3):408~439.
    [37] Building Seismic Safety Council.2004.2003 Edition NEHRP Recommended Provisions for the of Seismic Regulations for New and Other Structures,,FEMA450,Part,Part1(Provisions) and Part2 (Commentary),developed for the Federal Emergency Management Agency,Washington,DC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700