首钢杏山铁矿露天转地下覆盖层移动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在露天转地下开采的过程中,采用无底柱崩落法的矿山,需要在露天坑底预先铺设合理结构的覆盖层,以起到较好的滞水效果及满足防冲击地压等要求。由于覆盖层在地下采矿活动下发生移动变化,进而影响覆盖层的厚度及结构的改变,因此研究覆盖层的移动规律,对于确定合理的覆盖层结构和厚度以满足其功用具有重要意义。
     以首钢杏山铁矿露天转地下工程为背景,根据相似定律确立了实验的相似条件,设计并制作了露天转地下覆盖层相似物理模型,按不同粒度组成、不同厚度、不同含水量和不同放矿制度条件分别进行了覆盖层移动特性物理模拟试验,同时运用PFC2D软件建立数值模拟模型,再现了覆盖层散体的运移过程。通过物理模拟和数值模拟的结果对比分析,得出了覆盖层在地下开采过程中的移动变化规律。
     通过模拟研究得出,覆盖层随着地下采矿活动而改变。覆盖层的移动规律受放矿松动椭球体的影响,其影响范围取决于放矿过程中松动椭球体的高度,一般覆盖层的影响高度约为放出椭球体高度的1.5倍;覆盖层下移的过程中,在松动椭球体内的岩石沿轴线方向移动速度最大,细粒覆盖岩的下移速度大于粗粒覆盖岩的下移速度,若矿岩交界面部位岩石块度过细会引起矿石的超前贫化,建议矿岩交界面上(一定厚度)覆盖层块度和地下采场矿石的平均块度相近为宜。根据对不同厚度覆盖层的试验研究,厚度较小时,覆盖层上表面凸凹不平,形成波浪形,不利于覆盖层实现滞水、防风和缓冲冲击地压等功能,建议首钢杏山铁矿覆盖层的厚度不小于40m。
In the process of open pit to underground, in order to attain a better effect of stagnant water and to prevent rock burst, a rational structure covering layer is necessarily paved on the bottom of open pit before mining in mines which utilize sublevel caving method without sill pillar. The covering layer will change underground mining activities happen, simultaneously, it will affect the layer thickness and structure. So it has a great significance to investigate movement features of covering layer for identifying a rational structure and thickness of covering layer.
     Take Xingshan iron mine from open pit to underground Shougang an example, a similar experimental conditions is established accoring to the similarity law, a similar physical model of covering layer from open pit to underground was designed and constructed. According to the different combinations of granulometric composition, thickness, humidity and ore drawing condition, mobile physical simulation experiments of covering layer were finished, at the same time, the establishment and use of numerical simulation software PFC2D model reproduced the moving process of loose layer. Through the comparative analysis of results of physical simulation and numerical simulation, the movement rule of covering layer in the process of underground mining was obtained.
     From the study of model, the covering layer was changed with the underground mining activity. The movement rule of covering layer was affected by the ellipsoid of ore drawing, its affect limitation range was depended on the height of loose ellipsoid, the general height of covering layer is close to 1.5 times of drawing ellipsoid’s. In the process of the downward covering layer, the movement speed along the axis of loose ellipsoid is fastest. The downward speed of fine-grained covering rock is faster than the one of coarse-grained covering rock. If the rock lumpiness between the border of ore and rock is too thin, it will cause over early ore dilution, it is suggested that the rock lumpiness of the border should be as near as the average limpiness of underground mining. According to the experimental study of thickness of different covering layers, when the thickness is small, the surface of covering layer is rugged to be waved and disadvantaged of the function realization of stagnant water, wind-prevention and rock burst, so it is suggested that the covering layer thickness of Xingshan iron mine should be better more than 40m.
引文
[1] Li W. Fuzzy mathematics method for theoretical analysis of ground movements due to underground excavation[J]. Mining Science and Technology, 1991, (13) : 45-56.
    [2] Hill J M. Granula G M. Rcylindrical cavities and classical rat-hole theory[J]. International Journal of Numeral Analysis Methods Geomechanics, 2005 , (24) : 971-990.
    [3] Villaescusa E A. Review of sublevel stoping massmin 2000 procceedings brisbane[J]. The AustraLasian Institute of Mining and Metallurgy, 2000, (20) : 577-590.
    [4] Jolley D . Computer simulation of the movement of ore and waste in an underground mining Pillar[J]. Bulletin, 1988, (7) : 854-859.
    [5] Kvapil P. Gravity flow of granular materials in hoppers bins in mines-coarse material[J]. Internation Journal Rock Mechanics and Mining Science, 1995, (2) : 277-304.
    [6] Alfredo H S, Angwilso H T. Probability concepts in engineering planning design[J]. John Wiley Sons Inc, 2005, (1) : 268-271.
    [7] Li L Y . Analysis of bulk flow of materials under gravity caving process [J]. Colorado School of Mines Quarterly, 1984, 76, (3): 41-47.
    [8] Mullins W. Stochastic theory of particle flow under gravity[J]. Applied Physics,1972, 43 (2) : 665-678.
    [9] Denby B. Improving mine safety using virtual reality tecniques[J]. Minesafe Perth Australia, 1996, (6) : 305-316.
    [10]刘兴国,张国联.论无底柱分段崩落法放矿方式[J].金属矿山,2005,(2):5-7.
    [11] Spencer A J M, Bradley N J. Gravity flow of a granular material in compression between vertical walls and through a tapering vertical channel[J]. Applied Mathematics, 1992, 45: 733-746.
    [12] Kvapil R.Gravity flow of granular materials in hoppers and bins in mines-coarse material[J]. International Journal Rock Mechanics and Mining Science, 1965, 2 : 277-304.
    [13]刘兴国.放矿学理论基础[M].北京:冶金工业出版社,1995.
    [14]苏宏志.阶段崩落法放矿中侧面崩落岩石混入量和放矿制度间的关系[J].有色金属,1992,(2):26-30.
    [15]王昌汉.放矿学[M].北京:冶金工业出版社,1982.
    [16]熊国华.崩落疆岩下放矿合理矿石回收和贫化指标好探讨[J].金属矿山,1978,(6):23-26.
    [17]李荣福.地下开采技术的新进展[J].有色金属,1999,23(5):15-18.
    [18] Xiao Y X, Wang Y J, Wang S J. New algorithm for contact updating 2-DEM[J]. Rock Mechanics and Engineering, 1999, 18 (4) : 409-413.
    [19]董振民.大间距与大参数的区别[J].矿业快报,2006,(2):36-40.
    [20] Sophianopoulos D S, Miehaltsos G T. Nonlinear stability of a simplified model for the Simulation of double suspension roofs[J].Engineering Struetures, 2001, 23:705~714.
    [21]任凤玉.无底柱分段崩落法扇形炮孔爆破机理研究与应用[J].东北大学学报,2006, (11):12-16.
    [22]黄德玺.阶段强制崩落采矿法在观音山铁矿的应用[J].金属矿山,1994,(8):24-27.
    [23] Gang C. Stochastic modeling of rock fragment flow under gravity[J]. Geomechanics Abstracts Volume, 1997, 4 (8) : 236-239.
    [24]魏善力.单漏口放矿条件下的速度场及等速体[J].北京科技大学学报,1994,(8):19-23.
    [25] Okubo S. Local safety factor applicable to wide rouge of failure criteria[J]. Rock Mechanics and Rock Engineering, 2005, 30 (4) : 32-36.
    [26]王述红,宁新亭,任凤玉,等.崩落采矿法覆盖层合理保有厚度的探讨[J].东北大学学报,1998,10(5):459-461.
    [27]张国建,蔡美峰.崩落体形态及其影响研究[J].中国矿业,2005,12(12):38-42.
    [28]马从安,任天贵.放矿随机过程中散体颗粒移动概率密度方程[J].河北理工学院学报,1999,(5):1-5.
    [29]张志军,明世祥,宋洪勇.崩落法采场松散覆盖岩层移动规律研究[J].采矿技术,2008,3(2):11-13.
    [30]朱志根,吴爱祥.崩落矿石块度对放矿的影响分析[J].矿业快报,2006,10(10):10-12.
    [31]乔国刚,甘德清.石人沟铁矿露天转地下覆盖层合理厚度研究[J].河北理工学院学报,2005,5(2):8-13.
    [32]马建军,周志华,尹小鹏.放矿中黄土覆盖层运动规律的模型试验[J].有色金属,2004,8(3):98-101.
    [33]郭卫星,卢国平编译.MODFLOW三维有限差分地下水流模型[M].南京:南京大学,1998.
    [34] Courant R.Variational methods for a solution of problems of equifibrium and vibration[J]. Bull:Amer.Math Sec.1993,49:1-23.
    [35]冯康.基于变分原理的差分格式[J].应用数学与计算数学,1965,(2):238-262.
    [36]姚振汉,杜庆华.边界元法应用的若干近期研究及国际新展[J].清华大学学报,2005,4(5):89-93.
    [37]薛守义.地震条件下岩体边坡的稳定性研究[M].郑州:黄河水利出版社,1997.
    [38]周维垣,杨若琼,剡公瑞.流形方法在工程中的应用[J].岩石力学与工程学报,2006,15(3):211-218.
    [39]莫海鸿,陈尤雯.流形法在岩石力学研究中的应用[J].华南理工大学学报,2004,26(9):48-53.
    [40]柳小波,姚江,孙豁然,等.无底柱分段崩落法放矿方式计算机模拟研究[J].矿业研究与开发,2004,24(5):18-20.
    [41]任凤玉.放矿仿真的数学模型[J].东北大学学报,1996,(10):475-479.
    [42]周志华,叶洲元,马建军.放矿中黄土覆盖层运动规律的数值模拟[J].中国矿业,2005,(1):81-83.
    [43]李昌宁.非均匀矿岩散体放矿的计算机模拟[J].有色金属,2003,(5):98-103.
    [44]姜增国,杨保仓.基于DDEM的自然崩落采矿法崩落规律的数值模拟[J].岩土力学,2005,(2):239-242.
    [45]刘志娜,梅林芳,宋卫东.基于PFC数值模拟的无底柱采场结构参数优化研究[J].矿业研究与开发,2008,(2):3-5.
    [46]王连庆,高谦,王建国,等.自然崩落采矿法的颗粒流数值模拟[J].北京科技大学学报,2007,(6):557-561.
    [47]张志军,明世祥,宋洪勇.崩落法采场松散覆盖岩移动规律研究[J].采矿技术,2008,8(2):11-13.
    [48]李建林.卸荷岩体力学理论与应用[M].北京:中国建筑工业出版社,1999:30-41.
    [49]柴立和,文东升,彭晓峰.相似理论的新视角探索[J].探索·假说,2005,22(3):101-103.
    [50] Eckert E R C, Drake R M. Analysis of heat and mass transfer[M]. London: McGiaw-hill, 1996: 413-421.
    [51] Wameford I P. Fussey D E. Natural convection from a constant-heat-flux inclined flat[J]. Heat Transfer Conf, 1994,5 : 263-268.
    [52]涂文知,马建军.大间距结构参数过渡分段放矿方式优化研究[D].武汉:武汉科技大学,2007.
    [53]魏星.云南高海拔地区沥青混合料性能仿真研究[D].重庆:重庆大学,2009.
    [54]柴浩.基于二维颗粒流理论的挤扩支盘桩承载力研究[D].天津:天津大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700