模具高速铣削刀具轨迹规划与工艺参数优选技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削由于其高效高精可加工高硬材料的特点,能够满足自由曲面精加工的需求,上世纪90年代以来,逐渐走向实用,在复杂自由曲面制造领域得到了广泛应用,并正在成为当代先进制造技术的重要发展趋势。高速铣削应用于模具加工中,在改善表面质量的同时提高了加工效率,可以在一次装夹中完成粗精加工的所有工序甚至取消手工操作。模具等零件的高速铣削加工多为难加工材料且材料去除量大、消耗时间长、刀具寿命短,随着工件形状复杂程度的增加,提高自由曲面加工精度和加工效率变得越来越重要。
     环形刀五轴数控加工自上世纪60年代以来开始得到应用,环形刀五轴数控加工在改善表面质量和提高加工效率方面显示出了更大的优势。数控编程是数控加工的基础,刀具运动轨迹规划是多坐标数控编程的基础和关键。因此,针对自由曲面五轴数控加工问题,通过刀具位姿、路径规划和工艺参数选择来实现在保证精度前提下,加工效率的提高成为急待解决的问题。
     刀具轨迹规划需配合工艺参数选择最终生成数控加工程序,在以往编程过程中没有考虑进给速度的频繁变化导致铣削过程本身加工工艺环境的不断恶化。因此,本文将高速铣削自动编程和轨迹规划的研究从系统论的角度结合机床的动力学特性进行研究,建立位姿与轨迹优化控制理论和工艺参数优化模型,并对位姿与轨迹优化和工艺参数优化进行有效集成与融合,主要研究内容如下:
     (1)高速高精数控编程系统需完成的任务和关键问题研究。在对高速铣削数控编程系统相关问题研究的基础上,建立了多轴数控加工刀具姿态的控制和优化、最大行距的计算、工艺参数优化选择等方面的完善的数控编程系统框架,对影响精度和效率的关键问题进行了分析。
     (2)环形刀五轴数控加工刀具路径规划的研究。基于杜邦指标线,推导出了环形铣刀五轴铣削复杂曲面时的局部可铣性充要条件,在求得等残留高度算法最大加工带宽的同时确定了无局部曲率干涉的刀具姿态,生成了刀具轨迹并与传统算法进行了比较。
     (3)等残留高度算法的首条路径优化。分析了带宽与曲面特性的关系,基于最大平坦度方向可以减少刀位点数量的原则优化了等残留高度算法中的首条路径,使其与曲面的曲率特性相关;应用前述自适应刀轴矢量算法中刀具姿态和带宽的确定方法生成刀具轨迹,并与前述方法进行比较可得首条路径优化后的刀具路径更能提高加工效率。
     (4)速度和加速度动态特性研究。应用恒表面切削速率方法对上述方法生成的刀具轨迹,基于MATLAB方法进行速度和加速度分析,比较其速度和加速度特性,并指出带宽由曲面的曲率特性和倾角大小共同确定,当步长变化均匀时可以优化加速度曲线,初始路径的选择可以优化刀具轨迹。
     (5)高速铣削中切削工艺参数的优化。基于a p,n,fz,ae四个主要切削参数,针对塑料模具钢P1.2738进行了四因素四水平正交切削试验;采用极差分析法分析了各因素对表面粗糙度Ra的影响规律并获得了最佳参数组合为A2B3C1D1;应用正交回归方法建立了表面粗糙度Ra预测模型,经检验回归方程和回归系数均程高度显著可以进行预测,根据预测方程所绘制各单因素对表面粗糙度Ra的影响规律与极差分析法一致;利用人工神经网络BP算法建立了4输入1输出、隐层结点数为12的三层表面粗糙度预测模型,将预测结果与BP算法进行比较得出BP预测效果优于正交回归分析方法;基于BP网络所建立的表面粗糙度Ra预测模型结合遗传算法以最小的表面粗糙度和最大的材料去除率为优化目标,求得了满足条件的最优参数组合。
     (6)针对传统等残留高度算法,自适应刀轴矢量的等残留高度算法和首条路径优化后的自适应刀轴矢量等残留高度算法三种刀具路径方法生成的刀具轨迹,结合在铣削工艺参数优化中得到的最优参数组合,以塑料模具钢P1.2738为试验材料,应用DMU125P五轴数控机床对三种方法生成的刀具轨迹进行加工对比试验,验证了本文方法可以在保证精度的前提下明显提高加工效率。
High speed cutting, because of its high efficiency and high precision, can be used tocut high hardness materials. Since the1990s,it is gradually used in the complex freesurface manufacturing and is becoming an important development trend as advancedmanufacturing technology. High speed milling can improve surface quality and theprocessing efficiency in mold processing,simultaneously. It can finish all the roughand the finish machining process, even cancel the manual operation in one clamping.In general, molds and parts that processed by high speed milling are materials that aremore difficult to process and have large amount of material removal, so consumelonger time and shorten tool life. With the increase of the degree of complex shape ofwork-piece,improve machining precision and machining efficiency of the free surfaceis becoming more and more important.
     NC machining began to get application since the1960s,five axis NC machiningwith torus cutter show more advantages because it can improve surface quality andimprove processing efficiency. The data show that,20%-30%of the numericalcontrol machine stop production, because it can't prepare NC program,so affects theutilization rate of the machine tool directly. Tool path is the basis and key factor inmulti-axis NC machining programming. Therefore, through the controlling ofinclinable angle, yaw angle of the tool and path planning in five axis machining toachieve accuracy in guarantee under the premise of processing to enhance theefficiency are the urgent problems.
     Tool path planning cooperated with craft parameter selecting generate the NCprogram. We did not consider the frequent changes of feed speed and the worseningof environment from programming in milling process itself in the past. Therefore, thispaper will research tool path planning of high speed milling and combine it withmachine tool's dynamic characteristics from the point of system theory. Establish toolorientation and tool path optimization control theory, establish the model of parameteroptimization,and carry on effective integration and fusion. The main research contentis as follows:
     (1)Research on the key problems of high speed and high precision NCprogramming system. Base on the study of NC programming system and relatedproblems of high speed milling,establish the system framework of multi-axis NC machining from the optimization of tool orientation and the calculation of maximumstep-width,cooperated with the selection of optimized parameter,pointed out the keyissues of influencing accuracy and efficiency.
     (2)Research on tool path planning of five axis NC machining with torus cutter.Analysis the relative position relationship of the three frames in five axis NCmachining,calculated the global coordinates of the cutter location and the vector ofcutter. Based on the Dupont index line, this paper deduced the necessary andsufficient condition that can avoid gouging when milling complex surface in five axiswith torus cutter. We generated tool path by the method in this paper and compared itwith the traditional algorithm, the results indicate that the present constantscallop-height machining achieves the specified machining accuracy with fewer andshorter tool paths than the existing tool path generation approaches.
     (3)Optimization of the master cutter path of constant scallop-height algorithm.Analysis the relationship between the strip width and the surface characteristics, themaster cutter path have been chosen from the maximum flatness direction that canreduce the number of cutter location point, make it be related with the curvature of thesurface characteristics. The tool paths are generated by the method of self-adaptivetool orientation.
     (4) Research on the dynamic characteristic of velocity and acceleration. Based onconstant surface cutting rate method and MATLAB, we analysis and compare thecharacteristic of velocity and acceleration of tool path that generated by the abovethree kinds of method. Point out that strip widths are identified by both the curvaturecharacteristics of the surface and tool orientation, acceleration curve can be optimizedwhen step changes uniform, the choice of the master cutter tool path can optimize toolpath.
     (5) Optimization of process parameters in high speed milling. Based on the fourmain cutting parameter:a p,n,fz,ae, the experiment was carried out on plasticdie-mold steel P1.2738on a high-speed5-axis machining center by using four factorsof the four levels orthogonal test. By using maximum difference method gains thefour experimental factors on the surface roughness of the different effect, draws thetrend curve of the milling parameters on the surface roughness, and analyzes causes oftheir impact, get the best parameter combination A2B3C1D1. Based on multipleregression, we presented the prediction model for the surface roughness. In this paper, we verified the regression factor coefficients and significances of the regressionequation, the trend curve of the milling parameters on the surface roughness iscoincident with the maximum difference method. Based on artificial neural network,we presented the prediction model of surface roughness. There are one input layer offour neurons, one output layer of one neuron and one hidden layer of12neurons, themain factors are included in the input layer of the network. The average relative errorof prediction results is2.6825%while that of the multiple orthogonal regression is7.8156%, which show that the BP model can basically draw the relationship betweeninput parameters and output parameters. Based on the ANN and the genetic algorithm,we optimized the milling parameters. The objective functions are the biggestmachining material removal and the minimum surface roughness. We built Themulti-objective optimal model and gave the optimization results.
     (6) Based on tool path that generated by the following three method: traditionalconstant scallop algorithm, self-adaptive tool orientation method and self-adaptivetool orientation method of optimized master cutter path. Combined with the optimalparameter, we conducted the experiment on plastic die-mold steel P1.2738on ahigh-speed5-axis machining center DMU125P, the results show that the tool pathgenerated by self-adaptive tool orientation method of optimized master cutter path canimprove the processing efficiency obviously.
引文
[1]H. Erdim, I. Lazoglu and B. Ozturk, Feedrate scheduling strategies for free-formsurfaces, International Journal of Machine Tools and Manufacture,2006, Vol.46,Issues7-8:747-757.
    [2]席俊杰.高速切削的关键技术及应用.润滑与密封,2006,5:174-177,189.
    [3]Koreta, Noriyuki; Oosaki, Takayosi and Zhao, Xioming, Optimum tool positionand effect of MQL on surface roughness in five-axis milling with ball-nosed end mill,Progress of Machining Technology-Proceedings of the Seventh InternationalConference on Progress of Machining Technology, ICPMT,'2004:908-913.
    [4] http://yhjcxhcom.mtnets.net.cn/News/T19/98.html.
    [5]艾兴,刘战强,黄传真,邓建新,赵军.高速切削综合技术.航空制造技术,2002,3:20-23.
    [6]马建民,金新安.模具加工中的高速切削,模具制造,2006(7)):52-55.
    [7]吴光明.模具高速铣削加工技术,现代制造,2006(3):112-118.
    [8]陈世平,侯智,石军.淬硬模具高速铣削加工刀具技术分析[J],工具技术,2007,41(9):10-13.
    [9]余凤池.在具有孤岛的模具型腔加工中刀具轨迹规划的研究[D].北京:北京交通大学,2008.
    [10]王刚.自由曲面加工中基于截面线法的刀具轨迹生成研究[D].辽宁:辽宁工程大学,2003.
    [11]S. Bedi, F. Ismail, M. J. Mahjoob and Y. Chen, Toroidal Versus Ball Nose andFlat Bottom End Mills, Int J Adv Manuf Technol,1997,13:326-332.
    [12]D. Roth, S. Bedi, F. Ismail, S. Mann, Surface swept by a toroidal cutter during5-axis machining, Computer-Aided Design,2001,33:57-63.
    [13]Khalid Sheltami, Sanjeev Bedi, Fathy Ismail, Swept volumes of toroidal cuttersusing generating curves, Int. J. of Machine Tools&Manufacture,1998,38:855-870.
    [14]Wen-Yuh Jywe and Chien-Hong Liu, A method for evaluating the contour andtolerance of the toroidal cutter with helicoidal surfaces, Meas. Sci. Technol.2000,11:237–243.
    [15]Stephen Mann, Sanjeev Bedi, Genralization of the imprint method to generalsurfaces of revolution for NC machining, Computer-Aided Design,2002,34:373-378.
    [16]Li-Xin Cao, Hu Gong, Jian Liu, The offset approach of machining free formsurface Part2: Toroidal cutter in5-axis NC machine tools, Journal of MaterialsProcessing Technology,2007,184:6–11.
    [17]Li S X and Jerard R B.5-axis machining of sculptured surfaces with flat-endcutter. Computer Aided Design,1994,26(3):165-178.
    [18]Choi B K,Park J W,and Jun C S.Cutter-location data optimization in5-axissurface machining.Computer Aided Design,1993,25(6):377-386.
    [19]Vickers G and Quan K. Ball-mills versus end-mills for curved surfacemachining.Journal of Engineering for Industry (Transactions of the ASME).1989,111(1):22-26.
    [20]Jensen C G and Anderson D C.Accurate tool placement and orientation for finishsurface machining.Journal of Design and Manufacturing,1993,3(4):251-261.
    [21]Jensen C G, Hill J K and W1lite K A.Synthesis of cutting tool placement,orientation and motion based on surface analysis.Proceedings of DETC2000:ASME Computers and Information in Engineering Conference, Paper NumberDETC2000/CIE.14632,Baltimore Maryland,2000,9:10-13.
    [22]Jensen C G Red W E and Pi J.Tool selection for five-axis curvature matchedmachining.Computer Aided Design.2002,34:251-266.
    [23] Rao N, et al, Tool path planning for five-axis machining using the principal axismethod[J]. International Journal of Machine Tools&manufacture,1997,37(9):1025-1040.
    [24]刘鹄然,等.用圆柱铣刀加工高速机车流线型曲面的三阶切触原理,铁道学报,22(4):99-102.
    [25] Rao A, Sarma R. On loacal gouging in five-axis sculptured surface machiningusing flat-end tools [J]. Computer-Aided Design,2000,32(7):409-420.
    [26]Chen T, Zhang Y, Zhou J. Determination of cutter orientation for five-axissculptured surface machining with a filleted-end cutter [J]. International Journal ofAdvanced manufacturing Technology,2002,20:735-740.
    [27]Yoon J H, Pottmann H and Lee Y S,“Locally Optimal Cutting Positions for5-axis Sculptured Surface Machining,” Computer-aided Design, vol.35,Jan.2003,pp.69~81.
    [28]张莹,张定华,吴宝海等.复杂曲面环形刀五轴加工的自适应刀轴矢量优化方法[J].中国机械工程,2008,19(8):945-948.
    [29]车尧炎,五轴加工中基于局部几何条件的刀具势态优化,机械工程师,2005,7:119-121.
    [30]刘雄伟等编著.数控加工理论与编程技术.北京:机械工业出版社,2000年(第二版).
    [31]Kruth J P and KIewals E Optimization and dynamic adaptation of the cutterinclination during five-axis milling of sculptured surfaces.Annals of the fIRP,1994,43(1):443-448.
    [32]Deng Z,Leu M C,Wang L and Blackmore D.Determination of tiat-endorientation in5-axis machining. ASME Manufacturing Science and Engineering,MED-V01.4,1996:73-80.
    [33]Wang L and Nalr S S.An integrated CAD/CAM system for design andmanufacturing of11igh—curvature surfaces.Proceedings of the1999ASME DesignTechnical Conferences:The25”Design Automation Conference,Paper NumberDETC99/DAC-8666,Las Vegas,Nevada,September12~16,1999.
    [34]Bedi S,Gravelle S and Chen Y H.Principal curvatutt alignment technique formachining complex surfaces. Joumal ofManufacturing Science andEngineering(Transactions of the ASME),1997,119:756-765.
    [35] Rao N,Bedi S and Buchal R.Implementation of the principal axis method formachining of complex surfaces. The International Journal of AdvancedManufacturing Technology,1996,11:249-257.
    [36]Rao N,Ismail F and Bedi S.Tool path planning for five·axis machining using theprincipal axis method.International Journal of Machine Tools and Manufacture,1997,37(7):1025-1040.
    [37]Marciniak K.Influence of surface shape on admissible tool position in5-axis facemilling.Computer Aided Design,1987,19(5):233-236.
    [38]Lee Y S and Ji H.Surface interrogation and machining strip evaluation for5-axisCNC die and mold machining.Intemationat Journal of Production Research,1997,35(1):225-252.
    [39]Li S X and Jerard R B.5-axis machining of sculptured surfaces with flat-endcutter. Computer Aided Design,1994,26(3):165-178.
    [40]宁汝新,赵汝嘉,欧宗瑛编,CAD/CAM技术,北京:机械工业出版社,1999.
    [41]Catania G A computer-aided prototype system for NC rough milling of flee-formshaped mechanical part-pieces.Computers in Industry,1992,20(2):275-293.
    [42]Loney G C and Ozsoy T M.NC machining of free form surfaces.ComputerAided Design.1987,19(2):85-90.
    [43]Zhu C.Tool-path Generation in Manufacturing Sculptured Surfaces with aCylindrical End-milling Cutter.Computers in Industry.1991,17:385-389.
    [44]AN-CHEN LEE, DA-PAN CHEN and CHIH-LUNG LIN. A CAD/CAM systemfrom3D coordinate measuring data. INT.J.PRID.RES.28(12),1990:2353-2371.
    [45]James E Bobrow.NC machine tool path generation from CSG part representations.Computer-Aided Design,17(2),1985:69-75.
    [46]Kaan Erkorkmaz, Yusuf Altintas. High speed CNC system design. Part III: highspeed tracking and contouring control of feed drives. International Journal of MachineTools&Manufacture2001(41):1637-1658.
    [47]Y.-J. Lin, T.S. Lee. An adaptive tool path generation algorithm for precisionsurface machining. Computer Aided Design,31(1999):237-247.
    [48]S.H.Masood, V.K. Bagam, P. Chantanabubpha. A computerized minimumdistance algorithm for machining of sculptured surfaces. Computer-Aided Design,2002,42:291-297.
    [49]Choi B K.Lee C S,et a1.Compound surface modeling and machining.ComputerAided Design,1988,20(3):127-136.
    [50]Huang Y and Oliver J H.Non-constant parameter NC tool path generation onsculptured surfaces. The International Journal of Advanced ManufacturingTechnology,1994,9:281-290.
    [51]Hwang J S.Interference·free tool—path generation in the NC machining ofparametric compound surface.Computer Aided Design.1992,24(12):667-676.
    [52]Duncan J P and Law K.Computer-Aided Sculpture.Cambridge UniversityPress.1989.
    [53]C-C. Lo. Efficient cutter-path planning for five-axis surface machining with aflat-end cutter. Computer-Aided Design,31(1999):557-566.
    [54]K. Suresh, D.C.H. Yang. Constant Scallop-height Machining of Free-formSurfaces. Journal of Engineering for Industry,116(1994):253-259.
    [55]Yuan-Shin Lee. Non-isoparametric tool path planning by machining stripevaluation for5-axis sculptured surface machining. Computer-Aided Design,30(7),1998:559-570.
    [56]Lin R S and Koren Y Efficient tool-path planning for machining flee-formsurfaces.Journal of Engineering for Industry(Transactions of the ASME),1996,118:20-28.
    [57]Suresh K and Yang DCH.Constant scallop-height machining for free-formsurfaces. Journal of Engineering for Industry (Transactions of the ASME),1994,116:253-259.
    [58]Sarma R and Durra D.The geometry and generation of NC tool paths.Journal ofMechanical Design(Transactions of the ASME),1997,119(2):253-258.
    [59]Lee Y S.Non-isoparametric tool path planning by machining strip evaluation for5-axis sculptured surface machining.Computer Aided Design.1998,30(7):559-570.
    [60]Lo C. Efficient cutter-path planning for five—axis surface machining、^rim afiat-end cutter.Computer Aided Design,l999,31(9):557-566.
    [61]Jordan J Cox, Yasuko Takezaki et al. Space-filling curves in tool-path applications.Computer-Aided Design,26(3),1994:215-224.
    [62]Zhonglin, Han,Daniel, C.H.Yang. Iso-phote Based Tool-path Generation forMachining Free-form surfaces. Transactions of the ASME121(1999):656-664.
    [63]Jaekoo Joo, Hyunbo Cho. Efficient Sculptured Pocket Machining Using FeatureExtraction and Conversion. Journal of Manufacturing Systems,18(2),1999:100-112.
    [64]Zezhong C. Chen, Zuomin Dong, Geoffrey W. Vickers. Automated surfacesubdivision and tool path generation for31/2-axis CNC machining of sculptured parts.Computers in Industry,2003,50:319-331.
    [65]高峰,吴俊军,王同洋,周济.基于包容盒分解的快速干涉检验算法.计算机辅助设计与图形学学报,2000,12(6):435-440.
    [66]钟建琳,米思南,喻道远,段正澄.曲面平头刀加工无干涉刀位轨迹自动生成的算法研究.机械工程学报,1999,35(6):93-97.
    [67] Yuan-Shin Lee, Tien-Chien Chang.2-Phase approach to global tool interferenceavoidance in5-axis machining. Computer-Aided Design,1995,27(10):715-729.
    [68]钟建琳,米思南,喻道远,段正澄.曲面加工中避免全局刀具干涉的方法.华中理工大学学报,1998,26(12):19-21.
    [69]B.K. Choi, C.S. Jun. Ball-end Cutter Interference Avoidance in NC Machining ofSculptured Surface. Computer-Aided Design,1989,21(6):371-378.
    [70]J.S.Hwang. Interference-free Tool Path Generation in the NC Machining ofParametric Compound Surface. Computer-Aided Design,1992,24(12):667-675.
    [71]詹泳,周艳红,周云飞.带倒角平底刀曲面加工无干涉刀具轨迹生成.中国机械工程,1998,9(9):25-27.
    [72]Ji Seon Hwang, Tien-Chien Chang. Three-axis machining of compound surfacesusing flat and filleted endmills. Computer-Aided Design,1998,30(8):641-647.
    [73]徐后强,罗宏志.一种三轴曲面NC加工干涉检查的新方法.华中科技大学学报,2001,29(3):70-72.
    [74]J.H. Oliver. Gouge Detection Algorithms for Sculptured NC Generation. Journalof Engineering for Industry.1993,115(1):139-144.
    [75]Chen. Y. J, Ravani. B. Offset surface generation and contouring incomputer-aided design. ASME J. Mechanism Transmissions&Automate.1987,109(2):132-142.
    [76]M. Alhanaty, M. Bercovier. Shapes with offsets of nearly constant surface area.Computer--Aided Design,1999,31:287-296.
    [77]Takashi Maekawa. An overview of offset curves and surfaces. Computer-AidedDesign,1999,31:165-173.
    [78]D. Roth, S. Bedi, F. Ismail, S. Mann. Surface swept by a toroidal cutter during5-axis machining. Computer-Aided Design,2001,33:57-63.
    [79]方向,彭群生.多轴数控加工中刀具包络面的计算.计算机辅助设计与图形学学报,2000,12(8):609-613.
    [80]王哲,王知行,钟诗胜.刀具扫描体生成新算法及在数控加工仿真中的应用.机械工程学报,2001,37(1):28-31.
    [81]Yun C. Chung, Jung W. Park, Hayong Shin and Byoung K. Choi. Modeling thesurface swept by a generalized cutter for NC verification. Computer-Aided Design,1998,30(8):587-594.
    [82]刘华明,李吉平,任秉银. NC验证中通用铣刀扫描体生成方法.制造技术与机床,1999,9:43-45.
    [83]C.-J. Chiou, Y.-S. Lee. A shape-generation approach for multi-axis machiningG-buffer models.Computer-Aided Design,1999,31:761-776.
    [84]张和明,张玉云,熊光楞.复杂曲面五坐标数控加工干涉检查及刀位修正.清华大学学报(自然科学版),1998,38(2):65-68.
    [85]谭光宇,袁哲俊,姚英学.加工过程碰撞干涉的矢量法检验.中国机械工程,1999,10(5):513-515.
    [86]冉瑞江,马德昌,王亚平,唐荣锡.用投影方法进行数控加工干涉检查与修正.机械工程学报,1996,32(6):1-5,19.
    [87]彭芳瑜,周云飞,周济.复杂曲面的无干涉刀位轨迹生成.华中科技大学学报(自然科学版),2002,30(2):1-4.
    [88]G. Elber, E. Cohen. A unified approach to verification in5-axis freeform millingenvironments.Computer-Aided Design,1999,31:795-804.
    [89]杨勇生,左敦稳,王珉,王冷干.消影算法在5轴NC加工干涉检查中的应用.应用科学学报.1998,16(4):385-391.
    [90]Cha-Soo Jun, Kyungduck Cha, Yuan-Shin Lee. Optimizing tool orientations for5-axismachining by configuration-space search method. Computer-Aided Design,2002,34:33-51.
    [91]喻道远,段正澄.运用点涉法原理确定平头立铣刀三轴联动数控加工轨迹.机械工业自动化,1994,16(2):7-11.
    [92]Xiao Chun Wang, Yuan Yu. An approach to interference-free cutter position forfive-axis free-form surface side finishing milling. Journal of Materials ProcessingTechnology.2002,123:191-196.
    [93]F. Li, X.C. Wang, S.K. Ghosh, D.Z. Kong, T.Q. Lai and X.T. Wu. Gougedetection and tool position modification for five-axis NC machining of sculpturedsurfaces. Journal of Materials Processing Technology,1995,48:739-745.
    [94]Joung-Haun Yoon, Helmut Plttmann, Yuan-Shin Lee. Locally optimal cuttingpositions for5-axis sculptured surface machining. Computer-Aided Design,2003,35:69-81.
    [95]叶佩青、陈涛、汪劲松.复杂曲面五坐标数控加工刀具轨迹的规划算法.机械科学与技术,2004(8):883-886.
    [96]杨长祺、秦大同、石万凯.自由曲面五轴等残余高度高精度加工的路径规划.计算机辅助设计与图形学学报,2003(5):621-625.
    [97]束长林.5轴自由曲面上加工行距的计算方法研究.航空精密制造技术,2004(12):30-32.
    [98]陈良骥,程俊伟,王永章.环形刀五轴数控加工刀具路径生成算法.机械工程学报,2008(44-3):205-212.
    [99]Rajneesh Kumar Agrawal, D.K.Pratihar. Optimization of CNC isoscallop freeform surface mahcining using a genetic algorithm. International Journal of MachineTool&Manufacture,(2005):1-9.
    [100]Taejung Kim, Sanjay E. Sarma, Tool path generation along direction ofmaximum kinematic performance; a first cut at machine-optimal paths, ComputerAided Design,34(2002):453-468.
    [101]V. Giri, D. Bezbaruah, P. Bubna. Selection of master cutter paths in scupturedsurface machining by employing curature principle, International Journal of MachineTool&Manufacture,45(2005):1202-1209.
    [102]De Souza AF, Experimental investigation of feed rate limitations on high speedmilling aimed at industrial applications. International Journal of AdvancedManufacturing Technology,2007,32(11-12):1104-1114.
    [103]H. Erdim, I. Lazoglu and B. Ozturk, Feedrate scheduling strategies for free-formsurfaces, International Journal of Machine Tools and Manufacture,2006, Vol.46,Issues7-8:747-757.
    [104]B K Fussell,R B Jerard,J G Hemmett.Robust Feedrate Selection for3-Axis NCMachining Using Discrete Models[J].Journal of Manufacturing Science andgineering,2001,123(5):214-224.
    [105]B U Guzel,I Lazoglu.Increasing productivity in sculpture surface machining viaoff-line prevewise variable feed rate scheduling based on the force system model[J].International Journal of Machine Tools Manufacture,2004,44(6):21-28.
    [106]Wang W P. Solid Modeling for Optimization Metal Removal of Threedimensional NC End Milling[J].Journal of Manufacturing System,1988,7(1):57-65.
    [107]李启璘,张明辉,尹欣.基于曲率匹配的平面轮廓类零件进给速度优化研究.机床与液压,2008,36(7):34-37.
    [108]李启璘,张定华,罗明,吴宝海.曲面近似理论在进给速度优化研究中的应用.机械设计与制造,2008,5:135-137.
    [109]李启.基于工况匹配的进给速度动态优化研究.机床与液压,2008,36(5):304-307.
    [110]彭芳瑜,彭程,周云飞,周济,瞿坦.七轴五联动四铣机床的恒表面进给速度控制.机械与电子2002,3:23-25.
    [111]周艳红,同济,周云飞.多坐标曲面加工中进给速度的优化控制,自动化学报.1999,25(3):169-175.
    [112]E. J. A. Armargo, R. H. Brown. The machining of metals [M]. Prentice-Hall,Englewood Cliffs, NJ,1976.
    [113] M.Martelotti. Analysis of milling process [J]. Tran. ASME,1941,(63):667-700and1945,(67):233-245.
    [111]V.A.Tipnis, S.C.Buescher, R.C. Garrison. Mathematically modeled machiningdata for adaptive control of end milling operations [M]. Proc. NAMRC-iv,1976:279-286.
    [115]D. Montgomery, Y.Altitas. Mechanisms of cutting force and surface generationin dynamic milling [J]. ASME Journal of Engineering Industry,1991,(113):160-168.
    [116]Tugrul Ozel, T Altan. Modeling of high speed machining processes forpredicting tool forces, tool stresses and temperatures using FEM simulations [A].Proceedings of the CIRP international workshop on modeling of machining108operations [C]. Atlanta, Georgia, USA-May19,1998.
    [117]李世杰,孙立新.郭兰申.数控铣削中曲面加工的粗糙度预测.机械设计与制造工程,2000-7,29(4):35-37.
    [118]刘牧,杨茂奎,霍颖.复杂曲面五坐标数控铣削表面粗糙度预测的关键技术研究.机械制造2005,43(495):11,12-14.
    [119]金成哲,陈尔涛,徐骣.车铣预测模型的建立和分析.哈尔滨工业大学学报,2009,41(3):224-226.
    [120]肖军民.基于加工残留高度的铝合金铣削表面粗糙度模型的建立.组合机床与自动化加工技术,2010,3:76-78.
    [121]冯大鹏.铝合金零件数控铣削中降低表面粗糙度的对策.机械工程师,2005,12:78-79.
    [122]郭宝珍.数控铣削中顺铣和逆铣对加工表面粗糙度的影响分析.制造技术与机床,2011,2:109-110.
    [123]王苏东,朱小华.钛合金TC4铣削参数的正交优化.机械与电气,2009,12:39,52.
    [124]杨小萍,张家泰,葛江华.虚拟数控铣削表面粗糙度预测技术研究.系统仿真学报,2008,20(19):5113-5116.
    [125]郭秀华,陈祥林.基于高速铣削的铝合金6061表面粗糙度试验研究.机床与液压,2011,39(6):38-39.
    [126]杨济森,郭宏伟,李洪涛.航空铝7050高速铣削表面粗糙度试验研究.机械制造与研究,2011,40(3):34-35,104.
    [127]田欣利,余安英.基于回归分析方法的铣削表面粗糙度预测模型的建立.制造技术与机床,2008,11:101-104.
    [128]胡知音,孟广耀,夏海涛.基于正交试验法的GH169高速铣削表面粗糙度研究.制造技术与机床,2011,1:44-46.
    [129]王素玉,艾兴,赵军,刘增文.高速铣削表面粗糙度建模与预报.制造技术与机床,2006,8:65-68.
    [130]方沂,李凤泉.基于人工神经网络的高速加工表面粗糙度预测模型.工具技术,2006,40(11):78-80.
    [131]田美丽,李占杰,阎兵.基于RBF神经网络的难加工材料高速铣削粗糙度预报研究.工具技术,2004,42(3):35-37.
    [132]王武,汤三,张元敏.基于神经网络的高速铣削表面粗糙度预报.机械设计与制造,2010,3:216-217.
    [133]N.Baskar, P.Asokan,R, Saravanan, G.Prabhaharan.Selection of optimum toolgeometry and cutting conditions using a surface roughness prediction model for endmilling. Int j Adv Manuf Technol2005(26):1202-1210.
    [134]梅向明,黄敬之,微分几何[M].北京:高等教育出版社,2002.
    [135]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.8.
    [136]朱心雄等.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [137]卢金火,李子赫.汽车覆盖件模具数控加工方法的研究[J].模具工业,1996,11.
    [138]刘槐光.空间等距环切加工的刀具轨迹生成及应用[M].北京:北京航空航天大学出版社,2003.
    [139]张力.环切区域加工分步式刀具轨迹生成算法研究[J].计算机辅助设计与图形学学报,1991,11(6):500-503.
    [140]A. Rao, R. Sarma. On local gouging in five-axis sculptured surface machiningusing flat-end tools. Computer-Aided Design,2000,32:409-420.
    [141]Chih-Ching Lo. CNC machine tool surface interpolator for ball-end milling offree-form surfaces. International Journal of Machine Tools&Manufacture,2000,40:307-326.
    [142]Choi B K, Park J W and Jun C S. Cutter-Location Data Optimization in5-axisSurface Machining. Computer-Aided Design,1993,25(6):377-385.
    [143]B H Kim, C N Chu. Effect of Cutter Mark on Surface Roughness and ScallopHeight in Sculptured Surface Machining. Computer-Aided Design,1994,26(3):210-223.
    [144]Andrew Warkentin, Fathy Ismail, Sanjeev Bedi. Comparison betweenmulti-point and other5-axis tool positioning strategies. International Journal ofMachine Tools&Manufacture.2000,40:185-208.
    [145]任秉银,唐余勇.数控加工中的几何建模理论及其应用[M].哈尔滨:哈尔滨工业大学出版社.2000年.
    [146] Susan X Li, Robert B Jerard.5-axis Machining of Sculptured Surfaces with aFlat-End Cutter. Computer-Aided Design,1994,26(3):165-178.
    [147]Vickers G W, Guan K W. Ball-mills versus end-mills for curved surfacemachining.Transaction of ASME,1989,111(1):134-141.
    [148]R. Sarma. Flat-Ended Tool Swept Sections for Five-Axis NC Machining ofSculptured Surfaces. Transactions of the ASME,122(2000):158-165.
    [149]周艳红.自由曲面CNC直接加工理论与技术的研究.武汉,华中科技大110学,1997:34-44.
    [150]Maekawa T. An overview of offset curves and surfaces. Computer Aided Design,1999,31:165–73.
    [151]Coquillart S. Computing offsets of B-spline curves. Comp-Aided Design,1987,19:305–309.
    [152]Elber G, Cohen E. Error bounded variable distance offset operator for free formcurves and surfaces. Int J Comput Geomet Appl1991,1(1):67-78.
    [153]Pham B. Offset curves and surfaces: a brief survey. Comp-Aided Design,1992,24(4):223-229.
    [154]Wentland K, Dutta D. Method for offset-curve generation for sheet metal design.Comp-Aided Design1993,25(10):662–670.
    [155]Lee I-K, Kim M-S, Elber G. Planar curve offset based on circle approximations.Comp-Aided Design1996,28(8):617–630.
    [156]龚蔚,彭芳瑜,周云飞,唐小琦.环形刀无坐标加工中刀位轨迹规划[J].机械与电子,2001(1):58-61.
    [157]陈良骥,程俊伟,王永章.环形刀五轴数控加工刀具路径生成算法[J].机械工程学报,2008,44(3):205-212.
    [158]王万中.试验的设计与分析[M].高等教育出版社.2004年第一版.
    [159]侯媛彬,杜京义,汪梅,编著.神经网络[M].西安:西安电子科技大学出版社,2007.
    [160]董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2007.
    [161]雷英杰,张善文,李续武,等编著.MATLAB遗传算法工具箱及应用[M].西安:西安局电子商务科技大学出版社,2005.
    [162]程操宇.基于智能决策的高速铣削工艺技术研究[D].长春:吉林大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700