汽车毫米波防撞雷达的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着时代的发展和社会的进步,汽车数量日益增多,交通事故时常发生。汽车防撞雷达通过判断车辆前方有无目标,对目标的速度以及距离进行测量,从而提醒驾驶员避免交通事故的发生,具有非常广阔的应用前景。本文主要进行了雷达目标识别的算法研究以及雷达的可实现研究,论文的主要工作集中体现在以下几个方面:雷达目标识别技术研究及高精度测距修正算法研究、毫米波雷达抗干扰研究、高线性度线性调频源以及误差研究。作者在以下几个方面的研究工作中取得了进展及创新:
     1、针对雷达的发射波形问题,提出了采用脉冲分段对称三角线性调频波形作为雷达的发射波形。当雷达采用对称三角线性调频波形作为发射波形时,经过拉伸处理后的上、下扫频段回波信号中间会包含一小段线性调频信号。当采用FFT作为回波信号的主要处理方法时,这部分线性调频信号并不能提供有效信息,会使发射能量有在这线性调频段的时间内造成浪费。采用脉冲分段对称三角线性调频波形作为雷达的发射波形,可以保证经过拉伸处理后的回波信号的采样数据中不包含线性调频信号,因而提高了信号的信噪比,并提高了目标距离估计算法的精度。
     2、在目标测距算法中,提出了通过计算上下扫频段回波信号频谱幅度差值,修正目标距离的算法,提高了测距精度。当采用采样点补零、旁瓣抑制加权等算法对雷达采样信号进行处理时,会使目标回波的一维FFT处理结果在频谱主瓣内出现多条谱线,造成目标的模糊,无法分辨是一个目标,还是多个目标。针对此问题,本文采用二维FFT计算出目标的多普勒频移,在已知多普勒频移的情况下,得出一维FFT频谱幅度差值归一化曲线,然后将目标回波的上下扫频段一维FFT频谱幅度差值归一化,在归一化差值曲线上,查找到对应的修正频率,对目标频谱进行修正。通过修正算法,可以将单一目标在主瓣内的多条谱线修正为一条,解决了目标模糊问题,同时提高了测距精度。
     3、对于距离相近速度不同的目标识别,提出了采用CZT变换提取目标的速度信息,同时提取出上下扫频段频谱幅度差值,再进行距离修正的方法。当雷达前方存在距离相近速度不同的目标时,它们的一维FFT频谱重叠在一起,无法将一维FFT频谱幅度差值归一化,不能应用距离修正算法对目标距离进行修正。但由于目标的速度不同,可以在已知二维FFT的速度结果的情况下应用CZT变换,提取出各个目标的幅度信息,再进行频谱幅度差值归一化,对距离进行修正。此方法可以使雷达对距离相近速度不同的目标进行识别,大幅提高了各个目标的距离测量精度。
     4、针对不同车辆同时使用防撞雷达造成的互相干扰问题,提出了采用系统跳频的回波处理算法结合低旁瓣微带天线的方法,分别在频域与空间上尽可能降低雷达被干扰的几率。汽车防撞雷达的工作环境比较复杂,经常会遇到多部雷达同时工作的情况。采用系统跳频的方法,使雷达的发射频率各不相同,再通过对雷达的上、下扫频段的目标和干扰信号进行分析,对上、下扫频段目标进行配对,可以使雷达能够区分前方目标和干扰信号。针对雷达可能方向上的干扰,提出了采用微带天线,结合阵列加权以及方向图零点约束的方法,使雷达的发射天线和接收天线的旁瓣尽可能减小,并且发射天线旁瓣与接收天线的零点相对应,尽可能在满足雷达探测角度的前提下,降低雷达天线旁瓣增益,减小雷达的方向上的干扰。
     5、研究了基于DDS技术的宽带线性调频源系统,通过分析系统的误差模型,提出了根据DDS的相位截断位数选取线性调频步长,以及根据线性调频的频率捷变速度选取接收机A/D采样速度的办法,减小了由于相位截断误差和线性调频不连续所带来的系统误差。
With the development of society, the number of cars is increasing and the traffic accidents occur frequently. Automotive collision avoidance radar can detect whether the target exists in front of the car and measure the speed and the distance, thus reminds the driver to avoid traffic accidents. It has very broad application prospect. This paper mainly did research on the radar target recognition algorithms and the realization of the radar. The work of this paper epitomized in the following areas:the radar target recognition technology、 precision ranging correction algorithm、Millimeter-wave radar anti-jamming and the correction of the chirp source of high linearity and error. The paper made progress and innovation in the following areas:
     1、 For radar transmitted waveform, proposed the pulse segmented LFMCW as the radar transmitter waveform. When the radar uses the LFMCW waveform as the transmitted waveform, the upper and lower sweep band echo contain a short linear FM signal after the stretching process. When using FFT as a main process method of the echo signal, this part of the chirp signal and can not provide valid information. This causes the emission energy wasted in the chirp segment time. While using the pulse segmented LFMCW as the radar transmitted waveform, it can be guaranteed the echo signal does not contain the linear FM signal after the stretching treatment. It improves the SNR of the signal and the target distance estimation algorithm accuracy.
     2、In the target distance algorithm, by calculating the spectral amplitude difference of the upper and lower sweep band echo signal, corrected the target distance algorithm, which increased ranging precision. When plus zero to the simple point and use the side lobe suppression weighting algorithm as radar signal processing, multi-spectral lines will appear within the main lobe of the spectrum when using FFT process the data of the radar. It will cause the target fuzzy, unable to distinguish whether it is a target or multiple targets. To solve this problem, this paper used two-dimensional FFT calculate target Doppler shift. In the case of the known Doppler frequency shift, drawn a one-dimensional FFT spectrum amplitude difference normalized curve, and then normalized one-dimensional FFT spectrum amplitude difference of the target echo up and down sweep band. In the normalized difference curve, the corresponding correction frequency to correct the target spectrum has been funded. Though the correction algorithm, the multiple spectral lines of the main lobe could be corrected to one. At the same time, it improved the ranging accuracy.
     3、For the targets of similar distance but different speed,proposed use CZT transform extract the speed information of the target and the amplitude difference of the band spectrum.Then use the distance correction method to correct the target distance. When there are similar distance but different speed targets in front of the the radar, Their one-dimensional FFT spectrum overlap so can not normalize the one-dimensional FFT Spectral amplitude. However, due to the different speed of the target, the amplitude information of the respective target can be extracted by using CZT to process the results of the two-dimensional FFT. Then the distance of the target can be corrected by using amplitude spectrum difference normalized. So that the radar can identify different target with similar distance but different speed, and increases the distance measurement accuracy of the various target.
     4、For multiple radar work simultaneously interference problems, the the system hopping echo processing algorithms combined with low sidelobe microstrip antenna have been proposed. The work environment of the automotive collision avoidance radar is complex, it often encounters multiple radar work at the same time. Using system hopping, each radar has a different transmitter frequency. Through analyzing the upper and lower sweep band of the radar and the interference signal, pairing of upper and lower sweep band target, allows the radar to be able to distinguish between the front of the target and the interference signal. In the millimeter wave automotive anti-collision radar antenna, the paper designed microstrip array antenna. Used the weighted algorithm combined with the zero constraints to reduce the antenna sidelobes. Then reduce the interference caused by the possible directions.
     5、Broadband chirp source systems based on DDS technology have been researched. By analysis system error model, proposed according to the DDS phase truncation digit to select chirp step and according to Chirp frequency agility speed to select the A/D sampling speed of the receiver. Reduces the system error caused by the discontinuous phase truncation and linear FM.
引文
[1]廖传锦,柴毅,黄席樾.汽车防撞系统中目标跟踪与防撞决策研究[J].中国公路学报,2004(2):113-118.
    [2]Janssonj, Johannssonj. Decision making for collision avoidance system[C]. Society of Automotive Engineers. Pennsylvania:World Headquarters,2002.
    [3]H. Rohling, M. Meinecke, M. Klotz, et al. Experiences With an Experimental Car Controlled by a 77GHz Radar Sensor[C]. International Conference Radar,1998:345-354.
    [4]H. P. Groll,J. Detiefsen. Automobile anticollision radar-history&model [J]. IEEE AES Systems Magazine, August 1997,12(8):11-18.
    [5]贺乐厅.智能运输系统——基于毫米波雷达的车辆防撞技术与实验研究[J].东南大学,2003.
    [6]J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny and R. H. Hemmers. Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech,1994, vol.42:2536-2544
    [7]周立.汽车防撞雷达的研究[D].南京理工大学,2008.
    [8]徐涛.毫米波汽车防撞雷达实用化研究[D].中国科学院研究生院(上海微系统与信息技术研究所),2003.
    [9]张承畅.汽车防撞雷达预警系统中关键技术的研究[D].重庆大学,2005.
    [10]武守俊.毫米波汽车防撞雷达设计及其信号处理算法研究[D].电子科技大学,2007.
    [11]张建辉,刘国岁,顾红,et a1.码步进调频连续波信号在汽车防撞雷达中的应用[J].电子学报,2001(7).
    [12]张建辉.毫米波汽车防撞雷达的研究[D].南京理工大学,2001.
    [13]王文钦.防撞雷达关键技术研究[D].电子科技大学,2005.
    [14]Harry L.Van Tress最优阵列处理技术.北京:清华大学出版社,2008.
    [15]Mark. E, Russell. Millimeter-Wave Radar Sensor for Automotive Intelligent Cruise Control (AICC) [J]. IEEE Transaction on Microwave Theory and Techniques, NO.12, December 1997:324-326.
    [16]于敬泉.汽车防撞雷达信号处理研究[D].江苏大学,2006.
    [17]唐宏.基于高速公路的-种汽车防撞系统的分析与研究[D].江西理工大学,2005.
    [18]朱雪田.基于DSP的汽车防撞雷达信号的处理[D].山东大学,2000.
    [19]Wenger. J, Hahn. S. Long Range and Ultra-Wideband Short Range Automotive Radar [C]. Ultra-Wideband,2007,2007:518-522
    [20]Behet. M. Low Cost MMICS for Automotive Radar and Passive Radiometric Imaging Applications[C].MM-Wave Products and Technologies,200658-62
    [21]贺峻LFMCW雷达动目标回波距离--速度去耦合方法研究[D].电子科技大学,2000.
    [22]凌太兵LFMCW雷达运动目标检测与距离速度去耦合[D].电子科技大学,2003.
    [23]Young-Kil Kwag, Min-Su Choi, Chul-Ho Jung.An Adaptive Compensation of Moving Clutter Doppler Shift for Helicopter MTD Radar [C]. Radar,2006, CIE' 06,16-19 Oct.2006:1-4.
    [24]Stove, A. G. Linear FMCW radar techniques[J]. Radar and Signal Processing, IEEE Proceedings F, Oct.1992(5):343-350.
    [25]张钧,刘克诚,张贤铎,赫崇骏.微带天线理论与工程.第1版.北京:国防工业出版社,1988。
    [26]张立志,汪学刚,向敬成.线性调频连续波雷达的动目标显示[J].信号处理,2000(3):262-266.
    [27]Stolle. R. Multiple-target frequency-modulated continuous-wave ranging by evaluation of the pulse response phase [J]. IEEE Trans. Instrum. Meas:426-429.
    [28]李政LFMCW雷达目标检测与参数估计方法研究[D].电子科技大学,2005.
    [29]John D. Kraus天线(第三版).北京:电子工业出版社.2011.
    [30]杨建宇,丁义元.线性调频连续波雷达的等效正交双通道性能[J].电子学报,1994(9):76-80.
    [31]Dai Zhengjian.Qu Cuiping. The resolving method of radar nonrigid multi-target [C]. Radar,2001 CIE International Conference on, Proceedings,15-18 Oct.2001:1055-1058.
    [32]Yangjianyu, HuangShunji. Moving target indication of LFMCW radar for clutter rejection[C]. Int.Sym. On Noise and Clutter Rejection in Radars and Imaging Sensors,1989:585-589.
    [33]刘艳FMCW汽车防撞雷达的多目标信号处理方法研究[D].南京理工大学,2004.
    [34]史林,张琳.调频连续波雷达频谱配对信号处理方法[J].西安电子科技大学学报(自然科学版),2003(4):534-538.
    [35]肖汉,杨建宇,熊金涛LFMCW雷达多目标MTD-速度配对法[J].电波科学学报,2005(6):712-715.
    [36]黄建,甘体国.波导E面金属膜片滤波器的分析.微波学报,1999,15(3):257-261
    [37]Barton D K. Radar system analysis and model ing[M]. Norwood:Artech House,2005
    [38]毛滔,曾浩.雷达抗同频干扰方法研究[J].航天电子对抗,2005(6):43-45.
    [39]张文祥,李进华.雷达同频干扰现象分析研究[J].火控雷达技术,2007(2):50-53.
    [40]B-E. Tullsson. Topics in FMCW Radar Disturbance Suppression[C]. Proc. of Radar 97,1997:1-5.
    [41]Stove AG. Linear FMCW Radar Techniques. IEE proceedings-F.1992(5):343-350.
    [42]张澄波.综合孔径雷达—原理、系统分析与应用.北京:科学出版社,1989:118-126.
    [43]FFT IPCore Function User Guide.Xilinx Corporation,2004.
    [44]Lei Wen, Long Teng, Han Yueqiu. Moving Targets Imaging for Stepped Frequency Radar. Signal Processing Proceedings,2000. WCCC-ICSP 2000.5th international Conference on. VOI.3,21-25 Aug.2000, Pages:1851-1855.
    [45]G. S. Gill, Jen-ChihHuang. The Ambiguity Function of the Step Frequency Radar Signal Processor. Radar, 1996. Proceedings. CIE International Conference of,8-10 Oct.1996, Pages:375-380.
    [46]H Rohling. Experiences with an experimental car controlled by a 77GHz radar sensor. Radar SymPosjum.1998, Page:345-354.
    [47]Mark E.Russell. Millimeter wave radar sensor for automotive intelligent cruise control (ICC). IEEE.1997.
    [48]Jerry. D.Woll.Vorad Collision Warning Radar. IEEE International radar conference.1995.
    [49]Liu Guosui. Design of noise FMCW radar and its implementation. IEEE Proceeding-f. Vol.138. No.5.1991.
    [50]A. Hoess. Design and realization of a novel, synchronized 77GHz radar network for automotive use 2002 IMS Workshop on circuit and antenna technologies for automotive radar. Seattle, USA. June3,2002.
    [51]C. T. Chiu, T. S. Horng, H. L.Ma, et al. Super Broadband Lumped Models for Embedded Passives.2004 Electronic Components and Technology Conference,1104-1107.
    [52]J. W. Bandler, Q. S. Cheng, S. A. Dakroury. Space Mapping:The State of the Art. IEEE Transactions on Microwave Theory and Techniques,2004, vol.52:337-36.
    [53]J. W. Bandler, Q. S. Cheng, N. K. Nikolova, and M. A. Ismail. Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microwave Theory Tech,2004, vol.52:378-38.
    [54]StarkL, SkolnikMl. Phase Shifter for Array, in Radar Handbook. NewYOrk:McGraw-Hill.1970.
    [55]Klotz, H. Rohiing.24GHz Radar Sensors for Automotive Applications 5th Intemational Conference on Radar Systems, Brest, France. May 1999.
    [56]Jerry D. Woll.60GHz Vehiele Radar for Japan.1998 Society of Automotive Engineer, Inc.
    [57]A. G.. Stove. Obstacle Deteetion Radar for Cars, Eleetronies&Communication Engineering Joumal,1991, 232-240.
    [58]Keith M, Simon, Ratana M. Wbhlert, John P. Wendler, et al. K Through Ka-Band Driver and Power Amplifiers. IEEE Microwave and Millimeter-wave Monolithic Circuits Symposium 1996:29-32.
    [59]M. Budgeand M. Burt, Range Correlation Effeets on Phase and Amplitude Noise, Southeastcon'93, Proc. of IEEE,1993.
    [60]W. Wiesbeek, Radar System Engineering, Lecture Script, University of Karlsruhe,2003.
    [61]吕立波.汽车防撞报警系统的研究和开发.公安大学学报(自然科学版),2002.6.
    [62]吴顺君,孙晓兵.雷达信号处理与微电子技术.微电子学.1994,(1):21-24,38.
    [63]S. D. Howard, A. R. Calderbank. Rwlationships Between Radar Ambiguity and Coding Theory. IEEE International Radar Conference,2005.898-900.
    [64]费元春,苏广川,米红等.宽带雷达信号产生技术.北京:国防工业出版社,2002.
    [65]朱江,范红.线性调频信号检测方法的研究.雷达与对抗.2004.2:21-23.
    [66]张容权,杨建宇,熊金涛等.对称三角线性调频连续波信号模糊函数分析.电子学报.2004,3(32):354-356.
    [67]李玉芳FMCW毫米波雷达系统中频电路及信号处理研究:[硕士学位论文].上海:中国科学院研究生院.
    [68]徐涛.毫米波汽车防撞雷达实用化研究:[博士学位论文].上海:中国科学院上海微系统与信息研究所,2003.
    [69]虎斌,5mm波段FMCW雷达体制研究及信号分析:[硕士学位论文].南京:南京理工大学,2004.
    [70]杨建宇,凌太兵,贺峻LCMCW雷达运动目标检测与距离速度去耦合,电子与信息学报,2004,26(2).
    [71]黄文奎.毫米波汽车防撞雷达的设计与实现:[博士学文论文].上海:中国科学院研究生院,2006.
    [72]朱思桥LFM-CW雷达信号处理算法研究及仿真.火控雷达技术.2007,9(36)
    [73]Mark A.Richards雷达信号处理基础.北京:电子工业出版社,2008:167-190.
    [74]蒋铁珍,武虎,吴凯等.毫米波汽车防撞雷达恒虚警率门限设定方法.红外与毫米波学报.2005,24(3)
    [75]唐先发.一种宽频微带三等分功分器的分析与设计[A].中国工程物理研究院第七届电子技术青年学术交流会论文集,2005,173-177
    [76]钱朝晖.采用DDS技术的高性能雷达信号源(J],现代雷达,2002,24(4):50-52,56.
    [77]郭忠海,杨文革.基于DDS的快速跳频源设计[J].自动化仪表,2006,27(S1):69-71,74.
    [78]Hisao cross Iwasaki, A slot. IEEE circularly polarized small-size microstrip Transaction on antennas and propagation, antenna with a vol 44, No 10, October 1996.
    [79]L. LBasilio, M. A. Khayat, J.T.Williams, et al. The Dependence of the Input Impedance On Feed Position of Probe and Microstrip Line-Fed Patch Antennas. IEEE Trans. Antennas Propagat,2001,49(1)::45-47.
    [80]K. Guney. Simple and accurate formulas for the physical dimensions of rectangular microstrip antennas with thin and thick substrates. Microwave Opt Technol Lett, Feb 2005 44 (3):257-259.
    [81]John D. Kraus and Ronald J. Marheflka. Antennas:For All Applications, Third Edition. Publishing House of Electronics Industry.2006,97-108.
    [82]J.R. James, P. S.Hall,C. Wood. microstrip antenna theory and design. Peter Peregrinus Ltd,1981, p26.
    [83]阎真.多普勒雷达系统信号处理技术的研究:[硕士学位论文].长春:长春理工大学,2010.
    [84]黄旭伟.DDS杂散抑制技术研究:[硕士学位论文].重庆:重庆大学,2007.
    [85]Geroleo, Francis G. Detection and Estimation of LFMCW Radar Signals. Aerospace and Electronic Systems, IEEE Transactions on. Jan.2012.
    [86]Middleton, R. J C. Dechirp-on-Receive Linearly Frequency Modulated Radar as a Matched-Filter Detector. Aerospace and Electronic Systems, IEEE Transactions on. July.2012.
    [87]Millioz, Fabien; Davies, Michael Evan. Sparse Detection in the Chirplet Transform:Application to FMCW Radar Signals. Signal Processing, IEEE Transactions on. June.2012.
    [88]Jiang Wei, PennockStephen R, hepherd Peter R. FMCW Radar Range Performance Improvement With Modified Adaptive Sampling Method. Geoscience and Remote Sensing Letters, IEEE. July 2012.
    [89]He M, Nian Yongjian, Wang Xuesong-S, Xiao Shun-Ping-P, Li YongZhen. Improved Clutter Suppression Algorithm for Atmospheric Target Detection Using Polarimetric Doppler Radar. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. Dec.2011.
    [90]Sun Sun-Gu Gu, Lee Jong-Min-M, Lee Jung Soo, Cho Byung Lae. Ground-based radar interferometer for tracking fast approaching targets. Radar, Sonar & Navigation, IET. April 2011.
    [91]Jose Ebi, Adams Martin David, Mullane John Stephen. Predicting Millimeter Wave Radar Spectra for Autonomous Navigation. Sensors Journal, IEEE. May,2010.
    [92]Mitomo Toshiya, Ono Naoko, Hoshino Hiroaki, Yoshihara Yoshiaki, Watanabe Osamu, Seto Ichiro. A 77 GHz 90 nm CMOS Transceiver for FMCW Radar Applications. Solid-State Circuits, IEEE Journal of. April 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700