海量低频浮动车数据道路匹配及行程时间估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路交通信息的全面、准确、快速获取是城市交通管理、交通规划的基础,对缓解大城市交通拥堵,提供有效的大众出行指导具有重要的意义。浮动车是一种安装有全球定位设备并通过无线通讯系统将车辆状态和信息发送出的车辆,浮动车数据能及时准确的反映车辆所行驶道路的交通状况,是全面、快速获取道路交通信息的重要途径。本文以武汉市中上万辆出租车为载体的低频浮动车数据为研究对象,以准确、快速浮动车数据道路匹配和路段行程时间准确估算为目标,对大城市环境下海量低频浮动车数据的处理进行了讨论和研究,并通过真实、海量的浮动车数据和城市路网数据对研究的成果进行了验证。本文的主要的研究工作包括以下四个方面:
     1、海量低频浮动车数据的分析与预处理。对武汉市一万二千多辆出租车获取的浮动车数据的格式、瞬时速度及航向、不同时段的数据量、采样时间间隔以及载客状态相关的数据和信息进行了分析。对于导航道路地图加密产生道路偏移的问题提出了一种道路地图栅格化的道路坐数据标系与浮动车数据坐标系的标定方法,提高了二种坐标系之间标定的精度,为海量浮动车数据的有效处理奠定了基础。
     2、海量浮动车数据快速道路初匹配算法的研究海量浮动车数据道路匹配的算法效率是影响此类数据应用的重要因素。道路初匹配是根据匹配度计算将小于阈值的道路作为浮动车数据的候选匹配道路,由于一天的浮动车数据就有约一万四千个,并且道路的数量有二万六千多条,算法的效率对浮动车处理的时间影响极大。本文首先对基于地图格网化的浮动车数据道路匹配算法进行了分析和讨论,给出了一种面向计算效率的地图格网划分最佳参数;还提出了一种基于道路地图栅格化的海量浮动车数据地图初匹配的算法,使得海量浮动车数据完成道路初匹配计算的时间更短。
     3、基于序列低频浮动车数据路径计算的研究首先研究了基于序列浮动车数据路径计算中一次路径计算选取浮动车数据点数量的问题,指出了在城市复杂路网条件下路径计算点只有达到或超过3个才可能保障路径重建正确,同时路径计算点越多,重建结果可靠性越大,但计算的复杂度也越大。然后针对相关的浮动车数据质量不稳定,载客状态发生变化等情况进行了研究,并对算法进行了优化改进,提高了计算结果的准确性。还研究了路径算法中路径搜索区域道路端点的甄选方法,的提高路径计算效率的方法,减少了路径计算的时间。
     4、基于低频浮动车数据路段行程时间估算的研究路段行程时间是道路交通中的一项最重要的参数。在分析已有利用低频浮动车数据进行路段行程时间计算算法的基础上提出了一种基于道路交叉口下游路段浮动车数据的路段行程时间估算方法,在分析低频浮动车数据在道路交叉口附近路段上的位置、速度信息,结合车辆在道路交叉口附近路段行驶的特点,给出了一个车辆通过道路交叉口时刻的计算模型。基于这个模型,在获得道路交叉口下游路段上低频浮动车数据的位置和速度信息后,能较准确地计算出浮动车通过路口的时刻,通过对路段上下游二个路口浮动车通过时刻的计算,从而能较准确地估算出路段的通行时间。
The accurate and timely acquisition of traffic information is vital to urban transport management and planning. The collected traffic information can not only mitigate traffic congestions in the road network but also provide real-time route guidance services to public users. In recent years, the floating car system becomes increasing popular for collecting traffic information. This floating car system utilizes a large fleet of vehicles equipped with global positioning systems (GPS) and wireless communication devices. The collected trajectories of these floating cars can be a very useful data source for generating traffic information due to its low cost and large spatial coverage. This study focuses on low-frequent floating car data (FCD) generated by ten thousands of taxis in Wuhan city. In this study, an efficient and accurate algorithm is developed for matching huge-volume low-frequent FCD onto the road network. Then, a method is proposed to estimate accurately link travel time information based on low-frequent FCD. A real world case study is carried out to demonstrate the applicability of the proposed map matching algorithm and travel time estimation method. This study contributes to the literature in following four aspects:
     1. The pre-process technique of huge-volume low-frequent floating car data. Using FCD generated by12,000taxis in Wuhan, the characteristics of FCD are analyzed, including data format, instantaneous travel speed and direction, data volume collected in different time periods, data sampling frequency, and passenger loading status. For solving the network deviation error due to the encryption of road maps, a method is proposed to calibrate rasterized road network coordinate system and floating car coordinate system. The proposed method improves the calibration accuracy between these two coordinate systems, and thus facilitates the effective processing of huge-volume FCD.
     2. A primary map matching algorithm for huge-volume low-frequent FCD. Computational performance of matching huge-volume FCD onto the road network is one of critical factors for the FCD applications. The primary map matching is to match GPS points to the network links with a matching score less than a given threshold. Because FCD have a huge data volume (e.g. more than12,000taxis in Wuhan) and the road network contains ten thousands of links (e.g. more than 26,000links in Wuhan), computational efficiency of map matching algorithm can have a significant impact on the process of FCD. This study first analyzes the proposed map matching algorithm built on the rasterized road network, and discusses how to determine the optimal raster size of the road network. Then, a primary map matching algorithm based on rasterized road network is proposed in order to enhance the computational efficiency of matching huge-volume low frequent FCD.
     3. The study of low-frequent FCD trajectory recovery The effects of the number of GPS points in the trajectory recovery process are discussed. It is found that at least three GPS points are required for correctly recovering the trajectory of a floating car moving in the complex road network. The more number of GPS points we have, the more robust results will be obtained but the more computational resources are required. Then, the proposed map matching is optimized for scenarios when passenger loading status changes and the quality of FCD are unstable. The optimal strategy for selecting candidate nodes on the links within the route search area is developed to further enhance the computational efficiency of the proposed algorithm.
     4. Travel time estimation method using low-frequent FCD Travel time information is a key factor for evaluating the network performance. Based on the comprehensive review of existing methods, a new travel time estimation method is proposed by fully using the travel statuses of floating cars at downstream and upstream of road junctions. In the proposed method, turn delays at road junctions can be estimated accurately by using the vehicle location and instantaneous travel speed information respectively collected at downstream and upstream of road junctions.
引文
[1]Anderson J., Bell M. 1997. Travel time estimation in urban road networks. IEEE, 924-929.
    [2]Bernstein, D., Kornhauser, A., 1996. An introduction to map-matching for personal navigation assistants. http://www.njtude.org/reports/mapmatchintro.pdf Accessed June 19, 2002.
    [3]B. Kwellal, H. Lehmann, 2000. Floating Car Data Analysis of Urban Road Networks, Computer Science, 1798:357-367.
    [4]Boyce D, Kirson A, Schofer J.,1993. Design and implementation of ADVANCE. IEEE Proceeding of 3rd International Conference on Vehicle Navigation and Information Systems. Ottawa pp.415-426
    [5]Brackstone M., Fisher G., McDonald M. The use of probe vehicles on motorways, some empirical observations. In Proc. of 8th World Congress on ITS. Sydney, Australia, October 2001.
    [6]B. S. Kerner, et al, 2005. Traffic State Detection with Floating Car Data in Road Networks. Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems Vienna, Austria, 13-16 September, ISBN: 0-7803-9215-9:700-705.
    [7]Cesar A. Quiroga, Darcy Bullock, 1998. Travel time studies with global positioning and geographic information systems: an integrated methodology. Transportation Research Part C 6(1-2):101-127.
    [8]Chen M., Chien S. I. J., 2001. Dynamic freeway travel-time prediction with probe vehicle data: Link based versus path based[J]. Transportation Research Record: Journal of the Transportation Research Board, 1768(-1):157-161.
    [9]Christopher E. White, David Bernstein, Alain L. Kornhauser, 2000. Some map matching algorithms for personal navigation assistants, Transportation Research Part C: Emerging Technologies, 8(1):91-108.
    [10]Corrado de Fabritiis, Roberto Ragona, Gaetano Valenti, 2008. Traffic Estimation And Prediction Based On Real Time Floating Car Data, Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems Beijing, China, October 12-15.
    [11]Cui, Y., Ge, S.S., 2003. Autonomous vehicle positioning with GPS in urban canyon environments. IEEE Transactions on Robotics and Automation 19 (1), 15-25.
    [12]DRAGAN OBRADOVIC, HENNING LENZ, MARKUS SCHUPFNER, 2006. Fusion of Map and Sensor Data in a Modem Car Navigation System, Journal of VLSI Signal Processing 45(1-2):111-122.
    [13]Elmar Brockfeld, 2007. VALIDATING TRAVEL TIMES CALCULATED ON THE BASIS OF TAXI FLOATING CAR DATA WITH TEST DRIVES, http://elib.dlr.de/50208/01/Brockfeld_Validation_ITS_2007.pdf.
    [14]El Najjar, M.E., Bonnifait, P., 2005. A Road-matching method for precise vehicle localization using Kalman filtering and belief theory. Autonomous Robots 19 (2),173-191.
    [15]Emmanuel BERT, et al, 2006. TRAFFIC EMISSION USING FLOATING CAR AND TRAFFIC SENSOR DATA, http://infoscience.epfl.ch/record/116236/files/2460.pdf.
    [16]Fastenrath, U.,1997. Floating car data on a larger scale. In 4th World congress on intelligent transport systems.
    [17]F. Gossel, E. Michler, B. Wrase, 2003. Spectral analysis of Floating Car Data, Advances in Radio Science (2003) 1:139-142.
    [18]F. Marchal, J. Hackney, K.W. Axhausen, 2005. Efficient map-matching of large GPS data sets: Tests on a speed monitoring experiment in Zurich, Transportation Research Record: Journal of the Transportation Research Board, 1935:93-100.
    [19]Fredrik Gustafsson, et al, 2002. Particle Filters for Positioning, Navigation and Tracking, Signal Processing, IEEE Transactions on, 50(2),425-437.
    [20]Greenfeld, J. S., 2002. Matching GPS observations to locations on a digital map. In proceedings of the 81st Annual Meeting of the Transportation Research Board, January, Washington D.C.
    [21]Hellinga B. R., Fu L.,2002. Reducing bias in probe-based arterial link travel time estimates[J]. Transportation Research Part C: Emerging Technologies, 10(4):257-273.
    [22]H Lahrmann, 2007. Floating car data for traffic monitoring [C]. The i2Turn 2007 Conference, Aalborg, Denmark
    [23]Huabei Yin, Ouri Wolfson, 2004. A Weight-based Map Matching Method in Moving Objects Databases,16th International Conference on Scientific and Statistical Database Management, DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/SSDM.2004.1311248.
    [24]Huifeng Ji, Aigong Xu, 2008. Accuracy of Matching between Probe-Vehicle and GIS Map,(?) Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, ISBN: 978-1-84626-171-8:59-64.
    [25]Jinan Piao, Mike McDonald, 2003. Low Speed Car Following Behaviour from Floating Vehicle Data, Intelligent Vehicles Symposium, Proceedings. IEEE, ISBN: 0-7803-7848-2:462-467.
    [26]Jo, T., Haseyamai, M., Kitajima, H., 1996. A map-matching method with the innovation of the Kalman filtering. IEICE Trans. Fund. Electron. Comm. Comput. Sci. E79-A, 1853-1855.
    [27]Kim, S., Kim, J., 2001. Adaptive fuzzy-network based C-measure map-matching algorithm for car navigation system. IEEE Transactions on industrial electronics 48 (2),432-440.
    [28]Kim, W., Jee, G, Lee, J., 2000. Efficient use of digital road map in various positioning for ITS. In: IEEE Symposium on Position Location and Navigation, San Diego, CA.
    [29]Kim, S., Kim, J.-H, Hyun, I.-H, 1998. Development of a map-matching algorithm for car navigation system using fuzzy Q-factor algorithm. In proceedings of the World Congress Intelligent Transport System, October, Seoul, Korea.
    [30]Krakiwsky, E.J., Harris, C.B., Wong, R.V.C.,1988. A Kalman filter for integrating dead reckoning, map matching and GPS positioning. In: Proceedings of IEEE Position Location and Navigation Symposium, pp.39-46.
    [31]Lan Lin, Tatsuaki Osafune, 2006. Massimiliano Lenardi, Floating car data system enforcement through vehicle to vehicle communications, ITS Telecommunications Proceedings, 2006 6th International Conference, June, Chengdu, ISBN: 0-7803-9587-5:122-126.
    [32]Leduc G., 2008. Road traffic data: Collection methods and applications. Technical Report,Institute for Prospective Technological Studies, EU.
    [33]LI Jie, FU Meng-yin, 2003. Research on Route Planning and Map-Matching in Vehicle GPS/Dead-Reckoning A Electronic Map Integrated Navigation System, Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE, ISBN: 0-7803-8125-4, Vol.2:1639-1643.
    [34]Li Q., Miwa T., Morikawa T. Efficient Link Travel Time Estimation for Signalized Link by Small Size Probe Reports. ASCE, 2009.
    [35]Li Y., McDonald M., 2002. Link travel time estimation using single GPS equipped probe vehicle. Intelligent Transportation Systems, 2002. Proceedings. The IEEE 5th International Conference on: 932-937.
    [36]LI Zhihua, CHEN Wu, 2005. A New Approach to Map-matching and Parameter Correcting for Vehicle Navigation System in the Area of Shadow of GPS Signal, Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems Vienna, Austria, September 13-16, ISBN: 0-7803-9215-9:449-454.
    [37]Li, Z., Chen, W., 2005. A new approach to map-matching and parameter correcting for vehicle navigation system in the area of shadow of GPS signal. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol.2005, Article number 1520086, pp.425-430.
    [38]Long Cheu R., Xie C., Lee D. H.,2002. Probe vehicle population and sample size for arterial speed estimation[J]. Computer-Aided Civil and Infrastructure Engineering, 17(1):53-60.
    [39]M.A. Quddus et al, 2003. A general map matching algorithm for transport telematics applications, GPS Solutions, 7(3):157-167.
    [40]M.A. Quddus et al, 2006. A High Accuracy Fuzzy Logic Based Map Matching Algorithm for Road Transport, Journal of Intelligent Transportation Systems, 10(3):103-115.
    [41]Markus Friedrich, et al, 2008. Monitoring Travel Behaviour and Service Quality in Transport Networks with Floating Phone Data, http://www.isv.uni-stuttgart.de/vuv/publication/PDF/200809_Fr_TO_PJ-JS_FOVUS_Do-iT_Abstract.pdf.
    [42]M Brackstone, G. Fisher, M. McDonald, 2001, THE USE OF PROBE VEHICLES ON MOTORWAYS, SOME EMPIRICAL OBSERVATIONS, Proc. of the World Congress on ITS, Sydney, Australia.
    [43]M.E. Fouladvandl, A.H. Darooneh, 2005. Statistical analysis of floating-car data: an empirical study, Eur. Phys. J. B 47(2):319-328.
    [44]Meguro, K., et. al, 2000. The New Concept of Floating Car System for City Logistics, www.mri.co.jp/PUBLICITY/PAPER/2000/20000701_isd01.pdf.
    [45]Meng et al, 2002. A Simplified Map-Matching Algorithm for In-Vehicle Navigation Unit, Geographic Information Sciences, 8(1):24-30.
    [46]Mengyin FU, Jie LI, Meiling WANG, 2004. A Hybrid Map Matching Algorithm Based on Fuzzy Comprehensive Judgment, 2004 IEEE Intelligent Transportation Systems Conference Washington, D.C., USA, October 3-6.
    [47]Miwa, T., Kiuchi, D., Yamamoto, T. and Morikawa, T., 2012. Development of map matching algorithm for low frequency probe data. Transportation Research Part C, 22, pp.132-145.
    [48]Mohammed A. Quddus, Robert B. Noland, Washington Y. Ochieng, 2005. Validation of Map Matching Algorithms using High Precision Positioning with GPS, THE JOURNAL OF NAVIGATION, 58(2):257-271.
    [49]Mohammed A. Quddus, Washington Y. Ochieng, Robert B. Noland, 2007. Current map-matching algorithms for transport applications: State-of-the art and future research directions, Transportation Research Part C 15(5):312-328.
    [50]Myllyla, J., Y. Pilli-Sihvola, 2002. Floating Car Road Weather Monitoring, 11th SIRWEC International Road Weather Congress, Sapporo, Japan, January.
    [51]Nagendra R. Velaga, Mohammed A. Quddus, Abigail L. Bristow, 2009. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems, Transportation Research Part C 17(6):672-683.
    [52]Obradovic, D., Lenz, H., Schupfner, M., 2006. Fusion of map and sensor data in a modern car navigation system. Journal of VSLI Signal Processing 45, 112-122.
    [53]Obradovic, D., Lenz, H., Schupfner, M., 2006. Fusion of map and sensor data in a modern car navigation system. Journal of VSLI Signal Processing 45, 112-122.
    [54]Ochieng W.Y., Quddus, M.A., Noland, R. B., 2004. Map-matching in complex urban road networks. Brazilian Journal of Cartography (Revista Brasileira de Cartografia) 55 (2),1-18.
    [55]Peter Laborczi, Martin Linauer, Bernhard Nowotny, 2006. TRAVEL TIME ESTIMATION BASED ON INCOMPLETE PROBE CAR INFORMATION, 13th World Congress on ITS, London,8-12 October.
    [56]Phuyal, B., 2002. Method and use of aggragated dead reckoning sensor and GPS data for map-matching. In: proceedings of the Institute of Navigation (ION) annual conference, Portland, OR (20-27 September).
    [57]Qingquan Li, et al, 2011. Path-finding through flexible hierarchical road networks: An experiential approach using taxi trajectory data, International Journal of Applied Earth Observation and Geoinformation, 13(1):Pages 110-119.
    [58]Quiroga C. A., Bullock D.1998. Travel time studies with global positioning and geographic information systems: an integrated methodology[J]. Transportation Research Part C: Emerging Technologies, 6(1-2):101-127.
    [59]Quddus, M.A., Noland, R.B., Ochieng, W.Y., 2006a. The effects of navigation sensors and digital map quality on the performance of mapmatching algorithms. Presented at the Transportation Research Board (TRB) Annual Meeting of the Transportation Research Board, Washington D.C., January 2006.
    [60]Quddus, M.A., Noland, R.B., Ochieng, W.Y., 2006b. A high accuracy fuzzy logic-based map-matching algorithm for road transport. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 10 (3),103-115.
    [61]Ralf-Peter Schofer, et al, 2002. A traffic information system by means of real-time floating-car data, ITS World Congress 2002,11th-14th Oct 2002, Chicago, USA.
    [62]Ruey Long Cheu, Der-Homg Lee, Chi Xie, 2001. An Arterial Speed Estimation Model Fusing Data from Stationary and Mobile Sensors, Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE, Oakland, CA, USA, ISBN:0-7803-7194-1:573-578.
    [63]Shuyan He, et al, 2008. Link Travel Time Estimation at Signalized Road Segments with Floating Car Data, DOI 10.1061/40995(322)83:880-889.
    [64]Sinn Kim, Jong-Hwan Kim, 2001. Adaptive Fuzzy-Network-Based C-Measure Map-Matching Algorithm for Car Navigation System, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 48(2):432-441.
    [65]S.Lorkowski, P.Mieth, R.P.Schofer, 2005. New ITS applications for metropolitan areas based on Floating Car Data, ECTRI Young Researcher Seminar,11-13 May, Den Haag (NL).
    [66]Sotiris Brakatsoulas, et al, 2005. On Map-Matching Vehicle Tracking Data, Proceedings of the 31st international conference on Very large data bases, Trondheim, Norway, ISBN:1-59593-154-6:853-864.
    [67]S. Syed, M.E. Cannon, 2004. Fuzzy Logic Based-Map Matching Algorithm for Vehicle Navigation System in Urban Canyons, In proceedings of the Institute of Navigation (ION) national technical meeting, California, USA (26-28 January).
    [68]Stefano Messelodi, et al, 2009. Intelligent extended floating car data collection, Expert Systems with Applications 36(3), Part 1:4213-4227.
    [69]S. Turksma, 2000. THE VARIOUS USES OF FLOATING CAR DATA, Road Transport Information and Control, 2000. Tenth International Conference, London UK, ISBN: 0-85296-725-X:51-55.
    [70]Takanori Kawahara, Shunsuke Kamijo, Masao Sakauchi, 2005. Travel time measuring by using vehicle sequence matching between adjacent intersections, Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems Vienna, Austria, 13-16 September, ISBN: 0-7803-9215-9:712-717.
    [71]Tanaka, J., Hirano, K., Itoh, T., Nobuta, H., Tsunoda, S., 1990. Navigation system with map-matching method. In: Proceeding of the SAE International Congress and Exposition, pp. 40-50.
    [72]Torday A., Dumont A., 2003, Link travel time estimation with probe vehicles in signalized networks. SRTC.
    [73]US DoD., 2001, Global Positioning System Standard Positioning Service Performance Standard. Assistant secretary of defense for command, control, communications, and intelligence.
    [74]Wang Zuyun et al,. A Quick Map-Matching Algorithm by Using Grid-Based Selecting, 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing, ISBN: 978-0-7695-3563-0:306-311.
    [75]Wenjie Liao et al,. A map matching algorithm for intersections based on Floating Car Data, 2008, Advanced Communication Technology, 2008. 10th International Conference, ISBN:978-89-5519-136-3:311-316.
    [76]White, C.E., Bernstein, D., Kornhauser, A.L., 2000. Some map-matching algorithms for personal navigation assistants. Transportation Research Part C 8, 91-108.
    [77]W.Y. Ochieng, M. Quddus, R. B. Noland, 2003. MAP-MATCHING IN COMPLEX URBAN ROAD NETWORKS, Brazilian Journal of Cartography (Revista Brasileira de Cartografia) 55(2):1-18.
    [78]W. Zhu, et al, 2009. Link Average Speed of Traffic Flow Estimation Method Based on Floating Car, ICCTP 2009, DOI 10.1061/41064(358)242:1631-1636.
    [79]X. Li, H. Lin and Y. Zhao, 2005. A Connectivity-Based Map Matching Algorithm, Asian Journal of Geoinformatics, 5(3):69-76.
    [80]Yang, D., Cai, B., Yuan, Y., 2003. An improved map-matching algorithm used in vehicle navigation system. IEEE Proceedings on Intelligent Transportation Systems 2, 1246-1250.
    [81]Yanying Li, Mike McDonald, 2002. Link Travel Time Estimation Using Single GPS Equipped Probe Vehicle, The IEEE5th International conference on Intelligent Transportation systems, 3-6 September 2002, Singapore.
    [82]Yang YUE, Haixiang ZOU, Qingquan LI, 2009. Urban Road Travel Speed Estimation Based on Low Sampling Floating Car Data, ICCTP 2009, DOI 10.1061/41064(358)242:1-7.
    [83]Yikai Chen, Yuncai Liu, 2007. A New Method For GPS-Based Urban Vehicle Tracking Using Pareto Frontier and Fuzzy Comprehensive Judgment, Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, ISBN: 978-1-4244-1211-2:683-686
    [84]Yikai Chen et al,2007b. A New Method For Urban Traffic State Estimation Based On Vehicle Tracking Algorithm, Intelligent Transportation Systems Conference, 2007. ITSC 2007. IEEE, ISBN: 978-1-4244-1396-6:1097-1101.
    [85]Yuguang Li, Qingquan Li, 2010. A Fast Algorithm for Identifying Candidate Links for Floating Car Map-Matching: A Vector to Raster Map Conversion Approach, Annals of GIS, 16(3):177-184.
    [86]ZHANG Cunbaol, YANG Xiaoguang, YAN Xinping, 2007. Methods for Floating Car Sampling Period Optimization, JOURNAL OF TRANSPORTATION SYSTEMS ENGINEERING AND INFORMATION TECHNOLOGY 7(3):100-104.
    [87]Zhaohui Zhang, Changjun Jiang, Yu Fang, 2005. Road Situation Modeling and Parallel Algorithm Implementation with FCD Based on Principle Curves, Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA'05), November 30-December 03, Beijing China, ISBN: 0-7695-2486-9:181-186.
    [88]Zhao, Y., 1997. Vehicle Location and Navigation System (D). Artech House, Inc., MA.
    [89]陈会娟,2010.基于浮动车数据的路网可靠性评价[D],中南大学.
    [90]陈小鸿,冯均佳,杨超,2007.基于浮动车数据的行程时间可靠度特征研究,城市交通,5(5):42-46.
    [91]程新文,陈性义,2004.手持式6PS定位精度研究,测绘通报,2004(9):20-22.
    [92]戴蕾蕾.2007.国务院参事:15座城市因交通拥堵每天损失近10亿[N/OL].新华报业网,http://news. sina. com.cn/c/sd/2010-10-27/005921357208. shtml.
    [93]董均宇,2006.基于GPS浮动车的城市路段平均速度估计技术研究[D]. 硕士学位,重庆大学.
    [94]韩舒,林航飞,辛飞飞,2007.浮动车采集系统中城市道路分段方法研究,交通与计算机,25(5):5-9.
    [95]贺方会,2010.基于浮动车数据的路段行程时间可靠性研究[D]. 西南交通大学
    [96]胡明伟,2007.基于GPS的实时交通信息采集方法的研究,公路交通科技,24(5):121-124.
    [97]蹇峰,2006.城市道路交通信息提取关键技术研究,吉林大学博士论文.
    [98]姜桂艳,常安德,张玮,2009.基于GPS浮动车的路段行程时间估计方法比较,吉林大学学报(工学版),39(S2):182-186.
    [99]姜桂艳,常安德,张玮,2010a.基于GPS浮动车采集交通信息的路段划分方法,武汉大学学报·信息科学版,35(1):42-45.
    [100]姜桂艳,张玮,常安德,2010b.基于GPS浮动车的交通信息采集系统的数据组织方法,吉林大学学报(工学版),40(2):397-401.
    [101]李梅红,孙棣华,涂平,2008.基于GPS浮动车的城市主干道交通服务水平实时评估模型,交通运输工程与信息学报,(1)6:73-78.
    [102]李清泉,黄练,2010.基于GPS轨迹数据的地图匹配算法[J],测绘学报,39(2)207-212.
    [103]李清泉,李汉武,谢智颖等,2006.面向动态路径选择的路段行程时间的分析研究 [J].武汉大学学报(信息科学版),31(6):519-522.
    [104]李清泉,熊炜,李宇光,2008.智能道路系统的体系框架及其关键技术研究,交通运输系统工程与信息,8(1):40-48。[]李擎,等,2005.两种改进的最优路径规划算法,北京科技大学学报,27(3):367-370.
    [105]李宇光,熊普选,乐阳,2009.基于大样本浮动车数据的武汉市车辆行驶速度获取与分析,交通信息与安全,27(4):26-29.
    [106]李宇光,李清泉,2010.基于矢量道路栅格化的海量浮动车数据快速处理,公路交通科技,27(3):136-141.
    [107]李筱菁,等,2002.GPS技术在城市交通状况实时检测技术中的应用,青岛海洋大学学报,32(3):475-481.
    [108]刘静,孙建平,温慧敏,2009.基于短时预测需求的浮动车数据时空特性分析,公路交通科技,26(S1):88-92.
    [109]陆锋,段滢滢,臧志刚,2009.短时交通预测的动态出行信息服务协同工作平台,地球信息科学学报,11(5):617-622.
    [110]马骥,裴玉龙,2003.智能交通系统(ITS)信息采集技术评述[J].哈尔滨工业大学学报,35(001):17-20.
    [111]马建军,唐进君,曹凯,2007.一种新的智能地图匹配算法,计算机应用,27(12):3116-3118.
    [112]钱寒峰,林航飞,杨东援,2007.浮动车车速处理分析系统中的数据融合技术,计算机工程与应用,43(31):230-232.
    [113]秦玲,等,2007.浮动车交通信息采集与处理关键技术及其应用研究,交通运输系统工程与信息,7(1):39-42.
    [114]苏洁,周东方,岳春生,2001.GPS车辆导航中的实时地图匹配算法,测绘学报,30(3):252-256.
    [115]唐炉亮,常晓猛,李清泉.2010.出租车经验知识建模与路径规划算法,测绘学报,39(4):404-409.
    [116]唐炉亮、李清泉、雷波、李宇光等,2008.基于低空遥感平台的非常态交通信息快速获取,两型社会建设与现代交通发展,武汉:武汉出版社,2008.12,第二届大城市交通高层论坛.
    [117]唐克双,姚恩建,2006.日本ITS开发和运用的实例—名古屋基于浮动车信息的P_DRGS简介,城市交通,4(3):74-76.
    [118]王殿海.2002.交通流理论[M].北京:人民交通出版社.
    [119]王东柱,等,2009.浮动车数据中零速度点数据地图匹配方法,交通信息与安全,27(6):38-42.
    [120]王汉东,乐阳,李宇光,黄玲,2011.城市商业服务设施吸引力的空间相关性分析,武汉大学学报信息科学版,36(9):1102-1106。
    [121]王力,王川久,沈晓蓉,范跃祖,2005.智能交通系统中实时交通信息采集处理的新方法,系统工程,23(2):86-89.
    [122]王力,张海,范耀祖,2006.基于探测车技术的路段平均速度估计模型,交通运输系统工程与信息,6(4):29-33.
    [123]王肖,等,2008.一种基于GIS最短路径搜索的A*改进算法,计算机系统应用,2008(5):28-31.
    [124]翁剑成,荣建,于泉,任福田,2007.基于浮动车数据的行程速度估计算法及优化,北京工业大学学报,33(5):459-464.
    [125]辛飞飞,陈小鸿,林航飞,2008.浮动车数据路网时空分布特征研究,中国公路学报,21(4):105-110.
    [126]徐占鹏,伊文君,林凯,2008.基于GPS技术的浮动车改进地图匹配算法研究,信息技术,20:25-26.
    [127]杨兆升,2001.关于智能运输系统的关键理论——综合路段行程时间预测的研究,交通运输工程学报,1(1):65-67
    [128]杨庆芳,魏领红,郑黎黎,2009.基于手机浮动车的高速公路平均路段行程速度提取技术,吉林大学学报(工学版),39(S1):104-108.
    [129]姚琛,2006.基于路段覆盖率的浮动车样本数量研究,山东理工大学学报(自然科学版),20(3):96-98.
    [130]殷伟,郭磷,方廷健,王群京,2008.一种基于FCD的城市道路车流速度估计算法,中国科学技术大学学报,38(9):1113-1117.
    [131]余柳,等,2008.基于浮动车数据的城市快速路交通事件检测算法研究,交通运输系统工程与信息,8(4):72-77.
    [132]袁浩,2009.基于GPS/GIS的交通状态自动判别系统研究,计算机工程与设计,30(9):2293-2296.
    [133]于泉,孙玲,荣建,2009.基于浮动车数据调查方法的交叉口延误计算,重庆交通大学学报(自然科学版),28(2):283-286.
    [134]诸彤宇,郭胜敏,2009.浮动车信息处理技术研究,中国图象图形学报,14(7):1230-1237.
    [135]朱鲤,杨东援,2008.基于低采样频率浮动车的行程车速信息实时采集技术,交通运输系统工程与信息,8(4):42-48.
    [136]朱丽云,温慧敏,孙建平,2008.北京市浮动车交通状况信息实时计算系统,城市交通,6(1):77-80.
    [137]朱中,杨兆升,1999.交通流诱导系统信息采集技术[J].吉林工业大学学报,29(001):86-91.
    [138]张存保,杨晓光,严新平,2006.基于浮动车的交通信息采集系统研究,交通与计算机,24(5):31-34.
    [139]张存保,杨晓光,严新平,2007a.移动交通检测系统中探测车的样本数量,中国公路学报,20(1):96-101.
    [140]张存保,杨晓光,严新平,2007b.浮动车采样周期优化方法研究,交通运输系统工程与信息,7(3):100-104.
    [141]张和生,张毅,温慧敏,胡东成,2007.利用GPS数据估计路段的平均行程时间,吉林大学学报(工学版),37(3):533-537.
    [142]张和生,张毅,胡东成,2008.路段平均行程时间估计方法,交通运输工程学报,8(1):89-96.
    [143]张赫,杨兆升,2002.无检测器交叉口交通流量预测方法综合研究[J].公路交通科技,19(001):91-95.
    [144]张雷元,袁建华,赵永进,2008.基于FCD的交通流检测技术,城市智能交通,(2):133-135.
    [145]张雷元,徐棱,刘晓明,2008.一种改进的基于要素加权的浮动车地图匹配算法,交通与计算机,26(2):8-10.
    [146]张丽娜,等,2006,手持式GPS定位误差的研究,工程地球物理学报,3(6):478-483.
    [147]张永强,林丽,2008.浮动车交通信息采集系统,交通科技与经济,2008(6):80-82.
    [148]章威,徐建闽,王海峰,2007a.基于浮动车技术的城市路况计算方法,交通运输系统工程与信息,7(1):43-49.
    [149]章威,徐建闽,林绵峰,2007b.基于大规模浮动车数据的地图匹配算法,交通运输系统工程与信息,7(2):39-45.
    [150]周璞,刘卫宁,孙棣华,2006.基于路网拓扑结构的无方向参数地图匹配算法,计算机工程与应用,33:188-190.
    [151]周舒杰,廖孝勇,赵敏,孙棣华,2009.面向道路网的浮动车最小覆盖率模型,重庆工学院学报(自然科学),23(4):11-14.
    [152]邹亮,徐建闽,朱玲湘,2007.基于融合技术的道路交通状态判别模型,清华大学学报(自然科学版),47(S2):1822-1825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700