应变式三维加速度传感器设计及相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多维加速度传感器在工程技术中的应用越来越广泛,因此对三维加速度传感器的研究成为一个重要课题。目前推出的三维加速度传感器大多采用压阻式、压电式和电容式工作原理,利用MENS技术加工制造,结构上大多采用一体化弹性体结构。对于一体化多维加速度传感器还存在许多问题值得探讨。本课题来源于安徽省教育厅自然科学基金项目“应变式三维加速度传感器的设计”。在对目前现有三维加速度传感器结构和工作原理进行深入分析的基础上,设计出一种新型应变式全剪切一体化结构三维加速度传感器。传感器应用应变式测量原理,其弹性体采用整体结构,单一惯性质量块,三维加速度信息均利用剪切应变测量;弹性体制造采用一般机加工技术,大大降低了工艺要求和制造成本,是一种新型的三维加速度传感器;是一体化三维加速度传感器设计方法的一种创新,为三维加速度传感器增添一新的类型。同时对多维加速度传感器解耦方法进行了分析研究。论文的主要工作内容和创新点如下:
     对弹性体结构进行了优化设计。弹性体是传感器的核心元件,其结构参数直接影响传感器静、动态特性。采用正交试验设计和极差分析方法全面分析弹性体主要结构参数对传感器静、动态特性影响。
     运用有限元方法对传感器模型进行了静特性分析。通过静态分析,确定了弹性体在不同方向载荷作用下应变分布规律,证明了传感器具有良好线性。在此基础上确定了不同方向载荷作用下的电桥方案,并从理论上分析了如何实现解耦输出。
     对传感器进行了模态、谐响应和瞬态响应等动态特性分析。模态分析得到传感器的六阶固有频率和振型,谐响应分析和瞬态分析得到传感器的幅频特性及动态维间耦合情况。
     设计了三维加速度传感器静动态标定方法。采用重力加速度方法对传感器进行静态标定,通过标定分别得到传感器三个方向的灵敏度、非线性度和回程误差三个主要静态特性指标。设计制造了精密振动实验台和计算机自动化标定系统对三维加速度传感器的频响特性进行动态标定,得到传感器三个方向的频响特性曲线,确定传感器的动态应用范围。
     提出了基于BP神经网络的多维传感器非线性解耦方法。维间耦合是制约传感器测量精度的主要因素,为了克服传统线性解耦方法的局限性,研究了基于BP神经网络的加速度传感器的非线性静态解耦方法,应用该方法对应变式三维加速度传感器进行了解耦分析,并与最小二乘法的线性解耦方法进行了比较,结果表明BP神经网络比最小二乘法有更高的标定精度。
Three-axis acceleration sensor is applied more and more increasingly in engineering. So the research about three-axis acceleration sensor is useful. At present, three-axis acceleration sensor based on piezoresistive, piezoelectric and capacitive is made by MENS and monolithic yielding part structure is used. There are many existed issues on multi-dimensional monolithic acceleration sensor. On the background of Anhui province nature science fund program, "Development of strain gauge three-axis acceleration sensor", a new type of three-axis full shearing acceleration sensor had been developed based on analysis to present three-axis acceleration sensor in its structure and working principles. The strain gauge full shearing measurement, monolithic yielding part structure and single mass are adopted in this sensor. It is made by mechanical manufacturing with less cost. It is a new type three-axis acceleration sensor and is an innovation at sensor design. Main research work and creative points of the paper are shown as follows:
     Yielding part is key component of sensor, static and dynamic characteristics are influenced by its main structure parameters. The influence of the main structure parameters on static and dynamic performance was studied by orthogonal experiment design and extreme analysis method, yielding part was optimized.
     Structure design of sensor and method of machining were introduced. Static performance of three-axis acceleration sensor was analyzed by finite element , which assured strain distribution regulation of yielding part loaded in different direction , and proved that sensor has good line characteristic. Based on this, bridge scheme and deployment of strain gauge were assured, how to realize decoupling output was analysis in theory.
     Modal analysis , harmonic response analysis and transient analysis of sensor were finished in this paper. Through modal analysis former six natural frequencies and mode shapes were obtained, through harmonic response analysis and transient analysis amplitude frequency characteristic of sensor was obtained, and dimension coupling was known.
     Static calibration of sensor was done by gravity acceleration method. Sensitivity, nonlinearity and hysterisis error , that static characteristics of three direction of sensor were abstained by static calibration. New type horizontal vibration table and computer automatic calibration system were designed, which realized dynamic calibration of frequency response characteristic of sensor, frequency response curves of three directions and frequency application range of sensor were assured .
     The coupling problem is an important factor limiting measuring accuracy of acceleration sensor, in order to overcome the limitation of traditional linear decoupling, a nonlinear static decoupling method was studied based on BP neural network, by which decoupling analysis of three-axis strain gauge acceleration sensor was finished. Compared with least square method, the result indicates that the method greatly improved the decoupling accuracy.
引文
[1]J.Wilson,A practical approach to vibration Detection and measurement,Part 1:Physical principles and detection techniques,Sensors,1999.2
    [2]H.Takao,Y.Matsumoto,H.Seo,M.Ishida and T.Nakamura,analysis and design consideration of three dimensional vetor accelerometer sing SIO structure for high temperature rang,Sensors and Actuators A.55(1996) 91-99
    [3]H.Seidel,H.Riedel,R.Kolbeck,G.Muck,W.Kupke and M.Koniger,Capacitive silicon accelerometers with highly symmetrical design,Sensors and Actuators A21-23(1990)312-315
    [4]任建军,杨恒,李昕欣,沈绍群,鲍敏杭,单面多层结构硅微压传感器的研制,《传感技术学报》,1997年12月,P3-5
    [5]董景新,赵长德,张自然等,挠性摆式硅微加速度计的有限元分析,《仪表技术与传感器》,1999.2,P1-3
    [6]S.Suzuki,S.Tuchitani,R.Sato,S.Uneo,Y.Yokota,M.Sato and M.Esashi,Semiconductor capacitance-type accelerometers with PWM electrostatic servo technique,Sensors and Actuators A21-23(1990) 316-319
    [7]J.C..Lotters,J.Schipper,P.H.Veltink et al,Procedure for in-use calibration of triaxial accelerometer in medical applications,Sensors and Actuators A 68(1998),P221-228
    [8]D.Marioli,E.Sardini,A.Taroni,A computerized system for the very low frequency calibration of accelerometers,Proc.6th Int.Symp.Intelligent Instrumentation for Remote and On-Site Measurements,IMEKO TC-4,Antwerp,Belgium,May 1993,pp.437-442
    [9]C.Estrich,K.Rangan,An automated accelerometer calibration station,Nat.Conf.Of Standard Laboratories,1989,P6-11
    [10]W.Kuehne and S.Sherman,A surface micromachined silicon accelerometer with on-chip detection circuitry,Sensors and Actuators A.45(1994) P7-16
    [11]H.Takao,Y.Matsumoto,H.Seo,M.Ishida and T.Nakamura,analysis and design consideration of three dimensional vetor accelerometer sing SIO structure for high temperature rang,Sensors and Actuators A.55(1996) 91-99
    [12]Hidekuni Takao,Yoshiori Matsunoto,Makoto Ishida,Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers,Sensors and Actuators A.65.(1998) 61-68
    [13]Mikio Hashimoto,Fujikura Ltd,A 3-Axis Silicon Piezoresistive Accelerometer,Sensors,1999.1
    [14]A.Chu,Zero shift of piezoelectric accelerometers in pyroshock measurements,Endevco TP No.293
    [15]R.Puers,S.Reyntijens,Design and processing experiment of a new miniaturized capacitive triaxial accelerometer,Sensors and Actuators A.68.(1998),P324-328
    [16]G.Schropfer,W.Elflein,M.De Labachelerie et al,Lateral optical accelerometer micromachined in(100) silicon with remote readout based on coherence modulation,Sensors and Actuators A.68(1998),P344-349
    [17]J.Kalenik,R.Pajak,A cantilever optical-fiber accelerometer,Sensors and Actuators A.68 (1998),P350-355
    [18]T.Storgaard-Larsen,S.Bouwastra,O.Leitisko,Opto-mechanical accelerometer based on strain sensing by Bragg granting in a plannar waveguide,Sensors and Actuators A.52(1996)25-32
    [19]E.Abbaspour-Sani,R,Huang,C.Y.Kwok,A novel optical accelerometer,IEEE Electron Device Lett.16(1995) 166-168
    [20]G.Schropfer,S.Ballandras,M.De Lbachelerie,P.Blind,Y,Ansel,Fabrication of a new highly-symmetrical,in-plane accelerometer structure by anisotropic etching of(100) silicon,J.Microeng.7(1997)71-78
    [21]Y.Ausel,B.Romanowicz,P.Renaud,G.Schropfer,,Global model generation for a capacitive silicon accelerometer by finite-element analysis,Sensors and Actuators A 67(1998) 153-158
    [22]F.Rudolf,A micromechanical capacitive accelerometer with a two point inertial mass suspension,Sensors and Actuators A 4(1983) 191-198
    [23]B.Boxenhom and P.Grelff,Monolithic silicon accelerometer,Sensors and Actuators A21-23(1990) 273-277
    [24]F.Rudolf,A.Jomod,J.Bergqvist and H.Leuthold,Precision accelerometers with ug resolution,Sensors and Actuators A21-23(1990) 297-302
    [25]H.Seidel,H.Riedel,R.Kolbeck,G.Muck,W.Kupke and M.Koniger,Capacitive silicon accelerometers with highly symmetrical design,Sensors and Actuators A21-23(1990)312-315
    [26]R.P.van Kampen,R.F.Wolffenbuttel,Modeling the mechanical behavior of bulk-micromaehined silicon accelerometers,Sensors and Actuators A64(1998) 137-150
    [27]G.Schropfer,W.Elflein,M.de Lbachelerie et al,Lateral optical accelerometer micromachined in(100) silicon with remote readout based on coherence modulation,Sensors and Actuators A648(1998) P344-349
    [28]J.Kalenik,R.Pajak,A cantilever optical-fiber accelerometer,Sensors and Actuators A68(1998) P350-355
    [29]T.Storgaard-Larsen,S.Bouwastra,O.Leitisko,Opto-mechanical accelerometer based on strain sensing by Bragg grating in a plannar waveguide,Sensors and Actuators A52(1996)25-32
    [30]E.Abbaspour-Sani,R,Huang,C.Y.Kwok,A novel optical accelerometer,IEEE Electron Device Lett.16(1995) 166-168
    [31]D.J O Brein and D.M.Lane,The Sensing Subsystems and Force Control of the AMADEUS Dextrous Underwater Gripper,dob@cee.hw.ac.nk;
    [32]K.Okada.Tri-axiai piezoelectric accelerometer[J].Transducers'95 Eurosensors IX,Stockholm,Sweden,June 25-29,1995:656-659
    [33]Korbinian Kunz,Peter Enoksson,Goran Stemme.Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors[J].Sensors and Actuators A 92(2001)156-160
    [34]黄朋生,任天令,楼其伟等.三维压电加速度传感器的设计[J].压电与声光,2003,25(5):379-381
    [35]Kijin Kwon,Sekwang Park.A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer[J].Sensors and Actuators A 66(1998)250-255
    [36]Hidekuni Takao,Yoshinori Matsumoto,Heedom Seo,etc.Analysis and design considerations of three-dimensional vector accelerometer using SOl structure for wide temperature range[J].Sensors and Actuators A 55(1996) 91-97
    [37]吴仲城,戈瑜,虞承端.基于厚膜技术E型三维加速度传感器的设计[J].仪表技术与传感器,2001,No.9:3-5
    [38]T.Mineta,S.Kobayashi,Y.Watanabc,etc.Three-axis capacitive accelerometer with uniform axial sensitivitie.s[J].Transducers'95 Eurosensors IX,The 8~(th) International Conference on Solid-State Sensors and Actuators,and Eurosensors IX,Stockhoim,Sweden,June 25-29,1995:554-557
    [39]曹新平,张大成,黄如等.一种大厚度的三轴差分电容式硅微加速度传感器[J].仪器仪表学报,2002,12,Vol.23 No.6:572-575
    [40]唐富荣,薛大同.静电悬浮式三轴加速度传感器的初步设计[J].传感器技术,2001,20(7):30-32
    [41]丁桂兰,刘振富,陈才和.三分量全光纤加速度地震检波器的设计[J].光电子激光,2002,Vol.13 No.1:50-52
    [42]强锡富.传感器[M].北京:机械工业出版社,1998
    [43]李柯杰主编.新编传感器技术手册[M].北京:国防工业出版社,2002
    [44]刘广玉,陈明,吴志鹤等.新型传感器技术及应用[M].北京:北京航空航天大学出版社,1995
    [45]单成祥.传感器的理论与设计基础及其应用[M].北京:国防工业出版社,1999,8
    [46]王化祥等.传感器原理及应用[M].天津大学出版社.2000
    [47]刘迎春.传感器原理设计与应用[M].国防工业出版社,1989
    [48]陶宝祺等.电阻应变式传感器[M].国防工业出版社,1993
    [49]李松.剪切梁(轴)式负荷传感器系统.传感器世界[J],1996.3
    [50]王雅萍.李俊国.朱目成.一种三维加速度计弹性体的分析与设计[J].传感器与微系统,2006.25(2):61-62
    [51]吴仲城.多维力传感器设计及信号分析方法研究[D].中国科学院博士学位研究生学位论文.安徽合肥.中国科学院等离子物理研究所.2001
    [52]熊诗波.黄长艺.机械工程测试技术基础[M].北京:机械工业出版社2006.5
    [53]赵耀军.应变式全剪切六向力传感器研究.传感器技术,1998:(2)
    [54]谭建国.使用ANSYS6.0进行有限元分析.北京大学出版社,2002
    [55]洪庆章等.ANSYS教学范例.中国铁道出版社,2002
    [56]刘国良.刘洛麒.Solidworks 2006完全学习手册—图解cosmosworks[M].北京:电子工业出版社.2006
    [57 江洪.郦祥林,黄治政等.Solidworks建模实例解析[M].北京:机械工业出版社.2005
    [58]陈魁.实验设计与分析.[M].北京:清华大学出版社,1996.8
    [59]刘正士.陆益民.陈晓东等.基于正交试验设计的多轴腕力传感器静动特性的数值分析[J].机械设计.1999.(2):19-20
    [60]王志厚.尚学军.应变式传感器弹性体的选材及热处理[J].传感器世界.1998.2:37-39
    [61]肖国领.电阻应变式传感器生产工艺分析[J].传感器世界.1996.11:32
    [62]尚小江.邱峰.赵海峰.ANSYS结构有限元高级分析方法与范例应用[M].北京:水利水电出版社,2005.7
    [63]赵海峰.蒋迪.ANSYS8.0工程结构实例分析[M].北京:中国铁道出版社2004
    [64]钱朋安.六轴加速度传感器静、动态特性若干问题的研究[D].中国科学技术大学博士学位论文.2005
    [65]尹福炎.电阻应变计在传感器技术中的应用(1)[J].传感器世界,1995.5
    [66]尹福炎.电阻应变计在传感器技术中的应用(2)[J].传感器世界,1995.6
    [67]张为公.一种六维力传感器新型布片与解耦方法[J].南京航空航天大学学报报.1993.31(2):219-222
    [68]金问林.减小应变式多维力传感器测量误差的一种方法[J].计量学报1993.14(1):57-51
    [69]徐科军.传感器动态特性的实用研究方法[M].合肥.中国科学技术大学出版社.1999
    [70]胡宗武编著.工程振动分析基础[M].上海交通大学出版社,1985年4月第一版
    [71]张维屏主编.机械振动学[M].冶金工业出版社,1983年5月第一版
    [72]陆伟民,刘雁.结构动力学及其应用[M].上海:上海交通大学出版社,1985年4月第一版
    [73]俞铭华,吴剑国等编.有限元法与面向对象编程[M].北京:科学出版社,2004.4
    [74]梁清香等.有限元与MARC实现(第2版)[M].北京:机械工业出版社,2005.4
    [75](日)户川集人著.殷荫龙,陈学源译.振动分析的有限元法[M].北京:科学出版社,1985
    [76]刘习军,贾启芬,张文德等.工程振动与测试技术[M].面向21世纪力学系列课程教材,天津大学出版社,1999.9
    [77]叶先磊,史亚杰.ANSYS.工程分析软件应用实例[M],北京:清华大学出版社,2003.9
    [78]龚曙光主编.ANSYS.工程应用实例解析[M].北京:机械工业出版社,2003.4
    [79]王沫然,MATLAB 6.0与科学计算[M].北京:电子工业出版社,2001.9
    [80]刘正士.机器人多维腕力传感器静、动态特性若干基本问题的研究[D].合肥工业大学博士论文,1996
    [81]王永初著.解耦控制系统[M].四川:四川科学技术出版社,1985(12):P46-83
    [82]徐科军.李成.多维腕力传感器静态解耦的研究[J].合肥工业大学学报(自然科学版).1999.22(2):1-6
    [83]刘正士.机器人六分量腕力传感器加载实验台系统误差分析[J].计量学报,1998,19(1):44-49
    [84]王国泰,葛运建等,六维力传感器发展的若干问题[J],智能机器人传感技术实验室学术论文年报,vol.2,1994
    [85]徐科军,孙绍霞,马文,六维力传感器静态建模与参数优化[J],智能机器人传感技术实验室学术论文年报,Vol.1,1993
    [86]黄俊钦,静、动态数学模型的实用建模方法[M],北京,机械工业出版社,1988
    [87]宋国民.基于查询表的多维传感器解耦算法研究[J].自动化仪表,2001(1)
    [88]胡守仁.神经网络应用技术[M].北京:国防科技大学出版社,1993.1
    [89]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社2005.2
    [90]飞思科技产品研发中心.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社.
    [91]姜力.刘宏.蔡鹤皋等.基于神经网络的多维力传感器静态解耦的研究[J].仪器仪表学报.2004.25(3):286
    [92]徐科军,李成,多维力传感器的迭代动态解耦方法[J].中国机械工程,1999.10(1):P46-49
    [93]徐科军,殷铭.腕力传感器动态补偿与解耦方法的研究[J].计量学报,1998.19(4):P275-280
    [94]徐科军,张颖,江敦明等.腕力传感器动态特性中关键问题的研究.计量学报,1997,18(4):P263-269
    [95]徐科军,张颖,张崇巍.腕力传感器动态补偿研究[J].计量学报,1997,18(2):P116-121
    [96]徐科军.多维力传感器时域动态建模[J].科学通报,1993.38(21):P2009-2012
    [97]徐科军,唐霆.传感器零极点相消动态补偿法[J].科学通报,1994.39(9):P862-862
    [98]徐科军,张颖,张崇巍.基于沃尔什函数的传感器的动态建模方法[J].电子测量与仪器仪表学报,1996.10(2):P24-29
    [99]徐科军,杜涛.机器人腕力传感器多维AR模型[J].仪器仪表学报,1995,16(2):P212-215
    [100]殷铭,徐科军,戴先中.基于FLANN的传感器动态特性研究方法[J].东南大学学报,1999(7)
    [101]徐科军.腕力传感器动态耦合问题分析[J].电气自动化,1996,18(6):P30-32
    [102]徐科军,张颖,张崇巍.腕力传感器的一种动态解耦方法[J].应用科学学报,1999(1)
    [103]宋国民,张为公,翟羽健.基于对角优势化补偿的传感器动态解耦研究.仪器仪表学报增刊,2001(3)
    [104]宋国民.多分力车轮力传感器研究及其在汽车道路试验中的应用[D].东南大学博士学位论文.2005
    [105]高黛陵.多变量频域控制理论[M].北京:清华大学出版社,1984(4):P78-92
    [106]Hawkins D.J,Pseudo.Diagonalization.and the Inverse Nyquist array method[J],Proc.IEE,1992(119):P337-342
    [107]Johnson M.A.Diagonal dominance and method of pseudo diagonalization[J].Proc.IEE,1979(126):P1011-1017
    [108]E.H.Mamdani.Application of fuzzy algorithms for simple dynamics plant[J].Process IEEE 1974(12):P1585-1588
    [109]Alessandra Flammini,Daniele Marioli,Andrea Taroni.Application of an optimal look-up table to sensor data processing[J].IEEE Transactions on Instrument and Measurement,1999,48(4):P813-816
    [110]李学峰,杨先发,周凤岐.多变量模糊解耦控制系统研究与应用[J].西北工业大学学报,1995,13(1):P56-60
    [111]张化光,杨英旭,柴天佑.多变量模糊控制的现状与发展(Ⅱ)——关于解耦、神经网、变结构等问题[J].控制与决策,1995,10(4):P289-295
    [112]B Kosko,S G Kong.Adaptive fuzzy systems for backing up a track-and-trailer[J].IEEE Trans Neural Network,1992,3(2):P211-233
    [113]E Czogalaand,H J Zimmermann.Some aspects of synthesis of probabilistic fully controllers[J].Fuzzy Sets and Systems,1984,13(2):P169-178
    [114]C W Yu,Y Z Lu.Decoupling in fully systems:A cascade compensation approach[J].Fully Sets and Systems,1989,29(2):P177-185
    [115]J G Jang.Self-learning fuzzy controller based on temp back Propagation[J].IEEE Trans Neural Network,1992,3(5):P714-723
    [116]Junbong Nie,D A Linkens.Learning control using fuzzified self-organizing radial basis function network[J].IEEE Trans Fuzzy system.1993,1(4):P281-287
    [117]Stephen Chiu,Sujeet Chand,Doug Moore etc.Fuzzy logic for control of roll and movement for a flexible wing aircraft[J].IEEE Control Systems Magazine. 1991,11(4):P42-48
    [118]W.J.Luyben.Distillation decoupling[J].A1ChE Journal 16(2),1970:P198-203
    [119]孙宝元,牛志明,韩庚琳等三维组合压阻式低频加速度传感器的研制与标定[J].大连理工大学学报,1992,Vol.32 No.5:545-549
    [120]Akira Umeda,Mike Onoe,Kohji Sakata,etc.Calibration of three-axis accelerometers using a three-dimensional vibration generator and three laser interferometers[J].Sensors and Actuators A 114(2004):93-101
    [121]杜美琪.加速度计的静态标定方法及设备[J].地震工程与工程振动,1996,Vol.16No.2:127-133
    [122]于治会.加速度计的静态校准[J].宇航计测技术,200,Vol.1.20 No.2:42-44
    [123]张春京,原俊安,王家光等.译自IEEE Std 836-1991.IEEE推荐的线加速度计精密离心机测试规范.惯导与仪表,2001,No.3
    [124]IEEE Recommended Practice for Precision Centrifuge Testing of Linear Aecelerometers.IEEE Std 836-2001(Revision of IEEE Std 836-1991).Published by The Institute of Electrical and Electronics Engineers,Inc.3 Park Avenue,New York,NY 10016-5997,USA
    [125]林明邦,胡子俭.线加速度与角加速度复合型传感器及其标定研究[J].863-512智能机器人传感技术实验室学术论文年报,1994年,第二卷:171-179
    [126]钱朋安,吴仲城,戈瑜等.一体化三轴线加速度计静态标定方法的研究[J].传感技术学报,2005.3.18(1):86-89
    [127]钱敏,吴仲城,戈瑜等.多维角加速度传感器静动态标定方法研究[J].仪器仪表学报,2005(3),Vol.26,No.3:286-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700