交流步进传动及离散控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流步进传动是运动控制的发展中形成的一个新的研究分支。它是在微机的控制下由静止变频器供电,使同步电动机定子磁动势离散运动,在电动机轴上得到位置和速度输出的一种新型传动控制方式。用同步电动机实现步进传动;将步进电动机的设计思想从组合电磁铁理论提高为旋转磁场,使增量运动系统的容量和效率发展到一个新的水平,这就是交流步进传动的研究目的。
     为了比较清楚地阐述交流步进理论,本文首先从永磁同步电动机的直接转矩控制算法入手来分析。首先研究了基于SVPWM(空间矢量PWM)的永磁同步电动机直接转矩控制方法,通过对六步电压空间矢量的综合控制,可以得到比较满意的磁链和转矩控制效果,而且仿真中充分考虑了定转子夹角大于90度的情况,有效地限制了同步机的失步问题。其次考虑到上述的经典的DTC算法中,由于电压矢量个数(六个)的限制,使得转矩波动和电流波动都比较大;针对于此,本文利用矢量细分原理,提出了新的基于阶梯SPWM的电压矢量生成方法,得到了更多的空间上均匀分布的电压矢量,可对电压矢量进行更加有效的选择。理论分析和仿真结果证明了该方案的可行性,该方案可有效地减小转矩脉动。
     从直接转矩控制中的空间电压矢量的概念可知,它也是一种电机的离散控制策略,磁链在空间是离散化的,和交流步进理论的控制思想是一致的,但是它最终是为了较快的转矩响应和速度调节特性,无法完成同步电动机的位置控制。为了获得精确的位置控制功能,由此引入同步机的交流步进控制。本文以永磁同步电动机为研究对象,分别对同步电动机的点动控制、恒频控制以及升降频控制进行了分析与研究,研究中采用了电流滞环控制方法,可有效地限制过电流现象;此外采用磁链跟踪法对位置开环和位置闭环的步进控制系统分别进行了探讨与研究,研究表明,采用矢量细分后,可有效地减小电流波动。为了验证本系统的可行性,本文利用MATLAB6.0中的动态仿真工具SIMULINK对系统的动静态性能进行了仿真分析。并在此基础上利用TMS320F240型的DSP芯片组成了一套步进控制系统,进行了实验研究。
     仿真和实验结果基本一致,证明了该系统的可行性,系统具有良好的速度和位置控制能力,有着广阔的发展前景。
AC step motion drive is a new research branch with the development of the motion control. It is a new-style method of the drive control fed by static transducer in the control of the microcomputer, which makes the stator flux movement discrete. And position and speed outputs can be achieved on the motor axes. Stepping drive of synchronous motors, upgrading the design idea of stepping motors from combined electromagnet theory to rotary magnetic field theory, will make the capability and efficiency of the increment control system improved to a new level, which is the research purpose of AC step motion drive
    This paper begins with the direct torque control method for PMSM to expatiate AC step motion control theory distinctly. First, a PMSM direct torque control method based on SVPWM is studied. And a good control effect of the flux and the torque is gained according to selecting the six voltage space vectors. And in simulation, this control method consider the circs that the angle between the stator and the rotor is bigger than 90 degrees, which restrains steps losing of synchronous motor effectively. Second, A direct torque control for PMSM Based on stepping SPWM is analyzed. In classic DTC system, the torque and current ripples are larger because of the restriction of the number of voltage vectors. By means of the vectors subdividing theory, using a new method of dividing voltage vectors based on stepping SPWM, more voltage vectors on a circle in space can be achieved. And voltage vectors can be selected more effectively. By theory analysis and simulation research, the proposed control method is feasible, and can diminish the torque ripple.
    It can be seen from DTC space vectors whose flux linkages are discrete in space that the DTC method is also a discrete control approach for motor drives, which is consistent with AC step motion control in control ideology. But in DTC control, fast torque response and speed performance are the final objective, which can not achieve position control of synchronous motors. And then the dissertation of AC step motion control is coming. In this paper point to point control, constant frequency control and up and down frequency control are studied, in which current lagging loop control method is used to restrict over currents. And using flux tracking method, position open loop, position close loop control system are also studied. And
    
    
    
    research results indicate that larger current ripples are restricted by means of subdividing space vectors. To testify the feasibility of the scheme, the scheme is simulated by the dynamic simulating tool SIMULINK of MATLAB6.0 software, and the static and dynamic performances are analyzed. And a stepping control system is composed based on TMS320F240 digital signal processor. Then some experiments are performed.
    The simulation and experiment results indicate that this system not only is feasible, but also is of fine speed and position control ability and has broad developing prospects.
引文
[01] 孙鹤旭,交流步进传动系统.北京,机械工业出版社,1996
    [02] 李夙,异步电动机直接转矩控制.北京,机械工业出版社,1994
    [03] 许大中,交流电机调速理论.杭州,浙江大学出版社,1991
    [04] 赵伟峰,朱承高,直接转矩控制的发展现状及前景.电气传动,1999:3~6
    [05] 李志民,张遇杰,同步电动机调速系统.机械工业出版社,1996
    [06] 许振茂,变频调速装置及其调试、运行与维修.北京,兵器工业出版社,1994
    [07] R. Wu, GR. Slemon, A Permanent Magnet Motor Drive without a Shaft Sensor. ISA, 1990, P 553~558
    [08] 陈坚,交流电机数学模型及调速系统.北京,国防工业出版社,1989
    [09] 高景德,交流电机及其系统的分析.北京,清华大学出版社,1992
    [10] P. Pillay and R. Krishnam, Modeling, Analysis and Simulation of a High Performance Synchronous Motor Drive. IEEE IAS Annual Meeting, Atlanta, Georgia, 1987
    [11] 李永东,曹江涛,邵剑文,异步电机直接转矩控制系统低速转矩特性研究及其全数字化控制.电气传动,1994,NO.1,33~38
    [12] 冯江华,陈高华,黄松涛,异步电动机的直接转矩控制.电工技术学报,1999,3,29~33
    [13] 姬志艳,李永东,司保军,无速度传感器异步机直接转矩控制的研究.电工技术学报,1997,4,15~19
    [14] R. Monajemy, R. Krishnan, Implementation Strategies for Concurrent Flux Weakening and Torque Control of the PM Synchronous Motor. in IEEE Ind. Application, Society Annu. Meet. 1995, pp.238-245
    [15] T. -S. Low T. -H. Lee, and K. -T. Chang, An Optimal Speed Controller for Permanent Magnet Synchronous Motor Drives. in Proc. Int. Conf. on Industrial Electronics, control, Instrumentation, and Automation, Power Electronics and Motion Control, 1992, pp. 407~412
    [16] M. Depenbrock, Direct Self-Control (DSC) of Inverter-Fed Induction Machine. IEEE-PE, 1988, Vol.3,No.4, 420~429
    [17] Se-Kyo Chung, et al. A New Instantaneous Torque Control of PM Synchronous Motor for High-Performance direct-Drive Applications. IEEE Trans. On Power Electronics. Vol. 13, No. 3, May 1998
    [18] L. Zhang et al. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives. IEEE Trans. On Power Electronics, Vol. 12, No. 3, May 1997
    [19] M. R, Z olghadri, J. Guiraud, J. Davoine,D. Roye, A DSP .Based Direct Torque Controller for Permanent Magnet Synchronous Motor Drives. IEEE-PE, 1998, Vol.2, No.33
    [20] C. French, and P. Acamley, Direct Torque Control of Permanent Magnet Drive. IEEE Ind. Applicat. Society Annu. Meet.,1995, pp. 199~206
    [21] Uwe Baader et al., Direct Self-Control (DSC) of Inverter-Fed Induction Machine: A Basis for Speed Control Without Speed Measurement. IEEE-IA, 1992, Vol.28, No.3, 581~588
    [22] Jun-Koo Kang, et al. New Direct Torque Control of Induction Motor for Minimum Torque Ripple and Constant Switching Frequency. IEEE Trans. On Industry Applications. Vol. 35, No.5, September/October 1999
    [23] 程卫国,冯峰,王雪梅,等,MATLAB5.3精要编程及高级应用.北京,机械工业出版社,2000
    [24] 施阳,李俊,严卫生,MATALB语言精要及动态仿真工具SIMULINK.西安,西北工业大学出版社,1998
    [25] 清源计算机工作室,MATLAB 6.0基础及应用.机械工业出版社,2001.5
    
    
    [26]陈国呈,PWM变频调速技术.北京,机械工业出版社,1998
    [27]熊健,康勇,张凯等,电压空间矢量调制与常规SPWM的比较研究.电力电子技术,1999年第一期(2):25-28
    [28]张绍德,陈其功,凌有铸,8098单片机控制的SPWM变频器硬件设计与调试.电气传动,1999,3,44~46
    [29]陈伯时,陈敏逊,交流调速系统.北京,机械工业出版社,1998
    [30]谢莉萍,陈林康,一种采用智能功率模块(IPM)的变频调速系统.1998,3
    [31]L. Zhong, M.F. Rahman, K.W. Lim, A Strategy for Torque Control for High-performance Interior Permanent Magnet Synchronous Motor Drives. in Proc. Australasian Univ. Power. Engineering Conf.,1995, pp. 259-264
    [32]M. F. Rahman, L. Zhong, K.W. Lim, A DSP Based Instantaneous Torque Control Strategy for Interior Permanent Magnet Synchronous Motor Drive with Wide Speed Range and Reduced Torque Pulsations. Proc. of the IEEE/IAS Annual Meeting, pp. 518~524,1996
    [33]迟岩,彭继慎等,电流滞环 PWM 逆变器同步电动机的步进传动控制系统.电气传动,1998.2,11~14、18
    [34]彭继慎,宋绍楼等,同步电动机步进控制的IGBT变频器研究.电气传动自动化,FEB.1999,VOL.21,NO.1
    [35]吴守箴,臧英杰,电气传动的脉宽调制控制技术.北京,机械工业出版社,1995
    [36]黄俊,王兆安,电力电子变流技术.北京,电子工业出版社,1993
    [37]李序葆,赵永健,电力电子器件及其应用.机械工业出版社,1996
    [38]张立,电力电子场控器件及其应用.北京,机械工业出版社,1996
    [39]Rahul S. Chokhawala. Gate Drive Consideration for IGBT Module. IEEE Trans. on Ind. Appl.,1996, 31 (3):603~611
    [40]章进法,姚凯卫 IGBT智能功率模块的驱动控制电路.电力电子技术,1995,4,1~5
    [41]韩安荣,通用变频器及其应用.机械工业出版社,2000
    [42]Texas Instruments, TMS320C24X DSP Controller, Reference Set. 1997
    [43]Texas Instruments, TMS320C2XX User's Guide. 1997
    [44]张雄伟,曹铁勇,DSP芯片的原理与开发应用,电子工业出版社.2000
    [45]王宏华,开关型磁阻电动机调速控制技术.北京,机械工业出版社,1994:118~120
    [46]谢剑英,贾青,微型计算机控制技术.国防工业出版社,2001,9
    [47]张毅刚,乔景渌 8098单片机应用设计.北京,电子工业出版社,1993,24~35
    [48]吴忠智,吴加林,GTR和IGBT吸收电路参数设计.电力电子技术.1994,4,41~42
    [49]Tore Undeland. A Snubber Configuration for Both Power Transistors and GTO PWM Inverters. PESC'84, 1984:42~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700