基于计算流体力学的干燥窑风速检测与建模仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材是全球应用最广的工程材料之一。木材干燥是一个复杂的强耦合非线性动力学系统,在干燥过程中存在外界的干扰和模型的不确定性,如何建立有效的干燥模型是木材干燥的重要基础研究内容之一,也是实现干燥全自动控制,提高干燥质量,减少能量消耗,缩短干燥时间的先决条件。对干燥一定树种的木材来说,当其他影响干燥速率的因素(如空气温度、湿度、板材厚度)相对恒定时,空气流速与木材干燥的速率存在某一关系,循环风速也是木材干燥的一个重要因子,正确选用循环风速,不仅对干燥速度和干燥质量有较大影响,而且可使能耗大幅度降低。
     本文针对实验室用顶风式木材干燥窑的内部气流循环分布规律和影响因素进行了研究,探讨了木材干燥窑内的风速因子对干燥窑性能的影响重要性。将计算流体力学CFD(Computational Fluid Dynamics)方法引入木材干燥窑建模及仿真的研究中,对其建立了三维稳态的模型,进行了数值仿真计算(使用FLUENT计算流体力学软件)。计算结果给出了合理的流场分布,并与实验值进行了对比,并用所做的实验数据对仿真模拟结果进行了对比分析,验证了所采用的CFD模型的可行性与准确性。在以上研究的基础上,进一步预测了实验室用顶风式木材干燥窑内部空气的速度场的分布情况,分析了实验室用顶风式木材干燥窑在风机给定不同风速时的空气流动特性,同时又讨论了各工况下的平均风速(?)值、均方差σ值和变异系数V值,进一步对比分析研究了所建立的顶风式木材干燥窑模型的最优风速指标。
     本文的研究结果表明:通过实验数据与模型仿真结果的比较,验证了所建立的木材干燥窑的CFD模型的可行性与准确性,因此该CFD模型亦可用于不同干燥阶段的速度、温度、湿度及压力场的仿真模拟研究。通过对各工况的对比计算分析得出,风机给定气流速度为3m/s时的变异系数较低即气流循环分布的均匀性优于其他情况,并且各测点的气流速度均在资料给定的最佳速度范围内,因此综合各种因素考虑认为,对于所建立的实验室用顶风式木材干燥窑的CFD模型,在七种工况中,工况4(即风机给定风速为3m/s)为最优情况,此仿真结果对顶风式木材干燥窑的初始风机给定风速的选取及干燥控制技术的改进有一定的参考和指导意义,提高我国的节能干燥窑的科技水平,为改进木材干燥窑不同干燥时期窑内温湿度、速度等的信息检测与仿真技术提供了一种新的方法。
Wood is one of the most popular engineering materials. Wood drying is a strong coupling, nonlinear and complex dynamic system, and external interference and model uncertainty exists during the drying process. So how to create an effective model of drying is an important foundation study of wood drying, and it is also the pre-condition of realizing full automatic control of drying, improving drying quality, reducing energy consumption and reducing the drying time. The operating procedure of a certain species of wood drying, when the other factors that affect the drying rate (such as temperature, humidity, plate thickness) is relatively constant, the air flow and the timber dry has some relations. The airflow velocity is also an important factor of wood drying, so the correct selection of airflow velocity, not only has to the drying velocity and the drying quality affects greatly, moreover may cause the energy consumption to reduce large scale.
     The distribution of air speed and the influence factors of it in the laboratory-type wood drying kiln were studied in this essay and a discussion on the importance of airflow velocity factor to the wood drying kiln is conducted for developing improved designs with respect to ventilation efficiency. In his paper, CFD (Computational Fluid Dynamics) method will introduce modeling and simulation of wood drying kiln research. Three dimension model of wood drying kiln is simulated used commercial using software of FLUENT. The computation gives related computing velocity field. With results of simulation compared with experimental data have done, the feasibility and veracity of numerical simulation by software of FLUENT to wood drying kiln is validated. Then internal air velocity distributions are forecasted, meantime different airflow velocities which the fan given are analyzed. Besides, it is also discussed the average airflow velocity v,mean square errorσand coefficient of variation V in different conditions, further comparative analysis of the wood drying kiln in the best airflow velocity indicators.
     The results indicate that experimental data by comparison with the simulation results to verify the established CFD method of wood drying kiln of the feasibility and accuracy. Therefore, the CFD model can be used for different stages of drying rate, temperature, humidity and pressure field simulation study. Through the comparison of the various conditions calculation and analysis, when airflow velocity is 3m/s,the coefficient of variation is smaller and the airflow distribution is better. Therefore, comprehensive consideration of various factors that the defiance of established laboratory-type wood drying kiln model, the condition 4 (then a given wind velocity 3m/s) for the optimal situation in the seven research conditions. The simulation results of the wood drying kiln fan for a given wind velocity there is some reference and selection guide, then optimal control of wood drying and improving the technological level of energy-saving drying kiln. And for wood drying kiln temperature and humidity in different kiln drying time and speed information detection and simulation provides a new way.
引文
[1]杜国兴,李大纲.木材干燥技术.北京:中国林业出版社.2005:1~2,38~40
    [2]刘德胜.基于多模型数据融合算法的木材干燥动态建模研究.东北林业大学硕士论文.2007:1~5
    [3]张壁光,谢拥群.木材干燥的国内外现状与发展趋势.干燥技术与设备.2006,4(1):7~15
    [4]刘俊助,刘奇琳.空气流速和温度对木材干燥速率的影响.南平师专学报.2005,10(4):36~37
    [5]刁秀明,王彦发,马秀华.循环风速对木材干燥速度的影响.木材工业.1994,11(4):32~34
    [6]王金刚,王海英,鲁世昌.木材干燥窑的建模与参数辨识.哈尔滨理工大学学报.2002.7(1):7~10
    [7]刘玉容,闰振,伊松林.改善木材干燥室内空气流动特性的初步研究.干燥技术设备.2006,4(1):65~68
    [8]常建民.空气流速对木材干燥速率的影响.东北林业大学学报.1994,22(3):61~64.
    [9]张建华.木材对流干燥质量传递经验模型.东北林业大学学报.1994,22(3):101~104.
    [10]张冬妍.木材干燥神经网络与智能控制系统.东北林业大学博士论文.2005:5~8
    [11]陈付莲,沈毅.CFD在空调室内气流组织设计中的应用.制冷与空调.2004,4:26~28
    [12]Stephanie Moreau Michel Roger Competing Broadband Noise Mechanisms in Low-Speed Axial Fans AIAA Journal Vol.45,No.1, January 2007 48-57
    [13]P. J. Hotchkiss, C. J. Meyer, T. W. von Backstrom. Numerical investigation into the effect of cross-flow on the performance of axial flow fans in forced draught air-cooled heat exchangers. Applied Thermal Engineering.2006,26:200~208
    [14]Joseph D. Kummer and Thong Q. Dang High-Lift Propulsive Airfoil with Integrated Crossflow Fan. Journal of Aircraft 2006,43(4):1059-1068
    [15]王福军.计算流体力学分析—CFD软件原理与应用.北京:清华大学出版社.2004:1~163
    [16]周雪漪.计算水力学.北京:清华大学出版社.1995:35~42
    [17]陶文铨.数值传热学(第二版).西安:西安交通大学出版社.2001:22~28
    [18]郭鸿志.传输过程数值模拟.北京:冶金工业出版社.1998:54~58
    [19]陶文铨.计算传热学的近代进展.北京:科学出版社.2000:1~2,390~393.
    [20]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社.2006:35~58
    [21]郭宽良.计算传热学.合肥:中国科学技术大学出版社.1988:28~29.
    [22]江海斌.大空间分层空调系统气流组织CFD数值模拟及热舒适性分析研究.江苏大学硕士论文.2008:33~35
    [23]S.V. Partaker.Numerical Heat Transfer and Fluid Flow. Hemisphere. Washington.1980: 57-62
    [24]P. Chow, M. Cross, K. Perilous. A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application. APP. Math.Modelling. 1996,20:170~183
    [25]H. K. Versteeg. W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Wiley, New York.1995:113-121
    [26]Li Yi-min, Zhou Zhong-ning. Investigation and numerical simulation of inner-flow of an axial mine-flow fan under low flow rate conditions. Journal of China University of Miming&Technology.2008,18:107~111
    [27]H. Stitching. Boundary Layer Theory,8th ed. McGraw Hill. New York.1979:74~87
    [28]韩占忠,王敬,兰小平等.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社.2004:18~26
    [29]P. Bradshaw, T. Cebeci, J. H. Whitelaw. Engineering Calculation Methods for Turbulent Flow. Academic Press.London.1981:5~9
    [30]黄克智,薛明德,陆明万.张量分析.北京:清华大学出版社.2003:42~48
    [31]Fluent Inc. FLUENT User Guide. Fluent Inc.2003
    [32]Maurizio Pillar, Enrich Nubile, J. Thomas. DNS study of turbulent transport at low Parental numbers in a channel flow. Journal of Fluid Mechanics.2002, (458):419~ 441
    [33]J. G. Wissink. DNS of separating low Reynolds number flow in a turbine Cascade with incoming wakes. International Journal of Heat and Fluid Flow.2003,24 (4):626~635
    [34]V. Michelassi, J. G. Wissink. W. Rudi, Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade. A comparison. Journal of Power and Energy.2003,217 (4):403-412
    [35]V. Stephanie. Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows. Proceedings of the ASME/JSME Joint Fluids Engineering Conference.2003:1299~1305
    [36]M. B. Abbott, D. R. Basso. Computational Fluid Dynamics-An Introduction for Engineers. Longman Scientific & Technical,Harlow.England.1989:22~43
    [37]A. A. Feiz, M. Ould-Rouis, G. Lauriat. Large eddy simulation of turbulent flow in a rotating pipe. International Journal of Heat and Fluid Flow.2003,24 (3):412~420
    [38]Mary Ivan, Sagaut Pierre. Large eddy simulation of flow around an airfoil near stall. AIAA Journal.2002,40(6):1139~ 1145
    [39]D. G. E. Grigoriadis, J. G. Baptizes, A. Goulash. Efficient treatment of complex geometries for large eddy simulations of turbulent flows. Computers and Fluids.2004,33(2):201-222
    [40]L. Sheen, D.K.P. Yue.Large-eddy simulation of free-surface turbulence. Journal of Fluid Mechanics,n.2001,440:75-116
    [41]R. E. Julian, K. S;molarkiewicz.Eddy resolving simulations of turbulent solar convection. International Journal for Numerical Methods in Fluids.2002,39(9):855~864
    [42]J. C. Li. Large eddy simulation of complex turbulent flows:Physical aspects and research trends. Alta Mechanical Sinica.2001,17(4):289~301
    [43]P. Rollet-Miet, D. Laurence, J. Ferziger. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow.1999,20(3):241-254
    [44]V. Yak hot,S.A. Orzag. Renormalization group analysis of turbulence:Basic theory. J.1986 Science Comput.1:3-11
    [45]P. Morin. Progress in large eddy simulation of turbulence flows.1997,AIAA paper:97-15761
    [46]Matthew J, Ryan. CFD Prediction of the trajectory of a liquid jet in a non-uniform air cross-flow. Computer & fluids,2006(35):463~476
    [47]段江南.流体机械虚拟实验平台的开发与实践.华中科技大学硕士论文.2002:46~58
    [48]段江南,蔡兆麟.离心通风机内部流场模拟中的几何建模.风机技术.2001.6:38~42
    [49]田兆东.CFD技术在连通类高大空间空调系统设计中的应用研究.哈尔滨工业大学硕士论文.2006:37~51
    [50]聂涛.轴流式液液旋流器内流场的数值模拟.中国石油大学硕士论文.2008:40~43
    [51]张起勋.日光温室内空气流动特性研究.吉林农业大学硕士论文.2007:10~12
    [52]童莉.机械通风的华北型连栋温室内温度和速度场的数值模拟研究.北京化工大学硕士论文.2003:35~52
    [53]李秀辉.沙漠环境模拟实验室气流组织研究.西安建筑科技大学硕士论文.2009:43~47
    [54]王喜明,薛振华,郭继光.木材干燥实用技术问答.北京:化学工业出版社.2008:204~205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700