NURBS曲线刀具路径实时插补技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NURBS方法以其优良的性质在CAD/CAM中得到了广泛应用,并在STEP标准中被指定为描述工业产品几何形状的唯一数学工具。在数控加工领域中,研究NURBS曲线刀具路径实时插补技术,不仅能够为现有数控系统提供扩展功能,而且还可为下一代数控系统STEP-NC的开发提供核心技术支持。以此为背景,本文开展了数控系统NURBS刀具路径实时插补技术研究,主要完成了以下几个方面的工作:
     (1)研究了NURBS曲线快速求值求导计算方法。NURBS曲线插补通常需要同时计算曲线值和多阶导数值,此时传统de Boor算法综合效率较低,不利于实时计算。本文通过定义向量扩展运算方法,给出了B样条基函数快速求值算法,并实现了NURBS曲线快速求值求导计算。实例计算表明,该算法可提高NURBS曲线实时插补任务的计算效率,增强插补器实时性,提高曲线插补精度。
     (2)研究了NURBS曲线插补进给速度精确控制方法。从进给速度波动产生原理分析入手,指出NURBS曲线实时插补时下一插补点的计算应以逼近插补段弦长为条件,而非弧长。以此为基础,提出了NURBS曲线插补进给速度精确控制方法。该方法采用主动控制方式,在计算量不增加或增加不大的情况下,可显著减小实时插补进给速度的波动率。
     (3)研究了NURBS曲线实时插补进给速度极限分析方法。NURBS曲线实时插补进给速度极值受到了机床进给系统动力学特征和曲线几何特征的限制。通过建立直角坐标系数控机床进给系统的机电混合模型,给出了机床进给系统动力学约束条件下的速度极值解析曲线,即VLC曲线。同时还指出,当VLC曲线的最大弦高误差估计值满足NURBS曲线插补精度要求时,可不必再考虑插补弦高误差约束条件。这一结论有助于简化进给速度规划约束条件,并可为NURBS曲线实时插补进给速度规划方法研究提供理论分析依据。
     (4)研究了直角坐标系下时间最短的NURBS曲线插补进给速度优化规划方法。该方法扬弃了传统的进给速度加减速段规划手段,采用最优控制思想,在机床进给系统动力学约束条件下,给出了时间最短的进给速度优化规划。所规划的优化进给速度曲线与NURBS曲线在其参数定义域内一一对应。这种基于全局信息的进给速度优化规划方法,可以为NURBS刀具路径实时插补提供时间最短的优化进给速度曲线。
     (5)提出了一种基于进给速度引导曲线的NURBS曲线实时插补器结构设计及实现方法。该插补器采用具有高阶平滑特性的进给速度引导曲线,实现了实时插补进给速度规划。以此为基础,给出了基于进给速度引导的数控系统软硬件具体设计方法。试验表明:进给速度引导曲线能够很好地继承进给速度优化规划结果,使插补器可以在较短的周期内(200μs)完成NURBS曲线实时插补计算任务。
     通过以上五个方面问题的研究,解决了NURBS曲线实时插补中的快速计算、进给速度波动抑制、进给速度极值曲线分析、进给速度优化规划以及实时NURBS插补器设计等问题。试验结果表明了本文方法的有效性,为NURBS曲线刀具路径实时插补提供了较为完整的解决方案。
NURBS method is widely used in CAD/CAM for its good curve and surface description properties, which is also specified by STEP standard as the unique mathematical tool for describing the geometry form of industrial production. In the field of CNC machining, the technology of NURBS tool path interpolation may be used both to extend the function of traditional CNC system and to offer key technology support for developing STEP-NC system. This dissertation mainly research on the technique of NURBS tool-paths real-time interpolation for new generation of CNC systems. The main contributions include the following aspects.
     (1) A new fast algorithm to calculate NURBS curve value and derivation is researched. NURBS tool path interpolation requires computing its value and multi-order derivation at the same time. The de Boor algorithm becomes inefficient in this case. A high efficiency algorithm to calculate B-spline function is investigated by defining vector-extended operation. Based on it, a fast algorithm can be achieved for getting NURBS curve value and derivation. The application and analysis show that the given algorithm can improve the calculating efficiency and accuracy in real-time task of NURBS curve interpolation.
     (2) An exact feedrate-controlled method of NURBS tool-paths interpolation is researched. Through analyzing the theory of curved-path interpolating feedrate fluctuation, it's pointed out that interpolation points should be calculated under the condition of the step chord length, not the arc. Then, a precise feedrate-controlled method of NURBS tool-paths interpolation is proposed. Adopted the proposed method, the interpolation feedrate fluctuation can be approved distinctly without more calculation time spending.
     (3) A velocity limited method of NURBS tool-paths interpolation is proposed for high speed CNC. The limit feedrate of curved path interpolation is bounded by both dynamic properties of the CNC machine tool and the geometrical properties of the path. Through establishing the hybrid electromechanical model of every machine federate axis in Cartesian coordinate, the velocity limited analytical curve (VLC) is expressed under the constraints of system dynamic conditions. When the estimation of max chord error meets the interpolation accuracy requirement, the chord error conditions can be neglected. The conclusion is helpful to simplify the feedrate planning restriction conditions, and provides a theory for feedrate planning of NURBS tool-paths interpolation.
     (4) A time-optimized federate planning method of NURBS tool-paths interpolation is investigated in Cartesian coordinate. The method, built upon the optimization control theory, can achieve the minimum machining time under constraint of system dynamics along the NURBS tool path, which is distinguished form the other federate planning methods. In real-time interpolating task, the given method can proved time-optimized federate curve which is built on the global information of the NURBS tool path and has the same parameter definition domain with the curved path.
     (5) A new structure of real-time NURBS interpolator is presented with feedrate guide curves. With the proposed structure, the real-time federate of NURBS tool path interpolation is given by high-order smooth guided curves. Based on it, software and hardware of CNC system are designed and realized. Experiment results show that feedrate guided curves commendably inherit the results of time-optimized feedrate planning, and the real-time NURBS interpolator with feedrate guide curves can accomplish the real-time tasks in the time of 200μs for high speed CNC.
     Through the research, five key problems of NURBS tool-paths interpolation are figured out reasonably, which are fast calculating, feedrate fluctuation controlling, feedrate-optimized planning, real-time NURBS interpolator realizing, and so on. The experimental results indicate that the proposed methods are effective and can be used as an integrated solution for further NURBS tool-paths real-time interpolation.
引文
[1]唐荣锡.CAD/CAM技术.北京:北京航空航天大学出版社,1994.
    [2]J.C. Ferguson. Multivariable curve interpolation. J.ACM,1964,11(2):221~228.
    [3]S.A. Coons. Surfaces for computer aided design of space forms. MIT Project MAC-TR-41, June,1967.
    [4]P.E. Bezier. Example of an existing system in motor industry:the UNISURF system. Proc. Roy. Soc. of London,1971, Vol.A321:207-218.
    [5]P.E. Bezier. Numerical Control-Mathematics and application(Translated by A.R. Forrest). London:John Willy and Sons,1972.
    [6]W.J. Gordon, R.F. Riesenfeld. B-spline curves and surface, Computer Aided Geometric Design, Academic Press,1974.
    [7]J. Clark. Designing surfaces in 3D, Comm. ACM,1976,19(8):454-460
    [8]J. Clark. Some properties of B-splines, Proceedings of Second USA-JAPAN Computer Conference,1975:542-545.
    [9]C. deBoor. On calculating with B-spline, J. Approx. Theory,1972, Vol.6:50-62.
    [10]C. deBoor. Apractical guide to splines. New York:Springer-Verlag,1978.
    [11]M.G. Cox. The numerical evaluation of B-splines, Report No NPL-DNACS-4, National Physical Laboratory,1971.
    [12]K.J. Versprille. Computer-aided design applications of rational B-spline approximation for m. Ph.D Dissertation, Syracuse University,1974
    [13]W. Bohem. Inserting new knots into B-spline curves. Computer Aided Design, 1980,12(4):199-201.
    [14]I.J. Schoenberg. Contributions to the problem of application of equidistant data by analytic functions, Applied Math,1946,4:112-141.
    [15]L. Piegl. Modifying the shape of rational B-splines, Part1. Computer Aided Design,1989,21 (8):509-518.
    [16]L. Piegl. Modifying the shape of rational B-splines, Part2. Computer Aided Design,1989,21 (9):538-546.
    [17]L. Piegl. On NURBS-a survey, IEEE Computer Graphics and Applications, 1991(11):55-71.
    [18]L. Piegl, W. Tiller. The NURBS Book(2ed). New York:Springer,1995.
    [19]W. Tiller. Rational B-splines for curves and surfaces representation. IEEE CG & A,1983,9:61-69.
    [20]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS).北京:北京航空航天大学出版社,1994.
    [21]External Representation of Product Definition Data. ISO TC184/SC4/WG1 Document N284(Version Tokyo). International Standards Organization, USA, Oct,1988.
    [22]韩庆瑶,邓兴奕,梁锡昌.复杂平面曲线的圆弧优化逼近.重庆大学学报(自然科学版),1988,4:33-35.
    [23]王兴波,李圣怡.平面NURBS曲线的椭圆弧自适应逼近.国防科技大学学报,2000,22(4):24-26.
    [24]M. Kosugi, T. Teranishi. Construction of a Segment with Two Circular Arcs. Trans. IEICE,1977, Vol.60D, No.11:944-951.
    [25]M. Kosugi. Local Curve fitting Procedures Using Circular Arcs. Trans. IEICE, 1977, Vol.60D, No.12:1023-1030.
    [26]R.L. Norton. Effect of Manufacturing Method on Dynamic Performance of Cams-An Experimental Study (Part Ⅰ, Eccentric Cams). Mech. Mach. Theory, 1988,23(3):191-199.
    [27]D.B. Parkinson, D.N. Moreton. Optimal Biarc-Curve Fitting. Comput.-Aided Design,1991,23(6):411-419.
    [28]J. Schonherr. Smooth Biarc Curves. Computer-aided Design,1993, Vol.25, No.6: 365-370.
    [29]M.K. Yeung, D.J. Walton. Curve Fitting with Arc splines for NC toolpath Generation. Computer-aided design,1994,26(11):845-849.
    [30]H. Qiu, Y. Ariura, H. Ozaki. Optimum circular interpolation for plane curve contours. Intelligent Systems for the 21st Century, IEEE International Conference on,1995, Vol.2:1279-1284.
    [31]D. Liu, J. Hoschek. GC1 continuity conditions between adjacent rectangular and triangular Bezier surface patches. Computer Aided Design,1989,21(4):194-200.
    [32]G. Brunnett, T. Schreiber, J. Braun. The geometry of optimal degree reduction of Bezier curves, CGAD,1996; 13(8):773-777.
    [33]H. Theisel. Geometric condition for G3 continutity of surface,1997; 14(8):719.
    [34]T.A. Schoaf, B. Ravani. Geometric continuity of ruled surface. CGAD,1998, 15(3):289-293.
    [35]彭国华.有理曲面光滑拼接和曲面光顺的理论研究.博士学位论文.西安,西北工业大学.
    [36]孙海洋,何汉辉,范大鹏等.高速数控微段程序加工中的速度处理.制造技术与机床,2004年增刊:56-59.
    [37]藤野大助.数控装置用加工程序的文件变换装置及存储有为计算机执行文件变换过程的程序的计算机可读式记录媒体,中国专利,公开号CN1261964A,2000.8.
    [38]http://www.steptools.com/.
    [39]ISO TC184/SC1/WG7. ISO14649/FDIS:Data model for computerized numerical controllers.2001.
    [40]International Standards Organization. IS014649. Part1:Overview and
    fundamental principles.2003.
    [41]ISO 14649 Data model for Computerized Numerical Controllers. Part 10: General Process Data.
    [42]ISO 14649 Data model for Computerized Numerical Controllers. Part 111: TOOLS FOR MILLING.2004.
    [43]ISO 14649 Data model for Computerized Numerical Controllers. Part 12: PROCESS DATA FOR TURNING.2005.
    [44]ISO 14649 Data model for Computerized Numerical Controllers. Part 121: TOOLS FOR TURNING MACHINES.2005
    [45]S.H. Suh, S.U. Cheon. A Framework for an Intelligent CNC and Data Model. International Journal of Advanced Manufatory Technolgy,2002, Vol.19: 727-735.
    [46]S. Suh, J. Cho, H. Hong. On the architecture of intelligent STEP-compliant CNC. International Journal Computer Integrated Manufacture,2002,15(2):16-77.
    [47]S.H. Suh, B.E. Lee, D.H. Chung, S.U. Cheon. Architecture and implementation of a shop-floor programming system for STEP Compliant CNC. Computer-Aided Design,2003,35:1069-1083.
    [48]陈凯云,叶佩青,汪劲松.基于STEP-NC数控系统的研究.中国机械工程,2003,14(9):721-723.
    [49]S.H. Suh, B. Lee. STEP-Manufacturing roadmap. Proceedings of Korea CAD/CAM conference, Souier, Korea,2004.
    [50]刘日良,张承瑞.STEP-NC 2.5D铣削工步的运动特征及其数据模型.机械科学与技术,2005,24(1):90-93.
    [51]X.M. Zhu, Y.Z. Wang, H.Y. Fu. A 3-D Simulation System for Milling Machining Based on STEP-NC. Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23,2006, Dalian, China
    [52]X.W. Xu, S.T. Newman. Making CNC machine tools more open, interoperable and intelligent-a review of the technologies. Computers in Industry,2006,57: 141-152.
    [53]X.W. Xu. Realization of STEP-NC enabled machining. Robotics and Computer-Integrated Manufacturing,2006,22:144-153.
    [54]S.H. Suh, D.H. Chung, B.E. Lee, et al. STEP-compliant CNC system for turning: Data model, architecture, and implementation. Computer-Aided Design,2006, 38:677-688.
    [55]S.J. Shin, S.H. Suh, I. Stroud. Reincarnation of G-code based part programs into STEP-NC for turning applications. Computer-Aided Design,2007,39:1-16.
    [56]International Standards Organization, ISO10303 Part 21:Implementation methods-clear text encoding of the exchange structure,2002.
    [57]International Standards Organization, ISO10303. AP238:Application protocol-application interpreted model for computer numeric controls,2004.
    [58]孙家广,杨长贵.计算机图形学.北京:清华大学出版社,1995.
    [59]史浩.计算机图形学中的Bresenham算法.计算机时代,1995,3:23-24.
    [60]李重,韩丹夫.有理B样条曲线快速逐点生成算法.浙江大学学报(理学版),2003,30(2):140-144.
    [61]D.I. Kim, J.I. Song, S.K. Kim. Design of digital signal processor system for CNC systems. Proceedings IECON'91 International Conference on,28 Oct.-1 Nov, 1991, Vol.3:1861-1866.
    [62]王广炎,张润孝,王小椿.脉冲均匀化插补方法.制造技术与机床,2000.3:37-39.
    [63]吴超英,潘紫微.基于FPGA的数控逐点比较法直线插补数字系统设计与实现.机电工程,2001.6:45-49.
    [64]崔桂梅,任彦.基于CPLD实现的硬件直线插补器在数控车床中的应用.制造技术与机床,2006.7:56-59
    [65]M.F. Tsai, C.P. Chen. Design of a quadrature decoder/counter interface IC for motor control using CPLD. IECON 02,2002,11:1936-1941.
    [66]H. L. Huy. Microprocessors and digital ICs for motion control, Proc of the IEEE, 1994, Vol.82, No.8:1140-1163.
    [67]Y. Koren, O. Masory. Reference-pulse circular interpolators for CNC systems. ASME Journal Engineering for Industry,1981,103(11):131-136.
    [68]O. Masory, Y. Koren. Reference-word circular interpolators for CNC systems. Journal of Engineering for Industry, Transaction ASME,1982,104(4):400-405.
    [69]陈明君,赵清亮,董申,李旦.基于双圆弧步长伸缩数控插补非圆曲线算法的研究.2003,39(1):111-116
    [70]丁明亮,李戡.逐点比较法斜椭圆弧插补.重庆工学院学报,2005,19(11):17-21.
    [71]王勇.基于二阶递归的等步距角椭圆插补方法.2005,43(4):31-32.
    [72]王琨琦,王润孝,孙林丽.椭圆曲线的比较积分插补方法研究.西安工业学院学报,2005,25(1):1-2,7.
    [73]徐海银,陈幼平,周祖德.CNC系统中空间抛物线的五坐标迭代插补法.华中理工大学学报,1998,26(4):50-52.
    [74]叶伯生,杨叔子.基于参数方程的抛物线插补方法.制造技术与机床,1997.6:35-37.
    [75]赵薇.抛物线插补算法研究与数控加工编程.机械设计与制造,2003.1:93-94.
    [76]唐锐.双曲线时间分割插补新算法,现代制造工程,2006.1:53-54.
    [77]唐学飞,贺炜,陈书法.具有最小偏差特性的双曲线插补新算法.现代制造
    工程,2005.6:20-22。
    [78]周建来,唐学飞,陈书法.数控系统快速双曲线插补算法.机床与液压,2003,5:175-175,209.
    [79]张春良.圆锥螺旋线插补误差分析.机械工艺师,2000.6:32-33.
    [80]罗良玲;刘旭波;基于时间分割法的圆柱螺旋线直接插补算法.南昌大学学报(工科版),2001,23(4):57-59,64.
    [81]张彦博.时间分割法用于等螺旋角圆锥螺旋线的插补算法.工具技术,2003,37(7):47-49.
    [82]L.E. Chiang,3-D CNC trajectory interpolation using Bresenham's algorithm. Symposium Proceedings, ISIE'94.,1994 IEEE International Symposium.25-27 May 1994:264-268.
    [83]Y.F. Chang. Buffered DDA command generation in a CNC. Control Engineering Practice,2003.11:797-804.
    [84]赵学,李崇辉.长轴调速逐点比较法直线插补研究.机床,1992.8:33-35,41.
    [85]秦开怀.CNC系统中任意空间圆弧的高速插补新方法.机械工程学报,1992,28(3):47-54.
    [86]李惠光,郑绳植.改进的最小偏差法直线插补及其软件.东北重型机械学院学报,1991,15(2):153-156.
    [87]黄文生,张建生.CNC系统中传统插补法的改进-弧度分割法.应用能源技术,2006.12:40-42
    [88]陈良骥.一种新型圆弧插补算法.CAD/CAM与制造业信息化,2007.5:117-110.
    [89]贾宝贤.对直接函数法圆弧插补的改进.机床与液压,2000.4:44-45.
    [90]傅邦宁,邹士敏.最小偏差插补方法的扩展及应用.机械工业自动化,1990.2:35-36.
    [91]游有鹏.改进最小偏差法——一种高精度快速插补算法.机械工业自动化,1995,17(1):32-34.
    [92]杨向红.基于最小偏差三维直线插补算法的精度分析.佳木斯大学学报(自然科学版),2006,24(01):88-89.
    [93]朱建忠,吉训进.一种新的数控系统圆弧插补判别法。机床与液压,2001.5:87-88.
    [94]唐学飞.数控系统圆弧插补算法的改进.组合机床与自动化,2001.10:33-34.
    [95]赵学.逐点比较法多坐标联动直线插补.甘肃工业大学学报,1996,22(1):73-78.
    [96]唐锐,李大国.数字积分椭圆插补算法.机械制造与自动化,2005,34(4):28-29,34
    [97]王进.比较积分法及其程序设计[J].机械设计与制造,1995.6:32-34.
    [98]刘希敏,刘新宇,赵先仲.软件插补处理的新方法——比较积分法.华北航天工业学院学报,2003,13(01):20-22.
    [99]周慧.比较积分法插补过程的研究与仿真.机床与液压,2004.3:70-71,80.
    [100]胡建华,廖文和,周儒荣.CNC系统中几种升降速控制曲线的研究与比较.南京航空航天大学学报,1999,131(6):706-711.
    [101]李曦,唐小琦,陈吉红,周济.NC伺服的加减速控制算法的研究与实现.机床与液压,2000.3:3-5,45.
    [102]张莉彦.基于数据采样插补的加减速控制的研究.北京化工大学学报(自然科学版),2002,29(3):91-93.
    [103]郭新贵,李从心.S曲线加减速算法研究.机床与液压,2002.5:60-62.
    [104]黄艳,李家霁,于东,彭健钧.CNC系统S型曲线加减速算法的设计与实现.制造技术与机床,2005.3:55-59.
    [105]D.I. Kim, S.K Kim. Performance evaluation of software acceleration/deceleration algorithms in machining and contouring. Industrial Electronics, Control, Instrumentation, and Automation,1992. Power Electronics and Motion Control., Proceedings of the 1992 International Conference on.9-13 Nov.1992, Vol.3: 1263-1269.
    [106]D.I. Kim, J.I. Song, S.K. Kim. Dependence of machining accuracy on acceleration/deceleration and interpolation methods in CNC machine tools. Industry Applications Society Annual Meeting,1994., Conference Record of the 1994 IEEE,2-6 Oct.1994, Vol.3:1898_1905.
    [107]D.I. Kim. Study on interpolation algorithms of CNC machine tools. Industry Applications Conference,1995. Thirtieth IAS Annual Meeting, IAS'95., Conference Record of the 1995 IEEE,8-12 Oct.1995, Vol.3:1930_1937.
    [108]林一松,汤兆红,区锐相,林金萍等.一种S形曲线加减速计算方法.制造技术与机床,2005.11:71-75
    [109]王太勇.赵巍.李宏伟.陈海鹏.基于最小偏差法的步进电机速度控制方法研究.机械科学与技术,2005,24(6):699-701.
    [110]郭新贵,李从心.一种新型柔性加减速算法.上海交通大学学报,2003,37(2):205-207,212.
    [111]K. Erkorkmaz. Optimal trajectory generation and precision tracking contrl for multi-axis machines. US, University of British Columbia. PhD Thesis.2004: 1-16,40~58.
    [112]S.H. Nam, M.Y. Yang. A study on a generalized parametric interpolator with real-time jerk-limited acceleration, Computer-Aided Design 36 (2004):27-36.
    [113]D.I. Kim. Study on interpolation algorithms of CNC machine tools, Industry Applications Conference,1995. Thirtieth IAS Annual Meeting, IAS'95., Conference Record of the 1995 IEEE. Vol.3:1930-1937.
    [114]M.C. Tsai, M.Y. Cheng. On acceleration/deceleration before interpolation for CNC motion control. Mechatroriics, 2005. ICM'05. IEEE International Conference,2005:382-387.
    [115]G.C. Han, D.I. Kim. High Speed Machining Algorithm for CNC Machine Tools. The 25th Annual Conference of the IEEE, Dec.1999, Vol.3:1493-1497.
    [116]H.T. Yau, J.B. Wang, W.C. Chen. Development and implementation for real-time look ahead interpolator by using Bezier curve to fit CNC continuous short blocks. Mechatronics,2005. ICM'05. IEEE International Conference on. 10-12 July 2005:78-83.
    [117]徐志明,冯正进,汪永生,郑之开.连续微小路径段的高速自适应前瞻插补算法.制造技术与机床,2003.12:20-23.
    [118]Y.F. Chang, R.C. Hong. Parametric curve machining of a CNC milling EDM. international Journal of Machine Tools&Manufacture 45 (2005) 941-948.
    [119]叶佩清,赵慎良.微小直线段的连续插补控制算法研究.中国机械工程,2004,15(15):1354-1356.
    [120]许海峰,王宇晗,李宇昊,胡俊.小线段高速加工的速度模型研究和实现.机械工程师,2005.4:9-13.
    [121]王宇晗,肖凌剑,曾水生,吴祖育等.小线段高速加工速度衔接数学模型.上海交通大学学报,2004,38(6):901-904.
    [122]J. Xia, Q.J. Ge. An Exact Representation of Effective Cuting Shapes Of 5-Axis CNC Machining Using Rational Bezier and B-spline Tool Motions. Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Seoul, Korea, May21-26,2001.
    [123]H. Yau, J. Wang, Fast Bezier interpolator with real-time lookahead function for high-accuracy machining, International. Journal of Machine Tools&Manufacture, Vol 47, No.10,2007.8:1518~1529.
    [124]R.T. Farouki, S. Shah. Real-time CNC interpolators for Pythagorean-hodograph curves. Computer Aided Geometric Design 13 (1996):583-600.
    [125]R.T. Farouki, M. Jairam, D. Nicholast, G.F. Yuan etc. Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves. Computer-Aided Desrgn,1998, Vol30, No.8:631-640.
    [126]R.T. Farouki, Y.F. Tsai, G.F. Yuan. Contour machining of free-form surfaces with real-time PH curve CNC interpolators.Computer Aided Geometric Design 16(1999):61-76.
    [127]R.T. Farouki, C.Y. Han. Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves. Computer Aided Geometric Design 20 (2003):435-454.
    [128]F. Pelosi, M. L. Sampoli, R.T. Farouki, C. Manni. A control polygon scheme for design of planar C2 PH quintic spline curves. Computer Aided Geometric Design 24 (2007) 28-52.
    [129]H.B. Sail. Generalized Ball Curve and Its recursive algorithms. ACM Transcation on Graphics,1989,8(4):360-371.
    [130]T.N.T. Goodman, H.B. Said. Shape Preserving Prosperities of the generalized Ball Basis. Computer Aided Geometric Design,1991,8(2):115-121.
    [131]刘松涛,刘根洪.广义Ball样条曲线及三角域上曲面的升阶公式和转换公式.应用数学学报,1996,19(2):243-253.
    [132]蒋素荣,王国瑾.任意偶数次Said-Ball基的对偶基的应用.计算机辅助设计与图形学学报,2004,16(7):950-952.
    [133]郑中纬.运动控制器之即时NURBS曲线及曲面插补器的设计与实现.博士学位论文:国立成功大学机械系,中国台湾省,2003年.
    [134]E.B. Kuznetsov, A.Y. Yakimovich. The best parameterization for parametric interpolation. Journal of Computational and Applied Mathematics 191 (2006) 239-245.
    [135]V.L. Shalashilin, E.B. Kuznetsov. Parametric Continuation and Optimal Parameterization in Applied Mathematics and Mechanics, KluwerAcademic Publishers. Boston. Dordrecht. London.2003.
    [136]S.S. Yeh, M.F. Tu. A Novel Approach to the Design of NURBS interpolator for Advanced Motion Systems. Proceedings of the 2005 IEEE Cntemational Conference on Mechatronics,2005.6:388-393.
    [137]M. Gopi, S. Manohar. VLSI Architectures for the Computation of Uniform B-Spline Curve. Microprocessing and Microprogramming,1994, Vol.40: 617-626,.
    [138]M. Gopi, S. Manohar. Parallel Architecture for the Computation of Uniform Rational B-Spline Patches. Journal of Parallel and Distributed Computing,1995, Vol.30, No.11:91-98.
    [139]M. Gopi, S. Manohar. VLSI Architecture for the Computation of NURBS Patches. Proc. Int'l Conf. VLSI Design, New Delhi, India, Jan.1995.
    [140]M. Copi. A unified architecture for the computation of B-spline curves and surfaces, IEEE Transaction On Parallel and Distributed Systems,1997, Vol.8, No.12:1275-1287.
    [141]H.T. Yau, M.T. Lin, Y.T. Chan, K.C. Yuan. Design and Implementation of Real-time NURBS Interpolator Using a FPGA-Based Motion Controller. Proceedings of the 2005 IEEE International Conference on Mechatronics, 2005.6:56-61.
    [142]S. Bedi, I. Ali, N. Quan. Advanced Techniques for CNC machines. Trans ASME J Engng Industry 1993,115:329-336.
    [143]Y. Koren, C.C. Lo. CNC Command Generators:algorithm and analysis. Manufacturing Science and Engineering, ASME PED,1993, Vol.64:83-92.
    [144]M. Shpitalni, Y. Koren, C.C. Lo. Real-time curve interpolators. Computer-Aided Design,1994;26(11):832-8;
    [145]J.T. Huang, D.C.H. Yang. A generalized interpolator for command generation of parametric curves in computer controlled machines. ASME Japan/USA Symposium on Flexible Automation,1992.1:393-401.
    [146]Yang DCH, Kong T. Parametric interpolator versus linear interpolator for precision CNC machining. Computer-Aided Design,1994.
    [147]S.S. Yeh, P.L. Hsu. The speed-controlled interpolator for machining parametric curves. Computer-Aided Design,1999,31(5):349-57.
    [148]Q.G. Zhang, R.B. Greenway. Development and implementation of a NURBS curve motion command generator. Robot and Computer-Integrated Manufacturing,1998, Vol.14:27-36.
    [149]S.S. Yeh, P.L. Hsu. Adaptive-feedrate Interpolation for Parametric curves with confined chord error, Computer-Aided Design,2001, Vol.34, No.3:299-237.
    [150]陈金成,钟延修.基于Gauss-Legendre求积的参数曲线实时插补.上海交通大学学报,2002.8:1104-1108.
    [151]W.T. Lei, M.P. Sung, L.Y. Lin, J.J. Huang. Fast real-time NURBS path interpolation for CNC machine tools. International Journal of Machine Tools & Manufacture,2007.47(10):1530-1541.
    [152]B. Bahr, X.M. Xiao, K. Krishnanb. A real-time scheme of cubic parametric curve interpolations for CNC systems. Computers in Industry 45 (2001) 309-317.
    [153]S.Y. Jeong, Y.J. Choi, P. Park. Parametric interpolation using sampled data. Computer-Aided Design 38 (2006) 39-47.
    [154]M.Y. Cheng, M.C. Tsai, J.C. Kuo. Real-time NURBS command generators for CNC servo controllers. International Journal of Machine Tools&Manufacture 42 (2002)801-813.
    [155]H.T. Yau, M.T. Lin, M.S. Tsai. Real-time NURBS interpolation using FPGA for high speed motion control. Computer-Aided Design 38 (2006):1123-1133.
    [156]S. L. Omirou. Space curve interpolation for CNC machines. Journal of Materials Processing Technology 141 (2003):343-350.
    [157]T.J. Koa, H.S. Kim, S.H. Park. Machineability in NURBS interpolator considering constant material removal rate. Intcrnational Journal of Machine Tools&Manufacture 45 (2005):665-671.
    [158]M. Tikhon, T.J. Koa, S.H. Lee, H.S. Kim. NURBS interpolator for constant material removal rate in open NC machine tools. International Journal of Machine Tools&Manufacture 44 (2004):237-245.
    [159]M. Shpitalni, Y. Koren, C.C. Lo. Real-time curve interpolators. Computer-Aided Design,26(1994):832-838.
    [160]陈金成,钟廷修.基于Gauss-Legendre求积的参数曲线实时插补[J].上海交 通大学学报,2002,(08):1104-1108.
    [161]C.W. Cheng. Real-time Variable federate NURBS Curve Interpolator for CNC Machining. International journal of Advanced Manufacturing technology,2003.
    [162]M.Y. Cheng, M.C. Tsai, J.C. Kuo. Real-time NURBS Command Generators for CNC Servo Controllers. International journal of Machine Tool&Manufacture, 2002,Vol.42, No.7:801-813.
    [163]孔亚洲,肖跃加,韩明,彭学军.非均匀B样条曲线的插补算法.华中科技大学学报.2001,29(4):69-71.
    [164]金建新.机床CNC系统中任意空间曲线的可控步长插补方法.机械工程学报.2000,36(4):95-97.
    [165]R.T. Farouki, Y.F. Tsai. Exact Taylor Series Coefficients for variable-feedrate CNC curve interpolators. Computer-Aided de sign 33(2001):155-165.
    [166]赵巍,王太勇,万淑敏.基于NURBS曲线的加减速控制方法研究.中国机械工程.2006,17(1):1-3.
    [167]T. Yong, R. Narayanaswami. A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining. Computer-Aided Design 35 (2003):1249-1259.
    [168]赵国勇,徐志祥,赵福令.高速高精度数控加工中NURBS曲线插补的研究.中国机械工程,2006,17(3):291-294.
    [169]刘可照,彭芳瑜,吴昊,胡建兵.基于机床动力学特性的NURBS曲线直接插补.机床与液压,2004.11:19-22.
    [170]S.H. Nam, M.Y. Yang, A study on a generalized parametric interpolator with real-time jerk-limited acceleration, Computer Aided Design 36 (2004):27-36.
    [171]X.B. Liu, F. Ahmad, K. Yamazaki, M. Mori. Adaptive Interpolation scheme for NURBS curves with the integration of machining dynamics. International Journal of Machine Tools&Manufacture 45(2005):433-444.
    [172]杜道山,燕存良,李从心.一种实时前瞻的自适应NURBS插补算法.上海交通大学学报,2005,40(5):843—847.
    [173]彭芳瑜,仃莹,李斌.NURBS曲线高速插补中的前瞻控制.计算机辅助设计与图形学学报,2006,18(5):625-629.
    [174]Y.W. Sun, J. Wang, D.M. Guo. Guide curve based interpolation scheme of parametric curves for precision CNC machining. International Journal of Machine Tools & Manufacture.46(2006):235-242.
    [175]S.D. Timer, R.T. Farouki, T.S. Smith, C.L. Boyadjieff. Algorithms for time-optimal control of CNC machine along curved tool paths, Robotics and Computer Integrated Manufacturing,21(2005):37-53.
    [176]S.D. Timar, R.T. Farouki. Time-optimal traversal of curved paths by Cartesian CNC machines under both constant and speed-dependent axis acceleration bounds. Robotics and Computer-Integrated Manufacturing,2006.6:1-16.
    [177]C.L. Boyadjieff, R.T. Farouki, S.D. Timar. Smoothing of Time-Optimal Feedrates for Cartesian CNC Machines. Mathematics of Surfaces 2005, LNCS 2005,36(4):84-101.
    [178]陈金成,蒋厚宗.机床沿曲线高速加工时的运动学与动力学特性分析.机械工程学报,2002,38(1):31-34,62.
    [179]M.T. Lin, M.S. Tsai, H.T. Yau. Development of real-time look-ahead algorithm for NURBS interpolator with consideration of servo dynamics. Decision and Control,2007 46th IEEE Conference on,2007.11:1862-1867.
    [180]S. Yoo, D. Walczyk. An advanced cutting trajectory algorithm for laminated tooling. Rapid Prototyping Journal,2005.11(4):199~213.
    [181]M.S. Tsai, H.W. Nien, H.T. Yau. An integrated look-ahead dynamic interpolator for NURBS curve. Decision and Control,2007 46th IEEE Conference on,2007.11:1868~1873.
    [182]A. GASPARETTO, V. ZANOTTO. A new method for smooth trajectory planning of robot manipulators. Mechanism and machine theory,2007.42(4):455~471.
    [183]杜娟,田锡天,张振明,朱名铨,李建克.基于STEP-NC的CNC系统中NURBS插补技术研究.中国图象图形学报,2007.12(1):171-176.
    [184]王田苗,曹宇男,陈友东,魏洪兴.基于de Boor算法的NURBS曲线插补和自适应速度控制研究.中国机械工程,2007.18(21):2608~2613.
    [185]边玉超,张莉彦,戴莺莺,陈虎.CNC系统中NURBS曲线实时插补算法研究.机械制造与自动化,2003.6:36~39.
    [186]J.J. Deng. An Improved Definition of B-Spline Basis Function, Journal of the Chinese Institute of Industrial Engineers,1999, Vol.16, No.5:659-670.
    [187]J.J. Deng. Theory of a B-spline Basic Function, International Journal of Computer Mathmatics,2003, Vol.80, No.5:649-664.
    [188]张可村,赵英良.数值计算的算法与分析.北京:科学出版社,2003.
    [189]J.E. Bobrow, S. Dubowsky, J.S. Gibson. Timeoptimal control of robotic manipulators. Int. J. Robot. Res,1985,4(3):3-17.
    [190]K.G. Shin, N.D. McKay. Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans. Automatic Control,1985, AC-30(6): 531-541.
    [191]F. Pfeiffer, R. Johanni. A concept for manipulator trajectory planning. IEEE Trans. Robotics and Automation,1987, RA-3(3):115-123.
    [192]Z. Shiller, Time-optimal motion of robotic manipulators, Ph.D. dissertation, M.I.T,1987.
    [193]J.E. Slotine, H.S. Yang, Improving the Efficiency of Time-Optimal Path-following algorithms. IEEE Transaction On Robotics and Automation,1989, Vol.5, No.1:118-124.
    [194]Z. Shiller, H.H. Lu. Robust computation of path constrained time optimal motions. IEEE International Conference on Robotics and Automation,1990, vol1.1:144-149.
    [195]Z. Shiller, H.H. Lu. Computation of path constrained time-optimal motions with dynamic singularities. ASME J. Dyn. Syst. Measure. Control,1992,114:34-40.
    [196]Z. Shiller. On Singular Time-Optimal Control Along Specified Paths. IEEE Transaction On Robotics and Automation,1994,Vol.10, No.4:561-566.
    [197]Z. Shiller, H. Chang, V. Wong. The Practiacl Implentment of Time-optimal Control for Robotic Manipulators.Robotics & Computer-Integrate Manufacturing, 1996, Vol.12, No.1:29-39.
    [198]Y.F. Tsai, R.T. Farouki, B. Feldman. Performance analysis of CNC interpolators for time-dependent feedrates along PH curves. Computer Aided Geometric Design,18(2001):245-256.
    [199]L. Piegl, W. Tiller. Least-Squares B-Spline Curve Application with Arbitrary End Derivatives. Engineering with Computers,16(2000):109-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700