仿蝌蚪游动微型机器人的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪60年代初诞生的仿生学(Bionics),是生物科学和工程技术相结合的一门边缘学科。通过学习,模仿,复制和再造生物系统的结构,功能,工作原理及控制机制,来改进现有的或创造新的机械,仪器,建筑和工艺过程。现代仿生学已经延伸到很多领域,机器人学是其主要的结合和应用领域之一,可归纳为机器人的结构仿生,材料仿生,功能仿生,控制仿生以及群体仿生五个方面。目前,国内外根据仿生学原理已经研制出了很多仿生微型机器人。在国内外仿生学机器人研究的基础上,本课题基于蝌蚪的游动规律,提出了一种仿蝌蚪游动微型机器人。该微型机器人很好地再现了蝌蚪的游动,具有很好的机动性能,在医疗血管微型机器人研究领域有着广泛的应用前景。
     本论文根据目前有关鱼类游动理论研究,详细分析了该微型机器人的游动推进原理。建立了基于蝌蚪游动推进的微型机器人游动推进理论模型,并对该微型机器人的游动推进理论模型进行了理论分析和求解。从而确定了微型机器人的游动速度、推进力与微型机器人结构参数和游动参数的关系。设计研制了微型机器人游动推进机构装置的原理样机,对微型机器人进行了详细的实验研究,并对实验结果进行了详细的分析。分析了影响微型机器人运行的各种重要因素。初步提出了解决微型机器人的游动推进控制问题。
     论文第一章介绍了微型机器人的研究背景和意义,详细介绍了国内外微型机器人的发展现状以及微型机器人研究的关键技术和难点。提出了一种仿蝌蚪游动微型机器人。最后给出了本课题的研究意义和研究内容。
     论文第二章详细介绍了微型机器人的结构组成和游动推进机制。研制了微型机器人原理样机并对其游动推进速度进行了详细的试验研究,给出了相应的试验研究结果,最后给出了结论。
     论文第三章介绍了微型机器人的理论基础和游动原理。对微型机器人进行了详细的运动学和动力学分析,给出了微型机器人运动学模型和动力学模型及相应的方程。对微型机器人运动学和动力学方程进行了求解,通过坐标图分析了微型机器人的形状参数和游动参数对微型机器人游动推进速度和游动推进力的影响。对微型机器人游动推进速度理论计算结果和实验研究结果进行了对比分析,证明了微型机器人理论模型的合理性和正确性。最后分析讨论了微型机器人的游动推进效率问题、影响微型机器人游动性能的因素以及微型机器人的减阻机制和方法。
     论文第四章详细介绍了目前有关机器人控制的控制理论、控制方法以及控制研究内容。提出了仿蝌蚪游动微型机器人的控制理论和方法,初步解决了微型机器人的机动控制问题。
    
    浙江大学硕士学位论文
    摘要
     论文第五章在仿蛾蚁游动微型机器人的研究基础上,提出了一种血管机器人并给
    出了其详细的实现结构。详细分析了血管机器人的结构组成以及游动控制机制,为今
    后血管机器人的进一步研究打下了坚实的基础和指明了研究方向。
     论文第六章对整个课题和论文工作做出了总结与展望。
    本论文为国家自然科学基金资助项目(NO.50375143)
Bionics is a new developmental subject which formed by the combination of bioscience and engineering technology, and it is the application of biological fabrication, functions, principles and control mechanisms to the improvement and creation of machine, instrument, architecture and technical process, especially robot system that is a representative of electro-mechanical systems. At present, many kinds of robots are researched according to the imitation of fabrication, material, function, control and colony of biology. Based on the studies of bionic robots, and according the swimming principle of tadpole, a new swimming micro-robot imitated tadpole is proposed in this paper. The micro-robot which reproduces the swimming performance of tadpoles has excellent swimming performance, and has significant meaning in blood vessel micro-robots which have extensive applied foreground.
    On the basis of swimming propulsion theories offish and tadpole, the principle of the swimming micro-robot has been analyzed, and the undulatory propulsion theory of the . swimming micro-robot imitated tadpole has been established. According to the analysis and solution of the swimming model of the micro-robot, the relationship between swimming speed, swimming propulsion and shape, swimming parameters is defined. A prototype of the micro-robot is developed and experiments on it are conducted detailedly. Many important factors which influence the swimming propulsion performance of the micro-robot are analyzed, and control problems of the swimming micro-robot are solved and realized elementarily.
    In first chapter, research meanings and background of micro-robots study are firstly introduced, and the internal and external research situation of micro-robots is analyzed, then key technologies and difficulties appear in micro-robot study are discussed. A new swimming micro-robot imitated tadpole is proposed. At last, the research meanings and contents of the whole issue are presented.
    In chapter 2, the fabrication and swimming propulsion mechanism of the micro-robot is introduced. The prototype of the micro-robot is developed and the swimming propulsion speed of the micro-robot is studied experimentally, the experimental results indicate that the swimming micro-robot proposed is reasonable and feasible. At last, experimental study conclusions are given.
    In chapter 3, foundation of theory and principle of swimming propulsion of the swimming micro-robot are introduced. Kinematics and kinetics of the micro-robot are
    
    
    
    analyzed detailedly, and then, model and equation of kinematic and kinetic of the swimming micro-robot are given. According to solving the equations and using coordinate graphs, the influences of shape and swimming parameters on the swimming speed and propulsion are studied and analyzed. The comparison of the theoretical results and experimental data of swimming speed is made, the results indicate that theoretical results are consistent with experimental data, which means that the theory model of the micro-robot is reasonable and feasible. At last, efficiency of swimming propulsion, factors which influence swimming propulsion performance of the micro-robot and methods that will decrease swimming propulsion resistance are analyzed and discussed.
    In chapter 4, many kinds of control theories and methods of robots are summarized and introduced, and the study contents of robot control are discussed. The control theory and methods of the micro-robot that imitated tadpole are put forward, and then the control problems of the micro-robot are solved elementarily.
    In chapter 5, on the basis of the study of the swimming micro-robot imitated tadpole, a new blood vessel micro-robot is put forward and designed. Fabrication and swimming control mechanism of the blood vessel micro-robot are studied and analyzed detailedly. The study of the blood vessel micro-robot in this paper provides concrete foundation which will be needed in the farther research.
    In last chapter, the summary and prospects of the whole task are presented.
    This paper is supporte
引文
1.李栓庆,付士萍.微电子机械系统.半导体技术.26(8),pp.1-5,2001
    2.姚燕生,沈健,吕召全.微机电系统在当代医学上的应用.医疗设备信息.No.2,pp.28-31,2002
    3.陈寅,林良明,高立明等.微机电系统在医疗领域中的应用.医疗卫生设备.No.1,DD.16-17,1999
    4. Joseph H., Swafford B., Terry S.. Medical applications for MEMS devices. International Symposium on Test and Measurement, Proceedings International Academic Publishers. pp. 399-404, 1997
    5. Lin Liangming, Gao Liming, Yan Guozheng, Rong Rong. A study on the endoscope system driven by squirmy robot. IEEE Int. Conf. Intelligent processing systems, pp75-81, 1997
    6. Dario P., Carroza M. C., Lencioni L, et al. A micro-robotic system for colonoscopy, 1997 IEEE international conference on robotics and automation, Albuquerque(NM), pp. 1567-1572, 1997
    7. Young Mo Lim et al.. A self-propelling endoscopic system. IEEE Int. Conf. Robotics and Automation, pp1117-1122, 2001
    8. Dario P., Carroza M.C., Pietrabissa A. Development and in vitro testing of a miniature robotic system for computer-assisted colonoscopy. Comput Aided surg, No. 4, pp.1-14, 1999
    9.陈寅,林良明,高立明等.微型电子机械系统应用于微型外科手术的研究.中国医疗器械杂志.24(5),pp.283-286,2000
    10. Dario P., Carroza M.C., Bennenutio A., et al. Micro-systems in biomedical applications. J. Micromech. Microeng, No. 10, pp235-244, 2000
    11.程良伦,杨宜民.微型管道机器人.机器人技术与应用.No.4,pp.16-17,1998
    12.张永顺.微型管内机器人的发展现状及展望.制造业自动化.22(12),pp.48-52,2000
    13. Idogaki T. Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine. Proc of MHS'95, Nagoya, Japan, 1995
    14. Zhou YS et al.,A new medical microrobot for minimal invasive surgery, Proceedings of the institution of mechanical engineers Part H-Journal of Engineering in Medicine 2001, Vol. 215, Iss H2, pp215-220.
    15. Zhou YS et al., Noninvasive method to drive medical micro-robot, Chinese Science Bulletin, 2000, Vol. 45(5) ,pp. 617-620.
    16.张秀丽,郑浩峻,陈恳等.机器人仿生学综述.机器人.24(2),pp.188-192,2002
    17.张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程.6(5),pp.26-32,1998
    18.叶至碧.压电陶瓷驱动.电子元件与材料.8(4),pp.1-6,1989
    19. Fukuda Toshio, Kawamoto Atsushi, Arai Fumihito, Matsuura Hideo. Steering mechanism of underwater micro mobile robot. Proceeding of the 1994 IEEE conference on robotics and automation, pp. 814-819, 1994
    20. Fukuda Toshio, Kawamoto Atsushi, Arai Fumihito, Matsuura Hideo. Steering mechanism and swimming experiment of micro mobile robot in water. Proceedings of the IEEE Micro Electro Mechanical Systems. IEEE, Piscataway, NJ, USA, 95CH35754. pp. 300-305, 1995
    21.李勃,吴月华,许旻,杜华生,杨杰.基于压电陶瓷驱动的腹腔手术微型机器人.光学精密工程,2001,9(6),pp.535-538.
    
    
    22.钟映春,谭湘强,杨宜民.泳动微机器人主体机构的设计研究.机床与液压.No.6,pp.18-19,31,2001
    23.钟映春,谭湘强,杨宜民.泳动微机器人主体机构放大性能研究.机械工程师.No.1,pp.63-65,2002
    24. Maeda S., Abe K., Murayama M., Tohyama Osamu. Shape memory alloy actuators and their reliability. Proceedings of The International Society for Optical Engineering(spie), pp.111-118, 2001
    25. Kuribayashi K.,Shimizu S.,Yoshitake M.,el at. Mechanical properties and control of shape memory alloy thin film actuator. Journal of the Japan Society for Precision Engineering, 64(3), pp. 413-417, 1998
    26.杨凯,奉承林.新型SMA驱动技术.机械.27(6),pp.1-3,2000
    27.李明东,马培荪,马建旭等.形状记忆合金驱动器驱动方式研究.机械设计与研究.No.3,pp.29-29,1999
    28.魏中国,彭红樱,杨大智.形状记忆合金传感驱动器件及其在机器人中的应用.机器人.16(4),pp.244-249,1994
    29. Rediniotis Othon K., Lagoudas Dimistris C., Mashio Tomoka, el at. Theoretical and experimental investigations of an active hydrofoil with SMA actuators. Proceedings of The Society of Photo-Optical Instrumentation Engineers(spie), pp. 277-289, 1997
    30. Webb G., Wilson L., Lagoudas D., Rediniotis O. Adaptive control of shape memory alloy actuators for underwater biomimetic applications. AIAA Journal, 38 (2), pp. 325-334, 2000
    31. L.J. Garner, L.N. Wilson, D.C. Lagoudas, O.K. Rediniotis. Development of a shape memory alloy actuated biomimetic vehicle. Smart Mater. Struct, No. 9, 673-683, 2000
    32.贾宇辉,谭久彬,张杰.超磁致伸缩微位移驱动器的研究.微细加工技术.No.2,pp.70-74,2000
    33.张秀丽.磁致伸缩薄膜和驱动器.光机电信息.13(4),pp.21-24,1996
    34. Claeyssen Frank, Lhermet Nicolas, Grosso Gilles. Giant magnetostrictive alloy actuators. Journal of Applied Electromagnetics in Materials, 5(1), pp. 67-73, 1994
    35. Yang Xing, Jia Zhenyuan, Guo Dongming, el at. Theoretical analysis and experimental research on driving magnetic field in giant magnetostrictive actuator. Journal of Dalian University of Technology, 41 (5), pp. 578-580, 2001
    36. Quandt E., Ludwig A., Seemann K. Giant magnetostrictive multilayers for thin film actuators. International Conference on Solid-State Sensors and Actuators, IEEE, pp. 1089-1092, 1997
    37.鲍芳,李继容,王春茹.磁致伸缩器件及其应用研究.传感技术.20(8),pp.1-3,2001
    38.李文卓,赵万生,詹涵箐,吴湘.压电/电致伸缩材料及驱动器的新技术与应用.压电与声光.28(4),pp.260-264,2001
    39.张永顺,贾振元,丁凡等.外磁场驱动无缆微型机器人行走特性的分析.机械工程学报.39(6),pp.135-139,2003
    40.张秀丽.磁致伸缩薄膜和微驱动器.光机电信息.13(4),pp.21-24,1996
    41. Kanno R., Kurata A., Hattori M., Tadokoro S., et al. Characteristic and Modeling of ICPF Actuator-2nd Report: Frequency Characteristics. Proceeding of JSME Annual Conference on Robotics and Mechatronics(ROBOMEC'94), Kobe, Japan, pp. 1206-1209, 1994
    42. Oguro K., Fujiwara N., Asaka K, el at. Polymer electrolyte actuator with gold electrode. In Proc. Of the SPIE Conf. on Electroactive Polymer Actuator and Devices, Newport Beach, California, V. 3669, pp. 64-71, 1999
    43. Shahinpoor M.. Electro-mechanics of iono-elastic beam as electrically-
    
    controllable artificial muscles. Smart materials and structures conference, Newport Beach, california, 3669(12), 1999
    44. Shahinpoor M., Bar-Cohen Y., Simpson J. O., et al. Ionic polymer-metal composites (ipmcs) as biomimetic sensor, actuator and artificial muscles a review. Smart materials and structures, No. 7, pp. 15-30, 1998
    45. Shuxiang Guo, Kazuaki Wakabayashi, Norihiko Kato, et ah An artificial fish robot using ICPF actuator. IEEE1997 International symposium on micromechatronics and human science, pp. 205-210,1997
    46. Mojarrad Mehran, Shahinpoor Mohsen. Noiseless propulsion for swimming robotic structures using polyelectrolyte ion-exchange membrane. Proceedings of society of photo-optical Instrumentation Enginedrs, Bellingham, WA, USA, pp. 183-192, 1996
    47. Shuxiang Guo, Kinji ASAKA. Development of Underwater Microrobot and New Type of Micropumps Using ICPF Actuator. ICRA02 Workshop, USA, pp. 1829-1831, 2002
    48. Guo S., Fukuda T., Kato N., Oguro R. Development of underwater microrobot using ICPF actuator. IEEE Int. Conf. Robotics and Automation, pp. 1829-1834, 1998
    49. Guillaume Laurent, Emmanuel Plat. Efficiency of swimming microrobots using ionic polymer metal composite actuators. Proceeding of the 2001 IEEE international conference on robotics and automation, pp. 3914-3919, 2001
    50. Ueno S.,Iwasaka M.,Tsuda H.. Effects of magnetic fields on fibrin polymerization and fibrinolysis. IEEE Transactions on Magnetics, 29 (6), pp, 3352-3354 , 1993
    51. Fujiwara M., Mori W., Yamaguchi K.. Molecular design of ferromagnetic and ferrimagnetic inorganic polymers.. International Conference on Science and Technology of Synthetic Metals, ICSM '94. pp53-53, 1994
    52. Tharaldson D., Masi J.. Organic magnetic materials: preparation and properties. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, Cincinnati, OH USA, pp. 513-514, 2001
    53. Lebourgeois R., Ganne J. P., Peyresoubes G., et al. Analysis of radiofrequency power losses of ferromagnetic composite materials. IEEE International Magnetics Conference, INTER/tAG Europe 2002, Digest of Technical Papers FDIO, 2002
    54.梅涛,陈永,张培强,伍小平.铁磁橡胶执行器与微型游泳机器人的尺寸效应.光学精密工程.9(6),pp.523-526,2001
    55. Chen Y, Mei T,Kong DY, Xiong XY, Li K. Magnetic driving principle of a swimming microrobot. Proceedings of the society of photo-optical instrumentation engineers (spie), pp. 222-225, 2001
    56. Tao Mei, Yong Chen, Guoqiang Fu, Deyi Kong. Wireless drive and control of a swimming microrobot. Proceeding of the 2002 IEEE international conference on robotic and automation, Washington, PC, pp. 1131-1136, 2002
    57. Osada Y., Okuzaki H., Hori H.. A Polymer Gel with Electrically Driven Motility. Nature, Vol. 355, pp. 242-244, 1992
    58. Osada Y., Okuzaki H., Gong J. P., et al. Electro-Driven Gel Motility on the Base of Cooperative Molecular Assembly Reaction. Polym. Sci., Vol. 36, pp. 340-351, 1994
    59. Otake M., Inaba M., Inoue H.. Kinematics of gel robots made of electro-active polymer PAMPS gel. IEEE International Conference on Robotics and Automation, ICRA '00, V. 2, pp. 788-793, 2000
    60. Otake M., Inaba M., Inoue H.. Development of a gel robot made of electro-active polymer PAMPS gel. IEEE International Conference on Systems, Man, and Cybernetics, SMC '99, V. 2, pp. 788-793, 1999
    61. Otake M., Kagami Y., Inaba M, Hirochika Inoue. Motion design of a starfish-shaped Rel robot made of electro-active polymer gel. Robotics and Autonomous Systems,
    
    Vol. 40, pp. 185-191, 2002
    62. Majarrad M.,Shahinpoor M.. Biomimetic Robot Propulsion Using Polymer Artificial Muscles. Proceeding of the 1997 IEEE international conference on Robotics and Automation, pp. 2152-2157, 1997
    63. Ikeuchi K., Yoshinaka K., Hashimoto S., et al. Locomotion of medical micro robot with spiral ribs using mucus. Micro Machine and Human Science, 1996, Proceedings of the Seventh International Symposium, pp217-222, 1996
    64. Ishiyama K., Arai K. I., Sendoh M., et al.. Spiral-type micro-machine for medical applications. Proceedings of 2000 International Symposium on Micromechatronics and Human Science, MHS 2000, pp. 65-69, 2000
    65. Honda T., Arai K. I., Ishiyama K.. Micro swimming mechanisms propelled by external magnetic fields. 1996 IEEE transactions on magnetics, 32(5), pp. 5085-5087, 1996
    66. Sendoh M., Ajiro N., Ishiyama K, et al. Effect of machine shape on swimming properties of the spiral-type magnetic micro-machine. 1999 IEEE transactions on magnetics, 35(5), pp. 3688-3690, 1999
    67. IshiyamaK., Sendoh M., Yamazaki A., et al. Swimming of magnetic micro-machines under a very wide-range of Reynolds number conditions. 2001 IEEE transactions on magnetics, 37(4), pp. 2868-2870, 2001
    68.谭湘强,钟映春,杨宜民.液体中泳动微机器人的现状与分析.机器人.23(5),pp.467-470,2001
    69.张永顺.微型管内机器人的发展现状与展望.制造业自动化.22(12),pp.48-52,2000
    70.章亚男 米智楠.管道微机器人技术的现状与趋势.2000,17(10).-1-4
    71.杨宜民,张绍裘.微型驱动器及微型机器人的研究与开发.高技术通讯.1(4),pp.5-7,1991
    72.周银生,李立新,顾大强等.一种新型的微型机器人.机械工程学报.37(1),pp.11-13,2001
    73.杨志欣,孙宝元,董维杰等.微机器人关键技术及应用.机床与液压.No.6,pp.3-6,2002
    74.彭冬亮,吴铁军.微型机器人的模型及研究方向.科技通报.19(1).pp.6-9,2003
    75.龚涛,蔡自兴.未知远程环境下移动机器人导航的并行进化模型.机器人,25(3),pp.193-197,2003
    76.蔡自兴,贺汉根.未知环境移动机器人导航控制研究的若干问题.控制与决策.17(4),pp.385-390,2002
    77.马建旭,王立鼎.微电子机械系统在生物医学领域中的应用.光学精密工程.4(1),pp.1-6,1996
    78. Edwin W.H. Jager, Olle Ingans, Ingemar Lundstrm. Microrobots for micrometer -size objects in aqueous media :potential tools for single-cell manipulation. Nature, No. 288, pp. 2335-2338, 2000
    79.彭子明,李丽.纳米医学与医疗器械.世界医疗器械,2001年5月
    80.刘林森.神通广大的微型机器人.大众科技报,1999年12月16日 第40期
    81.刘军考,陈在礼,陈维山,王力刚.水下机器人新型仿鱼鳍推进器.机器人,2000,22(5),pp.427-432.
    82.梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展Ⅰ-Ⅳ.机器人,2002,24(2-5)
    83. Kato N., Furushima M.. Pectoral fin model for maneuver of underwater vehicles. Proceedings of the 1996 Symposium onAutonomous Underwater Vehicle Technology, AUV '96., pp. 49-56, 1996
    84. Guo S., Kato N., Fukuda, T., et al. A fish microrobot using ICPF actuator. 1998 5th International Workshop on Advanced Motion Control. AMC '98-Coimbra., pp. 592-597, 1998
    85. Newman J.N.. The force on a slender fish-like body. J. Fluid Mecha., 58(4),
    
    689, 1973
    86. Lighthill M.J.. Large-amplitude enlongated-body theory of fish locomotion. Proc. R. Soc., B 179, 125, 1972
    87. Lighthill M.J.. Annu. Rev. Fluid Mech. No.1, 413, 1969
    88. Sfakiotakis M., Lane D.M., Davies J.B.C.. Review of Fish Swimming Modes for Aquatic Locomotion. IEEE Journal of Oceanic Engineering, 24(2), pp. 237-252, 1999
    89. Drucker E.G., Lauder G.V.. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. Journal of experimental biology (ENGLAND) 203 Pt 16, pp. 2379-93, 2000
    90. Pedley T.J., Hill S.J.. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics. Journal of experimental biology (ENGLAND) 202 Pt 23, pp. 3431-3438, 1999
    91. Wakeling J.M.. Biomechanics of fast-start swimming in fish. Comparative Biochemistry and Physiology, Part A 131, pp. 31-40, 2001
    92. Behlke C.E.. Hydraulic effects on swimming fish in fish passage structures. Proc Natl Conf Hydraul Eng. Publ by ASCE, New York, NY, USA, pp. 1116-1121, 1988
    93. Bandyopadhyay P.R.. Maneuvering hydrodynamics of fish and small underwater vehicles. Integrative And Comparative Biology, 42(1), pp. 102-117, 2002
    94. Wu T.Y.. Hydromechanics of swimming propulsion. Part Ⅰ. Swimming of a two-dimensional flexible plate at variable forward speed in an inviscid fluid. J. Fluid Mech, 46(2), 337, 1971
    95. Wu T.Y.. Hydromechanics of swimming propulsion. Part Ⅱ. Some optimal shape problems. J. Fluid Mech, 46(3), 521, 1971
    96. Wu T.Y.. Hydromechanics of swimming propulsion. Part Ⅲ. Swimming and optimum movements of slender fish with side fins. J. Fluid Mech, 46(3), 545, 1971
    97. Wu T.Y.. Mathematical biofluiddynamics and mechanophysiology of fish locomotion. Mathematical Methods In The Applied Sciences, 24(17-18), pp. 1541-1564, 2001
    98.吴耀祖.水波动力学研究进展.力学进展.30(3),pp.327-343,2001
    99. Jian Yu Cheng, Li Xian Zhuang, Bing Gang Tong. Analysis of swimming three-dimensional waving plates. J. Fluid Mech, VOL. 232, pp. 341-355, 1991
    100.程健宇,庄礼贤,童秉纲.波动薄板游动的展向变形作用和壁面效应.中国科学技术大学学报,21(4),pp.423-427,1991
    101.程健宇,庄礼贤,童秉纲.三维变幅波板的游动.水动力学研究与进展,No.6(增),pp.1-11,1991
    102.童秉纲,王安平.三维波动板加速运动的推进性能研究.空气动力学学报.9(3),pp.285-293,1991
    103.庄礼贤,童秉纲,程健宇.鱼类波状摆动推进的流体力学研究.力学与实践.13(3),pp.17-26,1991
    104.童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志,20(1),pp.1-7,1998
    105.童秉纲.鱼类波状游动的推进机制.力学与实践.22(3),pp.69-74,2000
    106. Liu H., Kawachi K.. A numerial study of undulatory swimming. Journal of computational physics, Vol.155, pp. 223-247, 1999.
    107. Liu H., Wassersug R.J., Kawachi K.. The three dimensional hydrodynamics of tadpole locomotion. J. exp. Biol., Vol. 200, pp. 2807-2819, 1997
    108. Liu H., Wassersug R. J., Kawachi K.. A computational fluid dynamic study of tadpole swimming. J. exp. Biol., Vol.199, pp. 1245-1260, 1996
    109. Doherty P.A., Wassersug R.J., Lee J.M.. Mechanical properties of the tadpole tail fin. J. exp. Bio., Vol. 201, pp. 2691-2699, 1998
    110. Oxner W.M., Quinn J., DeMont M. E.. A mathematical model of body kinematics
    
    in swimming tadpoles. Can. J. Zool., Vol. 71, pp. 407-413, 1993
    111. Karin V.H., Richard J.W.. Tadpole locomotion: axial movement and tail functions in a largely vertebraeless vertebrate. AMER. Zool., Vol. 40, pp. 62-76, 2000
    112. Gleen R.F., David F.K., Robert L.P.. Swimming of spermatozoa in a linear viscoelastic fluid. Biorheology 35(45), pp. 295-309, 1998
    113.张锐,吴成东.机器人智能控制研究进展.沈阳建筑工程学院学报:自然科学版.19(1),pp.61-64,2003
    114.李庆中 顾伟康,移动机器人模糊控制方法研究.仪器仪表学报,23(5),pp.480-483,2002
    115.房海蓉 李昆.基于神经网络的机器人智能控制.机器人技术与应用.No.4,pp.28-32,2002
    116.王洪斌 吴健珍.不确定性机器人的自适应跟踪控制.基础自动化,9(2),pp.21-23,2002
    117.王耀南 孙炜.基于模糊神经网络的机器人自学习控制.电机与控制学报.5(2),pp.92-94,2001
    118.隋清 鲁逾.基于专家系统的机器人PID控制.模式识别与人工智能.7(1),pp.7-14,1994
    119. Calin M., Chaillet N., Bourjault A., et al. Design and control of compliant microrobots. 1996 IEEE Conference on Emerging Technologies and Factory Automation, No. 2, pp. 489-492, 1996
    120. Fatikow S., Wohlke G.. A neuro-fuzzy control approach for intelligent microrobots. International Conference on Systems, Man and Cybernetics, 'Systems Engineering in the Service of Humans', pp. 441-446, 1993
    121. Khamesee M.B., Kato N., Nomura Y., et al. Performance improvement of a magnetically levitated microrobot using an adaptive control. International Conference on MEMS, NANO and Smart Systems, pp. 332-338, 2003
    122. Karoly Santa, Sergej Fatikow, Gabor Felso. Control of microassembly-robots by using fuzzy-logic and neural networks. Computers in Industry, No. 39, pp. 217-219, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700