侧壁喷液的旋流吸收器内吸收过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体吸收在化工生产中有广泛地应用。传统的气液吸收设备结构复杂、造价高,而新型的旋转填料床又存在能耗较高、运动可靠性与稳定性等方面的限制,降低建设投资,发展简单、可靠的气液吸收设备的呼声很高。旋流器因结构简单、维护方便及投资成本较低,在离心沉降分离方面得到了广泛地研究和应用。实际上,旋流器中具有强化传递过程的流体力学环境,故可探索将旋流器应用于气液吸收过程。
     利用CFD软件对旋流场中的单相及两相流场进行了仿真研究。通过间接验证的方法,得到了本论文中旋流吸收器的流场模拟的比较合适的方案。CFD仿真的结果表明,在旋流场中,径向与轴向的速度的量级,相比于切向是较小的,且旋流场中的三个方向存在着速度梯度。旋流场内两相在径向方向存在相对速度,且相对速度随着流量的增加而增加,相对速度的存在对于加强两相接触作用,强化传质是有利的;而切向和轴向的相对速度在普通的旋流器中较小。此外,模拟结果还说明了本论文所研制的旋流吸收试验装置由于在侧壁进液,增大了轴向的相对速度,从而能够更好地增强旋流吸收器的传质效果,但是从两相的体积率的分布来看,尚需探索实际应用中的喷嘴的安装位置。
     对旋流场中分散相动力学特性进行了研究。在分析了诸多力对分散相运动的影响的基础上,建立了分散相径向运动方程以及旋流场中两相的相对运动方程。从分散相径向运动方程出发,得到了分散相径向速度在旋流器半径上的分布和解析解,并由此得到分散相径向运动特性时间t r。相对运动方程的求解结果与CFD模拟的结果一致,且切向和轴向的相对速度随着时间呈指数衰减。根据两相在轴向相对运动的无滑移条件,得到了分散相在轴向的运动特性时间t z;此外,将轴向无滑移条件与分散相径向速度的分布相联系,得到分散相的轨迹方程。而轨迹方程和分散相的运动特性时间,可计算旋流器的工作效率和指导旋流器的开发设计。
     应用量纲分析的方法,对旋流场中的应力进行了分析,并由此对分散相颗粒的变形和破碎进行了研究。量纲分析的结果表明:在湍流区域中,雷诺应力在量级上是粘性应力的倍数,且此倍数即为雷诺数,主要引起颗粒的破碎;而在其他区域,分散相颗粒则主要是变形和聚结,其中起主要作用的是粘性剪切应力,而在粘性剪切应力中起重要作用的则是旋流器中切向和径向剪切应力。在此基础上,推导得到了粘性剪切应力和湍动能引起液滴破碎的临界条件;通过韦伯数与相对速度的关系,得到了一定流量条件下,分散相液滴在特定区域中发生变形、破碎的情况。
     在流场仿真和理论分析的基础上,阐释了旋流吸收器中气液传质过程的特点。旋流场中不仅相对速度的存在强化了气液传质的过程,而且由于存在着速度梯度,增大了湍流扩散系数,并且产生了远强于湍流扩散的剪切弥散,从而极大地增强了旋流吸收器的传质能力。
     从对流传质方程出发,基于旋流场中分散相不同的运动形态,建立了旋流吸收器中伴有化学反应的气液吸收传质模型。该模型与Danckwerts的表面更新模型在表达形式上是完全一致的,并且克服了前人由于只考虑稳态的扩散传质,没考虑对流和非稳态传质而使模型具有的局限性。但该模型的计算需要测定一些特定的物理量,在应用上受到了限制。
     根据传质和湍流的相关理论,建立了基于旋流场中涡旋作用的气液吸收传质模型。该模型相比于其他模型,相关参数主要涉及到一些可控可测的操作、物性及结构等宏观方面的参数,计算简单,意义明确。从其相关参数的确定过程还可以看出,该模型还可推广应用于一般的自由界面的气液传质过程。
     由传质系数模型可得到扩散时间t D的关联式,根据旋流吸收器中t D << tr<     设计了能够测定和计算出表征旋流吸收器中吸收特性参数的试验方法,研制了试验用的旋流吸收试验装置,搭建了整个试验系统以及相应的取样、分析测试设备。在此基础上,分别考察了处理量、液气比、气相分压、液滴的粒度以及结构参数对吸收过程的影响。
     试验结果表明,在本试验条件下,旋流吸收器的吸收速率与处理量、液气比、气相分压成正比,随液滴的粒度的下降而增大,但是如果液滴的粒度过小,由于表面张力的影响,反而可能不利于吸收速率的增加。
     测定和计算出的旋流吸收器的比相界面积与气相分压无关,可通过增大处理量、吸收剂量及减小液滴粒度的方法获得较大的比相界面积,但这三种方法都有所限制;结构尺寸较小的旋流吸收器较易获得较高的比相界面积。与文献中的其他吸收设备相比较,旋流吸收器的比相界面积的值居于前列。
     测定计算的吸收效率表明,在本试验条件下,旋流吸收器的吸收效率与液气比、处理量及液滴的粒度有关,而与气相分压无关,不过这可能与本试验的气相分压变化的幅度不大所致。
     根据试验数据计算得到的旋流吸收器的液相物理传质系数表明其值随气体处理量的增大而增大,与液滴的粒度及气相分压无关,在吸收剂量所占气液两相中的比例较低时,随着液气比的上升而下降。此结论不仅与Kolmogorov理论相一致,即能量耗散速度是湍流场中除物性以外,对扩散速率唯一的影响因素,而且与所建立的两个气液传质模型的理论结果吻合得相当好,说明所建立的气液传质模型有很好地应用性。
     理论探讨了温度对传质过程的影响,温度对于物理吸收过程的气相与液相的传质分系数的影响是不同的。而对于化学吸收过程,在一定温度范围内传质效果随温度的升高而升高;当高出这个温度范围的时候,温度的升高反而不利于吸收传质过程。计算了本试验条件下的各种热效应,最终证明了旋流器中的吸收试验基本上是等温的试验过程。最后建立的能量方程,可以更全面地表达试验过程中温度的变化。
     对旋流场及分散相运动特性的理论研究结果表明,旋流器中具有强化气液传质的特性,而比相界面积、传质系数以及扩散时间的试验结果也证明了旋流吸收器作为一种气液传质设备的应用可行性,如果再考虑其制造安装简单、维护方便等特点,且同时具有传递—分离一体化的效果,因而对它的推广应用具有实际的意义。
The gas absorption has wider application in chemical production. Because of complex structure and high cost of traditional gas-liquid absorption equipment, while RPB (Rotating Packed Bed) as late model equipment for absorption is restricted for its high energy consumption and reliability stability of motion, reducing construction investment and developing easy and reliable equipment for gas-liquid absorption become more and more important. However, for simple structure、maintenance-friendly and the low cost of investment, cyclone has been widely researched and applied in centrifugal action separation field. Actually, there is hydromechanics environment in which transfer process can be strengthened.
     Simulation study for the single phase and multiphase flow in cyclone absorber was set forth by the Computational Fluid Dynamics(CFD)software. Through indirect methods of verification, the suitable scheme was received for CFD in the cyclone absorber in this present. The order of magnitude of tangential speed is larger than those of radial and axial speed, and there is the grade of velocity in swirling flow field from the result of CFD, in line with the description of related literature. It was verdicted that there be relative speed of radial of two phases which can strengthen the contact of two phases and is in favor of mass transfer, with the increased handling capacity、tangential relative speed and axial relative speed which are comparatively small. Besides, Because of entering the liquid on side wall, the axial relative velocity is augmented in the cyclone absorber manufactured in this work from the result of CFD, whereas it is needed that looking for a more sutitable situation for nozzle from the distributing of volume fraction of two phases.
     Through the dynamics analysis of dispersed phase in swirling flow field, the radial motion equation of particles and relative motion equations of two phases have been derived on the basis of the analysis of force. From the dispersed phase radial motion equation, the distribution of the radial velocity of dispersed phase particles to radius in cyclone and its analytic solution were obtained, furthermore , as a result, the radial motion time of particles t r in swirling flow field gained. Moreover, the relative speed of radial of two phases is consistent with that of CFD in this present, while tangential relative speed and axial relative speed have exponential decay with time according to relative motion equations of two phases. Under the condition of no slip between two phases in axial movement, the axial motion time of dispersed phase t zwas derived, and the trajectory equation of particles was established in relate to the distribution of the radial velocity of dispersed phase particles to radius, which could be used to count work efficiency of cyclone and be used for design of cyclone and its development.
     From the application of dimensional analysis method, stress in swirling flow field was analyzed, leading to the investigation into distortion and breakage of particles. According to the results of dimensional analysis, the conclusion is that Reynolds stress is larger than viscosity stress in turbulent flow, and the multiple is the Reynolds number, which induces into breakage of particles. In other regions,what can happen to the dispersed phase pellet mainly is distortion and coalescence, which plays the leading role is in cyclone viscosity sheering force, in which the most important part are tangential and radial viscosity sheering force. Based on this, critical condition for the breakage of particles under viscosity sheering force and turbulent energy was deuced. Through the relationship between Weber number and the relative speed, situation of distortion or breakage of dispersed phase particles in region-specific could be comprehended under the specific handling capacity.
     On CFD and theoretical analysis foundation, the peculiarities of mass transfer in cyclone absorber were set forth. The gas-liquid absorption process was intensified not only by the relative speed in cyclone, but also the grade of velocity in swirling flow field, owing to which, turbulent diffuse coefficient and dispersion coefficient that is much larger than diffuse coefficient in turbulent flow come into being in cyclone, intensifying the swirling flow field to aggrandize mass transfer enormously.
     A mathematic model of gas-liquid absorption and mass transfer with chemical reaction in a cyclone absorber has been established according to different dynamical characteristics of the dispersed phases in swirling flow field based on the species mass-conversation equations in this thesis, which is consistent with the Danckwerts' Surface Renewal Theory. Not only considering the diffusive term and source term, but also the transient and convective term, this model could explain the reaction process in swirling flow field much more exactly. But because the model's computation needs to determine some specific physical quantities, it is restricted for application.
     According to the theory of mass transfer for gas-liquid and turbulence, established based on vortex has been suitable for gas-liquid absorption in cyclone absorber mass transfer model. The model compared to other models, parameters mainly were related to some measurable and controlled parameters about operation、nature and structure in macro aspects, so its computation is simple and its significance is clear. From the process of making sure the relevant parameters, the model can also be applied to the general freedom of the interface of gas-liquid mass transfer.
     By the mass transfer coefficient model, the correlation of diffusion time t D was available. On the base of the demand for t D << tr<     The absorption test method has been designed that could notify the characteristic parameters of cyclone absorption. And two set of testing installment were manufactured, correspondingly, the sampling and the analysis of test instrument were structured. Based on this,the experiment was carried through, in which the handling capacity、the ratio of liquid/gas、differential pressure of gas and size of droplets along with configuration parameter were reviewed.
     The result of experiment proved that the rate of mass transfer augment with the handling capacity and the ratio of liquid/gas & differential pressure of gas, but it will decrease if the size of droplets is larger, however, this relationship is bound by the interval. But, if the size of droplets is extremly small, because of the enfluence of surface tense, conversely, it will take disadvantage of the rate of mass transfer.
     The interfacial surface per volume determined and calculated is related to the handling capacity、the ratio of liquid/gas and size of droplets, having nothing to do with differential pressure of gas, which has larger value in smaller cyclone absorber, compared to the other absorption equipment in the literature, the value of cyclone absorber living in the area of the forefront.
     The efficiency of absorption accounted in terms of test shows that it is related to the ratio of liquid/gas and the handling capacity and the size of droplets, independent of differential pressure of gas under this test condition, which perhaps is related to limited change range of differential pressure.
     According to test data calculated on the mass transfer coefficient in liquid side, it arised with the value of the increased handling capacity, however, the size of droplets and gas pressure were not related to that and it decreased with the increased ratio of liquid/gas if the ration of liquid/gas is just small. The conclusion not only is consistent with Kolmogorov theory that the mass transfer coefficient is only regarding on energy aerodynamic speed besides the nature, but also tallies with the two models established in this work, which indicates that the models established in this work have utility just well.
     The influence of temperature on mass transfer has been discussed by theory, and it was pointed out that there was different result between mass transfer coefficient in gas side and liquid side with temperature. For chemical absorption, the mass transfer efficiency elevates in certain temperature range along with the temperature arising, but the temperature would not be favor of absorption process forever. Has been calculated under this test condition each thermal reaction, finally it was proven that this experiment basically is the isothermal testing. The energy equation establishment in the end can express incomprehensively the temperature change in test.
     It could be concluded that there is a friendly envirmonent for gas-liquid transfer in a cyclone, moreover, the result of interfacial surface per volume、mass transfer coefficient and diffusion time confirmed that there is feasiablity for cyclone as a gas-liquid absorption equipment. If considering the simple strructure and maintenance-friendly of a cyclone, besides , it has coherently transfer-seipartion effect, therefore, there is actual meaning for prevail and application of a cyclone.
引文
[1]涂晋林,吴志泉.化学工业中的吸收操作[M].上海:华东理工大学出版社,1994,12:1,46-48,148
    [2]朴香兰,朱慎林.环境工程中的均相分离技术与应用[M].北京:化学工业出版社,2004.6:235
    [3]计建炳,谭天恩.我国塔器技术的发展[J].化工进展,2000,19(6):51-58
    [4]李春利,王志英,李柏春,等.板塔技术最新进展和研究展望[J].河北工业大学学报,2002,31(1):20-26
    [5]孙东升.填料塔分离技术新进展[J].化工进展,2002,21(10):769-733
    [6]徐孝明,周青,沈复.国外气液传质设备的一些发展趋势[J].化工进展,1994,13(1):22-29
    [7]宋云华,初广文,陈建铭,等.气液传质及反应装置研究进展[J].化工进展,2003,22(8):841-845
    [8]陈建峰.超重力技术及应用[M].北京:化学工业出版社.2002,7:1-3,13-30
    [9]杨村,冯武文,刘纬,等.超重力传质技术及其应用[J].精细与专用化学品,2001(9):42-44
    [10]赵晓曦,邓先和,潘朝群,等.超重力技术及其在环保中的应用[J].化工环保,2002,22(3):142-146
    [11]Smelser S C. Selective Acid Gas Removal Using the HIGEE Absorber[C].IN:Fowler R eds.Proc.of AIChE Spring Meeting.Orlando,Florida.1990,3,18-22
    [12]徐春艳,刘承斌,施力田,等.旋转床填料内径向温度分布实验分析[J].北京化工大学学报,2005,32(3):23-27
    [13]郭奋,赵永华,陈建峰,等.旋转床填料内支撑对气膜控制传质过程的影响[J].高校化学工程学报,2002,16(3):340-344
    [14]杨海健,陈建峰,初文广.旋转填充床微观混合的沿程实验研究[J].北京化工大学学报,2007,34(4):363-366
    [15]邹海魁,邵磊,陈建峰.超重力技术进展—从实验室到工业化[J].化工学报,2006,57(8):1810-1816
    [16]郭奋,张纪尧,郭锴,等.旋转填充床的流体力学特性与传递过程的理论研究进展[J].化学通报,2003,(9):587-591
    [17]冷继斌,于召洋,李振虎,等.超重力氧化还原法用于天然气脱硫的探索性研究[J].化工进展,2007,26(7):1023-1027
    [18]宋云华,陈建铭,付纪文,等.旋转填充床除尘技术的研究[J].化工进展,2003,22(5):498-501
    [19]于召洋,李振虎,张文胜,等.旋转填充床脱除空气中水的研究[J].石油化工,2007,36(5):472-474
    [20]陈建铭,宋云华.用超重力技术进行锅炉给水脱氧[J].化工进展,2002,21(6):414-416
    [21]金沙杨,李振虎,戴伟,等.旋转填充床脱除裂解气中酸性气体的冷模实验[J].石油化工,2006,35(5):452-457
    [22]梁继国,陈建峰.旋转填充床内微观混合的数值模拟[J].化工学报,2004,55(6):882-885
    [23]竺洁松,郭锴,冯元鼎,等.旋转填充床中的传质及其模型化[J].高校化学工程学报,1998,12(3):219-225
    [24]许明,张建文,陈建峰,等.超重力旋转床中水脱氧过程的模型化研究[J].高校化学工程学报,2005,19(3):309-314
    [25]许明,张建文,沈志刚,等.超重力旋转床中气液两相流动与传质过程的数值模拟[J].北京化工大学学报,2004,31(5):30-35
    [26]邓先和,黄恩铭,邓颂九.气体轴流型旋转填料床气液传热传质.实验装置[p].中国专利:l97212054.1997-8-18
    [27]简弃非,邓先和,邓领九.超重力旋转床中的传质研究[J].化工进展,1996,15(6):6-11
    [28]陈海辉,简弃非,邓先和.化学吸收法测定旋转填料床有效相界面积[J].华南理工大学学报(自然科学版),1999,27(7):32-38
    [29]胡孝勇,吴元欣.旋转填充床有效比相界面积的研究[J]化工科技,2003,11(2):12-14
    [30]陈海辉,邓先和,张建军.张亚君化学吸收法测定多级离心雾化旋转填料床有效相界面积及体积传质系数[J].化学反应工程与工艺,1999,15(3):91-97
    [31]陈海辉,邓先和,简弃非.同心环碟片填料旋转床气相压降实验研究[J].华南理工大学学报(自然科学版),1999,27(3):66-72
    [32]简弃非,邓先和,张亚君,等.超重力旋转床片状填料间距对气相阻力的影响[J].化工学报,2000,51(3):429-433
    [33]简弃非,邓先和,张亚君.低阻高效同心环碟片填料旋转床流阻和传质特性研究[J].硫酸工业,2000,34(5):11-17
    [34]潘朝群,邓先和,赵晓曦,等.错流型超重力旋转床中液滴的运动及二维建模[J].华南理工大学学报(自然科学版),2002,30(4):65-68
    [35]潘朝群,邓先和.错流型超重力旋转填料床中液滴的运动模型[J].化工学报,2003,54(7):918-922
    [36]潘朝群,张亚君,邓先和,等.多级雾化超重力旋转床中气液传质实验研究[J].华南理工大学学报(自然科学版),2006,34(3):67-71
    [37]潘朝群,邓先和,张亚君.多级雾化超重力旋转床中气液间的传热[J].化工学报,2005,56(3):429-433
    [38]潘朝群,邓先和,李志武.多级雾化超重力旋转床中液滴运动及三维模型[J].华南理工大学学报(自然科学版),2006,30(7):45-49
    [39]陈海辉.逆流型旋转填料床的液泛实验研究[J].青岛科技大学学报,2004,25(3):228-231
    [40]栗继宏,栗秀萍,刘有智.旋转填料床传质性能研究[J].华北工学院学报,2005,26(1):42-45
    [41]谢国勇,柳来栓,刘有智,等.旋转填料床气相压降研究进展[J].煤化工,2001,94(1):24-27
    [42]喻华兵,刘有智,石竞竞.旋转填料床最新研究进展[J].化学工业与工程技术,2005,26(1):45-47
    [43]李鹏,刘有智,李裕,等.超重力技术治理火炸药行业氮氧化物的初步研究[J].环境污染与防治,2007,29(7):544-547
    [44]张艳辉,柳来栓,刘有智.超重力旋转床用于烟气除尘的实验研究[J].环境工程,2003,21(6):42-45
    [45]柳来栓,张艳辉,刘有智.旋转填充床技术用于烟气脱硫试验研究[J].应用基础与工程科学学报,2001,9(2-3):292-296
    [46]张艳辉,欧阳朝斌,刘有智.旋转填料床技术烟气脱硫试验研究[J].华北工学院学报,2004,25(2):121-124
    [47]李鹏,刘有智,李裕,等.旋转填料床治理氮氧化物废气的研究[J].化工科技,2007,15(1):64-67
    [48]李鹏,刘有智,李裕,等.用旋转填料床治理火炸药厂的氮氧化物尾气[J].火炸药学报,2007,30(1):67-70
    [49]柳来栓,谢国勇,刘有智.旋转填料床处理含氨废水实验研究[J].华北工学院学报,2002,23(3):222-225
    [50]刘有智,刘振河,康荣灿,等.旋转填料床脱除醛树脂中游离甲醛的应用研究[J].中国粘胶剂,2006,15(12):46-49
    [51]喻华兵,刘有智,栗秀萍,等.旋转填料床精馏过程流体力学性能研究[J].化学工业与工程技术,2006,27(2):24-26
    [52]栗秀萍,刘有智,刘连杰.精馏过程中转子对旋转填料床传质性能的影响[J].化工进展,2005,24(3):303-307
    [53]栗秀萍,刘有智,杨明.蒸馏过程中旋转填料床的传质和流体力学特性[J].过程工程学报,2005,5(4):375-378
    [54]刘振河,刘有智,焦纬洲,等.错流旋转填料床气相压降的研究[J].化学反应工程与工程,2006,22(5):451-456
    [55]刘有智,刘振河,康荣灿,等.错流旋转填料床气相压降特性[J].化工学报,2007,58(4):869-874
    [56]焦纬洲,刘有智,刁金祥,等.多孔波纹板错流旋转床的传质性能[J].化工进展,2006,25(2):209-212
    [57]刘有智,焦纬洲,刁金祥,等.多孔波纹板错流旋转床的性能研究[J].化学工程,2006,34(8):9-12
    [58]焦纬洲,刘有智,刁金祥,等.多孔波纹板错流旋转床流体力学性能研究[J].化工进展,2005,24(10):1162-1166
    [59]祁贵生,刘有智,杨利锐.撞击流-旋转填料床处理含苯酚废水的单级试验研究[J].化学工业与工程技术,2004,25(1):9-12
    [60]刘有智,祁贵生,杨利锐.撞击流-旋转填料床萃取器传质性能研究[J].化工进展,2003,22(10):1108-1111
    [61]霍红,欧阳朝斌,刘有智.撞击流-旋转填料床应用研究[J].化学工业与工程技术,2004,25(1):37-40
    [62]俞云良,计建炳,徐之超.折流式旋转床液相耗能的研究[J].浙江工业大学学报,2006,34(1):56-59
    [63]张心亚,吴元欣,李定或.旋转填充床中SO2与O2同时吸收的扩散-反应模型[J].化工学报,2001,52(11):1021-1025
    [64]张心亚,罗湘华,吴元欣,等.旋转填充床中催化氧化脱硫的试验研究[J].化工环保,2001,21(5):253-258
    [65]张心亚,吴元欣,丁一刚,等.旋转填充床反应器的设计模型[J].武汉化工学院学报,2000,22(4):1-3
    [66]贺国,汪宏伟,A IP.系统丝网填料旋转床功耗研究[J].华中科技大学学报(自然科学版),2005,33(8):16-18
    [67]汪宏伟,贺国,A IP.系统丝网填料旋转床压降特性研究[J].武汉理工大学学报(交通科学与工程版),2005,29(5):731-734
    [68]贺国,汪宏伟.不同填料旋转床功耗与气体压降特性对比研究[J].海军工程大学学报,2007,19(1):39-43
    [69]朱慧铭.超重力场传质过程的研究及其在核潜艇内空气净化中的应用[D].[博士学位论文].天津:天津大学,1991
    [70]万冬梅.超重力技术用于工业尾气脱硫化学吸收过程的研究[D].[博士学位论文].北京:北京工业大学,1995
    [71]陈昭琼,熊双喜,伍权光.螺旋型旋转吸收器(I)[J]化工学报.1995,46(3):388-393
    [72]陈昭琼,童志权.螺旋型旋转吸收器(II)[J]化工学报.1996,47(6):758-763
    [73]陈昭琼,熊双喜,童志权.螺旋型旋转吸收器烟气脱硫[J].环境工程.1996,14(2):21-25
    [74]Sherwood T K,Pigford R L,Wilker C R. Mass Transfer[M].New York:McGraw Hill,1975,125-130
    [75]King C J. Separation Processes[M].2nd.New York:McGraw Hill,1980,1-65
    [76]黄庆民,林齐浩,李启恩.一种用于气液间传质的新型轴流式叶轮[J].高校化学工程学报,1996,10(4):398-402
    [77]杜堂正,李德昌,聂丽华.一种新型曝气设备及其气液传质研究[J].化工进展,2005,24(5):526-531
    [78]胡湘诚.湍冲洗涤器用于气体净化、吸收[J].中国氯碱,2000(2):30-31
    [79]史琳,王文,王鑫,等.新型喷射-吸收式变热器的研究[J].工程热物理学报,2001,22(5):543-546
    [80]吴德荣.吸收装置的优化设计[J].化学工程,1991,19(1):22-27
    [81]李华,陈万仁,刘大壮.液体吸收法脱除烟气中二氧化硫的研究[J].化工环保,2002,22(4):187-192
    [82]Keller G E. Separations:New Directions for an Old Field [C].IN:Smith eds.American Institution of Chemical Engineers Monograph Series.New York: 1987,83
    [83]Samant K D. Systematic Development of Extractive Reaction Process[J].Chem Eng Tec,1999,22(10):877
    [84]Connell J P. Trends in Property Estimation of for Process and Product of Design[C].IN:Singh S P eds.Proceeding of Conference on Foundation of Computer-Aided Process Design,Breckenridge,CO USA,1999:102
    [85]杨云.烟道气的电子束净化技术[J].化工进展,2001,20(10):4-53
    [86]费维扬,王德华,尹晔东.化工分离技术的若干新进展[J].化学工程,2002,30(1):63-67
    [87]成弘,周明,余国琮.强化气液两相传质的研究进展[J].化学进展,2001,13(4):315-323
    [88]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.1:52-56,14-15,105-111
    [89]郭烈锦.两相与多相流动力学[M].西安交通大学出版社,2002,12,340-360
    [90]徐光明,舒朝晖,陈文梅等.液—液水力旋流器中的液滴破碎[J].过虑与分离,2003,13(1):10-14
    [91]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社.2002:1-5,144-147
    [92]Bllor M I G, Ingham D B. in Progress in Filtration and Separation[C],IN:Wakeman R J eds.Houston,1983: 57-147
    [93]梁在潮.工程湍流[M].武汉:华中理工大学出版社.1999,4:260-268,19,26-28
    [94]梁朝林.胺液雾沫脱除系统的改造[J].炼油设计,1997,27(3):20-22
    [95]曾伍兰,王立新,王伟文,等.超细颗粒的旋风除尘[J].环境污染治理技术与设备,2005,6(1):84-86
    [96]辛舟,龚俊,黄建龙.旋流分离技术在黄河泥沙分离中的应用[J].兰州理工大学学报,2004,30(4):67-67
    [97]冯立成.旋流器用于重碱浓缩的应用研究[J].四川大学学报(工程科学版),2000,32(1):45-48
    [98]王跃进,袁惠新,蔡洪浩.旋流分离器用于麸酸洗涤的研究[J].粮油食品与加工机械,2002,(7):39-41
    [99]吕瑞典,李君裕,王远明,等.油井产液除砂旋流器试验研究[J].石油机械,1995,23(6):19-25
    [100]张劲松,赵勇,冯叔初.气-液旋流分离技术综述[J].过滤与分离,2002,12(1):42-45
    [101]特纳温斯基.水力旋流器的分选过程[J].国外金属矿山,1996,(7):45-51
    [102]李明,丁安平,郝向东.拜耳法种分过程旋流分级技术和设备的开发与应用[J].世界有色金属,2002,(11):31-34
    [103]康文泽,吕一波,何志强,等.离心力场中浮选旋流器的流态及浮选性能研究[J].煤炭学报,2001,26(1):101-104
    [104]Gavelin,Backman. Fractionation with Hydrocyclone[C].IN:Mohr R J,eds.TAPPI Pulping Conference,Proceedings,Dallas:1991(3),753-774
    [105]康冠军.水力旋流沉淀器在精对苯二甲酸废水处理中的应用[J].化工环保,2002,22(2):102-105
    [106]陆耀军.油水重力分离设备技术及进展[J].化工进展,2001,20(4):50-53
    [107]Rodrigues M V. Analysis of the Efficiency of a Cloth Cyclone[J].Brazilian Journal of Chemical Engineering,2003,20(4):282-283
    [108]方为茂,钟本和.旋流分离设备新结构进展[J].化工装备技术,1998,19(4):47-52
    [109]黎国华,聂文平.过滤式水力旋流器开发与研究[J].科技创业,2004,15(4):20
    [110]Souza F J. Analysis of the influence of the filtering medium on the behavior of the filtering hydrocyclone[J].Power Technology,2000,107(3):259-267
    [111]Baranow D A. Filter Hydrocyclones[J].Khimicheskoe I Neftyanoe Mashinostroenie,1997,76(6):166-171
    [112]Korn, O. cyclone dryer: A pneumatic dryer with increased solid residencetime[J].Drying Technology,2001,19(8):1925-1937
    [113]陈群涛,徐家兴,王勇.新型高效节能(PVC)旋流干燥装置运行技术总结[J].聚氯乙烯,2003,(2):21-23
    [114]高根树.旋流干燥器[J].化工机械,2004,31(1):55-57
    [115]刘桂华.旋流喷动干燥机[J].染料工业,1996,33(2):48-51
    [116]Akpinar E, Midilli A, Bicer.Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modeling[J].Energy Conversion and Management,2003,44(10):1689-1705
    [117]舒安庆,刘燕,彭鲁,等.旋流闪急干燥器流场分析[J].武汉化工学院学报,2001,23(2):60-62
    [118]Kemp I C, Frnkum D P,Abrahamson,etal. Solids residence time and drying in cyclones[C].IN: Smith K R , eds. Proceedings on the 11th.International Drying Symposium(IDS’98),Halkidiki,Greece,1998,8:581-588
    [119]Correa J L G, Graminho D R,Silva M. A.etal. The cyclonic dryer - a numerical and experimental analysis of the influence of geometry on average particleresidence time[J].Brazilian Journal of Chemical Engineering, 21(1),2004:103-112
    [120]汪国屏,金伟忠.漂粉精采用喷动旋流干燥机的技术应用[J].化工机械,2005,32(6):378-380
    [121]Silva M A, Nebra S A. Numerical simulation of drying in a cyclone[J].Drying Technology, 1997,15(6-8):1731-1741
    [122]Nebra S A, Silva M A, Mujumdar A S. Drying in Cyclones-a Review[J].DryingTechnology,2000,18(3):791-832
    [123]Nag,P K, Gupta, Avssks. Fin heat transfer studies in the cyclone separator of a circulating fluidized bed,Heat Transfer Engineering,1999,20(2):28-34
    [124]姚仲鹏,崔海亭.油介质作用下旋流管式换热器强化传热试验[J].石油机械,2000,28(8):26-27
    [125]张锁龙,张琳.内置旋流器紊流传热的研究[J].石油化工高等学校学报,2002,15(2):56-58
    [126]Kirakosyan V A, Lavovskaya E Yu, Baskakov A P. On gas motion in a cyclone heat exchange[J].Journal of Engineering Physics(English Translation of Inzhenerno -Fizicheskii Zhrunal),60(2),1991:224-230
    [127]姚志彪.环形管内涡旋流动特性及传热机理研究[J].化学工程,1997,25(1):17-19
    [128]张民权.旋流反应器内传热的研究[J].化学工程,1997,25(1):14-16
    [129]Ershov A I, Gukhman L M. A note on the intensification of heat and mass transfer in interacting gas and liquid systems[J].Journal of Engineering Physics and Thermophysics (Historical Archive),1997,10 (4):326-359
    [130]高翔,骆仲泱,周劲松,等.衰减性旋流强化传热性能的研究[J].中国电机工程学报,2003,23(5):184-188
    [131]Lede J, Verzaro F, Antoine B,etal. Flash pyrolysis of wood in a cyclone reactor Pyrolyse eclair du bois dans un réacteur cyclone[J].Chemical Engineering Process,1986,20(6):309-317
    [132]Lede J, Li H Z, Souliganc F,et al. Measurement of Solid Particle Residence Time in a Cyclone Reactor:A Comparison of Four Methods[J].Chem Eng Proc.1987,22(4):215-222
    [133]Lede J. The Cyclone as a Non-catalytic Gas-Solid Reactor[C].10th International Congress of Chemical Reaction Engineering,Warsaw,Poland.1987,5:13-17
    [134]Lede J, Li H Z, Villermaux J. Mesure directe de la distribution des temps de séjour de la phase gazeuse—lois d'extrapolation[J].The Chemical Engineering Journal,1989,42(1):37-55
    [135]Lede J. The Cyclone:A Multifunctional Reactor for the Fast Pyrolysis of Biomass[J].Ind & Eng Chem Research,2000,39(4):893-903.
    [136]Imhof A. The cyclone reactor—an atmospheric open solar reactor[J].Solar Energy Materials,1991,24(1-4):733-741
    [137]Hartbrich A. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities[J].Biotechnology andBioengineering,1996,51(6):624-635
    [138]Weuster D, Huennekes E,Hartbrich A. Scale-up and application of a cyclone reactor[J].Bioprocess Engineering,1998,18:433-438
    [139]Sheppard, John D. Scale-up of a cyclone bioreactor. Journal of Chemical Technologyand Biotechnology,1994,59(1):83-89
    [140]Chen H C, Grethlenin H E. Prediction of Performance of Acid Hydrolysis in a Cyclone Reactor[J].Biomass 1990,23:319-326
    [141]Liang C LIN, Francis V.H,Alex G.OBLAD. The pyrolysis of bitumen-impregnated sandstone in short contact time reactors , I.Cyclone reactor[J].Fuel Processing Technology,1987,16(2):173-190
    [142]Kim Y U. Electrowinning of palladium using a modified cyclone reactor[J].Journal of Applied Electrochemistry 2002,32:1235-1239
    [143]Sundmacher K T, Schultz. Electrochemical chlorine absorption in cyclone membrane reactor: analysis of reaction mechanism and transport phenomena [J].Chemical Engineering Journal,2001,82(1-3):117-129
    [144]Mehidi M N NOUI,Salemi A,Legentilhomme P,etal. Overall mass transfer in the swirling flow induced by a tangential inlet between coaxial cones[J].Journal of Applied Electrochemistry,1999,29:1277-1284
    [145]Martemianov S, Okulov L. Mass transfer ambiguities in swirling pipe flows[J].Journal of Applied Electrochemistry,2002,32:25-34
    [146]王文丽,周力行,李荣先.用二阶矩亚网格尺度燃烧模型对丙烷-空气旋流扩散燃烧的大涡模拟[J].燃烧科学与技术,2007,13(4):97-100
    [147]匡江红,何法江,曹汉鼎.旋流燃烧锅炉炉内流场的数值研究[J].上海工程技术大学学报,2006,20(3):193-197
    [148]彭云晖,林宇震,刘高恩.三旋流器燃烧室出口温度分布的初步试验研究[J].航空动力学报,2007,22(4):555-559
    [149]杨爱华.尿素旋风水洗除尘工艺[J].化肥设计,2001,39 (6): 21-23
    [150]陈建孟,谭天恩,史小农.旋流塔板的板效率模型[J].化工学报,2003,54(12):1755-1760
    [151]陈建孟,柴骏.旋流塔板上液滴的粒径分布和运动模型[J].浙江工业大学学报,1996,24(2): 131-137
    [152]王家德,陈建孟.旋流塔板上气体流场的数值模拟[J].浙江工学院学报,1994(2):17-22
    [153]吴忠标,余世清,莫建松.己二酸强化石灰石浆液脱硫工艺过程研究[J].高校化学工程学报,2003,17(5):540-544
    [154]饶应福,白永锋.碱厂废碱液在湿式烟气脱硫工艺中应用的实验研究[J].煤矿环境保护,1999,14(3):18-21
    [155]高长宝,周鵾,曾爱武,等.气液并流旋喷塔板的流体力学性能[J].化学工程,2003,31(6):12-14
    [156]张志刚,李玉平,张国光.旋流塔板叶片仰角对湿钙法烟气脱硫过程的研究[J].环境污染治理技术与设备,2003,4 (12):90-92
    [157]宋云华,初广文,陈建铭,等.涡旋脉冲式反应装置制备纳米碳酸钙的碳化特性研究[J].高校化学工程学报,2004,18 (5):590-594
    [158]刘洪敏.充气水力旋流器用于接触反应的研究进展[J].化工进展,2005,24(11):1225-1228
    [159]周玮生,柳泽幸雄.中国未来能源需求及CO2减排技术对策的数值模拟[J].世界环境,1996,4:38-41
    [160]邝素萍,李红.脱硫技术现状及前景展望[J].广东化工,2002,1:16-20
    [161]刘建秋,何红华,张双.烟气脱硫工艺的总体优化[J].化工进展,2003,22(12):1333-13337
    [162]王健,姜开明.我国烟气脱硫技术现状综述[J].粉煤灰,2004,6:41-44
    [1]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:1-65
    [2]Hoekstra A J, Derksen J J,Van den Akker H E A. An experimental and numerical study of turbulent swirling flow in gas cyclones[J].Chem Eng Sci.1999,54:2055-2065
    [3]Slack M D, Wraith A E. Modelling the velocity distribution in a hydrocyclone[C].4th Int. Colloq. on Process Simulation,Helsinki University oftechnology,Eshoo,Finland,1997:65–83.
    [4]Dai G Q, Li J M,Chen W M. Numerical prediction of the liquid flow within a hydrocyclone[J]. Chemical Engineering Journal,1999,74:217-223
    [5]Meier H F, Moir M. Gas-solid flow in cyclones: the Eulerian-Eulerian approach[J].Cumputers Chem Eng.1998,22:641-644
    [6]张海红.旋风分离器流场与分离性能的数值模拟研究[D].[硕士学位论文],郑州,郑州大学,2003
    [7]Shih T M, Ren A L. Primitive Variable Formulations Using Nonstaggered Grids[J]. Numer Heat Transfer,1984,7:413-428
    [8]Majumdar S. Role of Underrelaxation on Momentum Interpolation for Calculation of Flow with Nonstaggered Grids[J].Numer Heat Tranfer,1988,13:125-132
    [9]Vandoormaal J P, G D Raithby. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows[J]. Numer Heat Transfer,1984,7:147-163
    [10]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社.2002:1-5,144-147
    [11]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007,2:134-135
    [12]陈建峰.超重力技术及应用[M].北京:化学工业出版社.2002,7:1-3
    [13]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002,12.340-360
    [14]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.1:52-56,14-15,105-111
    [1]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社.2002:1-5,144-147
    [2]赵立新,蒋明虎,李枫,等.旋流器分散相液滴受力分析[J].石油机械,1999,27(5):24-27
    [3]褚良银,陈文梅.水力旋流器固相颗粒径向速度研究[J].化工装备技术,1992,13(4):1-4
    [4]徐继润,罗茜.水力旋流器内固液两相间的相对运动[J].中国有色金属学报,1998,8(3):451-487
    [5]吴柏志,赵立新,蒋明虎,等.水力旋流器内颗粒受力与运动分析[J].大庆石油学院学报,2005,29(6):63-66
    [6]Lede J, Li H Z,Villermaux J. Mesure directe de la distribution des temps de séjour de la phase solide—loisd'extrapolation[J].The Chemical Engineering Journal,1989,42(2):103-117
    [7]GODOY A. Theoretical and experiment study of particles residence time in gas Cyclones[D].[博士学位论文]Brazil,Mechanical Engineering School,State University ofCampinas,1989
    [8]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002,12.340-360
    [9]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.1:52-56,14-15,105-111
    [10]Listewnik J. Some factors influencing the performance of de-oiling hydrocyclones for marine applications[C].2nd International Conference on Hydrocyclone.Bath,England,1984,9:191-204
    [11]徐继润,罗茜.水力旋流器流场理论[M].北京:科学出版社.1998:124-136,175-185
    [12]Wolbert D. Efficiency estimation of liquid - liquid hydrocyclone using trajectory analysis[J].AICHE Journal,1995,41(6):1395-1402
    [13]黄思,李静泉.用改进的油粒轨迹模型预测液—液旋流器效率[J].石油机械,2000, 28(3):7-10
    [14]陈建峰.超重力技术及应用[M].北京:化学工业出版社.2002,7:13-30
    [15]袁惠新,冯骉.分离工程[M].北京:中国石化出版社,2002,1:152-156,431-432,66
    [16]孔珑.工程流体力学[M].北京:水利电力出版社,1990,3:125-127
    [17]陈涛,张国亮.化工传递过程基础[M].北京:化学工业出版社,2002,7:25-54
    [18]孙祥海.流体力学[M].上海:上海交通大学出版社.2000,9:98-100
    [19]张敏.旋流场内聚积过程的研究[D].[硕士论文].无锡:江南大学,2002
    [20]潘文全主编.流体力学基础[M].下册.北京:机械工业出版社,1980,3:32-35,185
    [21]袁小林.旋流场内液滴破碎与临界入口雷诺数的确定[J].江南大学学报(自然科学版),2004,3(1):59-61
    [22]张敏,袁惠新.旋流聚积的机理与应用[J].流体机械,2003,31(5):29-32
    [23]姜雪梅,董守平,张红光.液—液旋流器中分散相液滴破碎机理研究[J].石油天然气学报(江汉石油学院学报),2005,27(1):305-308
    [24]舒朝晖,刘根凡,陈文梅.用于油水分离的水力旋流器中液滴破碎研究进展[J].流体机械,2002,30(7):29-32
    [1]曹登祥主编.传质过程及设备[M].北京:中国建筑工业出版社,1997,12:4-8,20-24
    [2]涂晋林,吴志泉.化学工业中的吸收操作[M].上海:华东理工大学出版社,1994,12:12-14,42-48
    [3]钟敦南.化学工程传质的共同规律[J].长沙水电师院自然科学学报.1994,9(1):21-26
    [4]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社.2002:144-147
    [5]Hinze J O.湍流[M].上册.黄永念译.北京:科学出版社,1987,7:13
    [6]徐继润,罗茜.水力旋流器流场理论[M].北京:科学出版社,1998:178-185
    [7]Keyes J J Jr. Proceedings of the 1960 Heat Transfer and Fluid Mechanics Institute[J]. Stanford University Press for the Heat Transfer and Fluid Mechanics Institute,1960:31
    [8]顾毓珍.湍流传热导论[M].上海:上海科学技术出版社,1964.11:196-198
    [9]戴干策.传递现象导论[M].北京:化学工业出版社,1996,3:140-144
    [10]梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999,4:260-268,20-24
    [11]Elder J W. The Dispersion of Marked Fluid in Turbulent Shear Flow[J].Journal of Fluid Mechanics Digital Archive,1959.5(4):544-560
    [12]成弘,周明,余国琮.强化气液两相传质的研究进展[J].化学进展,2001,13(4):315-323
    [13]罗和安,胡蓉蓉,刘平乐,等.自由界面气液传质系数的涡旋作用模型[J].化工学报,2002,53(11):1164-1168
    [14]马友光,白鹏,余国琮.气液传质理论研究进展[J].化学工程,1996,24(6):7-12
    [15]马友光,余国琮.气液相际传质的理论研究[J].天津大学学报,1997,31(4):505-510
    [16]朱慧铭.超重力场传质过程的研究及其在核潜艇内空气净化中的应用[D].[博士学位论文].天津:天津大学,1991
    [17]Vivian J E, Brian P L T,Krukonis V J.The influence of gravitational force on gas absorption in a packed column[J]. AIChE Journal,1965,11(6):1088-1091
    [18]Munjal S, Dudukovic M P. Ramachandran P. Mass-transfer in rotating packed beds—I.Development of gas-liquid and liquid-solid mass-transfer correlations[J]. Chemical Engineering Science,1989,44(10):2245-2256
    [19]Kelleher T, Fair R. Distillation Studies in a High-Gravity Contactor[J].Industrial & Engineering Chemistry Research,1996,35:4646-4655
    [20]张军.旋转床内液体流动与传质的实验研究和计算模拟[D].[博士学位论文].北京:北京化工大学,1996
    [21]Burns J R,Ramshaw C. Process intensification: Visual study of liquid maldistribution inrotating packed beds. Chemical Engineering Science,1996,51(8):1347-1352
    [22]刘谦.传递过程原理[M].北京:高等教育出版社,1990:232-265
    [23]伯德R B,斯图瓦特W E,莱特富特E N.传递现象[M].第二版.袁一译.化学工业出版社:703,676-689
    [24]戴光清,郭荣,李建明.水力旋流器湍流特性研究[J].流体机械,1996,24(11):13-16
    [25]蒋新,陈甘棠,李希.湍流中粒子-流体间的传质[J].高校化学工程学报,1996,10(3):254-257
    [26]拉姆B M.气体吸收[M].第2版.刘凤志等译.北京:化学工业出版社,1985,11:51
    [27]Kresta Suzanne M,Wood Philip E. The flow field produced by a pitched blade turbine: characterization of the turbulence and estimation of the dissipation rate[J]. Chemical engineering science,1993,48(10):1761-1774
    [28]舒朝晖,刘根凡,陈文梅.用于油水分离的水力旋流器中液滴破碎研究进展[J].流体机械,2002,30(7):29-32
    [29]张政,张军,郑冲.旋转床填料空间液体的液相传质分析[J].工程热物理学报1998,19(1):86-89
    [30]金祖源.化学吸收中的气液间一级不可逆反应研究[J].河北工业学院学报,1989,1:69-73
    [1]方为茂,钟本和.旋流分离设备新结构进展[J].化工装备技术,1998,19(4):47-52
    [2]汪大翚,贾缨,杜有根,等.化学法测定旋流塔板气液相界面积的研究[J].化学工程,1985,13(2):30-35
    [3]陈海辉,邓先和,张建军.张亚君化学吸收法测定多级离心雾化旋转填料床有效相界面积及体积传质系数[J].化学反应工程与工艺,1999,15(3):91-97
    [4]陈昭琼,熊双喜,伍权光.螺旋型旋转吸收器(I)[J]化工学报.1995,46(3):388-393
    [5]陈昭琼,童志权.螺旋型旋转吸收器(II)[J]化工学报.1996,47(6):758-763
    [6]王志魁.化工原理[M].北京:化学工业出版社,1998,10:193,7
    [7]涂晋林,吴志泉.化学工业中的吸收操作[M].上海:华东理工大学出版社,1994,12:1,56
    [8]张小林.水和废水监测分析方法.北京:中国环境科学出版社,1997,3:239-242
    [9]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002,12:509-516
    [10]匡国柱,史启才.化工单元过程及设备课程设计[M].北京:化学工业出版社,2002,1:337-369
    [1]涂晋林,吴志泉.化学工业中的吸收操作[M].上海:华东理工大学出版社,1994,12:1,83-85,148
    [2]陈昭琼,熊双喜,伍权光.螺旋型旋转吸收器(Ⅱ)[J].化工学报.1996,47(6):758-762
    [3]吴克明,雷国元,刘红,等.旋风除尘器压力损失的试验研究[J].环境科学与技术,2005,28(3):11-14
    [4]霍夫曼A C,斯坦因L E.旋风分离器——原理、设计和工程应用[M].彭维明,姬忠礼译.北京:化学工业出版社,2004,9:135-136
    [5]陈昭琼,熊双喜,伍权光.螺旋型旋转吸收器(I)[J].化工学报.1995,46(3):388-393
    [6]汪大翚,贾缨,杜有根,等.化学法测定旋流塔板气液相界面积的研究[J].化学工程,1985,13(2):30-35
    [7]Taghizadeh M,Jallut C,Tayakout-Fayolle M. Non-isothermal gas–liquid absorption with chemical reaction studies: Temperature measurements of a spherical laminarfilm surface and comparison with a model for the CO2/NaOH system[J].Chemical Engineering Journal,82(1-3):143-148
    [8]Pohorecki R,Moniuk W,Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions[J]. Chemical Engineering Science,1988,43(7) :1677-1684
    [9]张美华.二氧化碳生产及应用[M].西安:西北大学出版社,1988,6:17
    [10]田立楠.物性手册查用基础[M].武汉:湖北科学技术出版社,1985,3:308-319
    [11]田立楠.一个新的化学反应热计算式[J].化学工程,2000,38(2):15-20
    [12]蔡哲雄.工程化学基础[M].西安:西安交通大学出版社,1999,5:215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700