ND_3分子静电Stark减速与表面操控的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1999年第一次在实验上获得成功以来,静电Stark减速技术已发展成为制备冷分子的重要手段,到目前为止己实现了多种极性分子的减速。本文详细介绍了我们实验室第一套静电Stark减速器的实验研究情况。利用该技术我们成功将ND3的超声束从330m/s减速到24m/s,该波包在移动参考系中的平动温度为~36mK。其次我们从理论和实验两个方面研究了Stark减速器产生的分子波包与各种实验参数的依赖关系,包括:每一级的动能损失与同步相位角φ0的关系,减速波包末速度与φ0以及减速级数的关系,相对减速效率与φ0的关系。另外,我们还提出了一种新的操控Stark减速器的方案,这种操控方法可以产生低速、分子数密度可观的高能量分辨率(8mK)分子束。
     原子芯片已取得巨大成功,并且在玻色-爱因斯坦凝聚、物质波干涉和自由落体实验中都有重要应用,相比之下分子芯片可能比原子芯片更具应用前景,比如在量子计算机等方面的潜在应用,因此近年来人们开始对分子芯片产生浓厚兴趣,本文第四章提出一种表面静电滤波的方案来制备极性冷分子,该方案通过选择射流束的低速部分将冷分子样品制备在介质表面。我们以ND3分子为例,采用Monte-Carlo模拟以及理论分析两种方法研究了导引效率与滤波器参数以及与分子束参数的依赖关系。同时我们详细研究了分子的导引过程,包括相空间密度在滤波器中的演化等内容。我们发现分子束的滤波过程在滤波器的前端已经完成。
     从滤波器出来的分子束往往有较宽的速度分布宽度,这不利于其在分子碰撞实验中的应用。本文提出一种由一组电极构成的表面聚束器方案,该聚束器可以对从滤波器出来的分子束进行纵向聚束。该装置利用分子与时变非均匀电场的相互作用来压缩分子速度分布,从而在介质表面获得慢速冷分子束。另外本文还提出一种可连续装载的分子储存环方案,既可用于连续装载分子束也可以用于装载多个脉冲波包。我们以ND3为样品分子,模拟了从静电速度滤波到聚束器再到储存环的分子轨迹,证明了该方案的可行性。
     另外,本文在第五章介绍了表面分子操控实验平台的设计与研制情况,包括真空腔、实验器件的设计加工,以及实验系统控制程序的编写调试。第六章是全文的总结与展望。
The technique of electrostatic Stark deceleration has played an important role in production of translational cold polar molecules since its first experimental realization in1999, yielding a variety of cold polar molecules. In this thesis we give a detailed description of the experiments with our homemade Stark decelerator. Using the decelerator, a supersonic ND3beam is successfully decelerated from330m/s to24m/s, with a translational temperature of-36mK in the moving frame. Relationships between the performance of the decelerator and various parameters, including the kinetic energy loss per stage versus the synchronous phase angle φ0, the final central velocity of slowed molecular packet versus both the phase angle φ0and the deceleration stage number, and the relative slowing efficiency versus the phase angle φ0, are studied both theoretically and experimentally. In addition, we propose and study a new mode to operate a Stark decelerator that allows preparing a slow, number density enhanced, high-energy-resolution molecular beam (8mK).
     Inspired by the great achievements in the field of atom chips and their fundamental applications in Bose-Einstein condensation, matter wave interferometry and free fall experiments, researchers currently begin to pursue molecule chips that promise more exciting prospects, such as the realization of quantum computation that employs cold polar molecules as quibits. In the fourth chapter we propose a scheme of surface electrostatic velocity filter capable of preparing cold polar molecules on the surface of a substrate by selecting low-velocity component of an effusive beam from a thermal gas reservoir. Using ND3as a molecular sample, the dependence of the performance of the filter on the parameters of both the filter setup and the incident molecular beam is investigated by using a theoretical model and Monte Carlo simulations. A detailed study of the guiding process of molecules, including the evolution of phase space density of the packet in the filter, is carried out and shows that the beam selection process is mainly completed in the front part of the filter.
     A slow beam produced by an electrostatic velocity filter always holds a wide velocity spread, unfavorable for some cold collision studies. In this paper we propose a scheme of surface buncher, composed by an array of electrodes, which permits to longitudinally focus the resulting beam from the electric velocity filter. By exploiting the interaction of molecules with time-varying inhomogeneous electric fields, the velocity distribution of the ensemble of the molecules is compressed and then a cold, slow molecular beam is prepared in vicinity of a substrate. In addition, we propose a scheme of continuously loadable storage ring that allows continuously loading molecular beams or simultaneously storing a large number of pulsed molecular packets, with high loading efficiency. The possibility of our scheme combining electrostatic velocity filter, buncher and storage ring is shown by means of particle trajectory simulations.
     In addition, the process of design and development of the experimental apparatus for surface manipulation is given in the fifth chapter, including the design and assembly of both the vacuum chamber and experimental components. The development of computer program package for our experiment is introduced as well. Finally, the conclusions and outlook are presented in the final chapter.
引文
[1]J. van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, G. Meijer, Eur. Phys. J. D,31,337 (2004)
    [2]E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, J. Ye, Phys. Rev. Lett.,96,143004 (2006)
    [3]J. J. Hudson, B. E. Sauer, M. R. Tarbutt, E. A. Hinds, Phys. Rev. Lett.,89,023003 (2002)
    [4]E. Reinhold, R. Buning, U. Hollenstein, A. Ivanchik, P. Petitjean, W. Ubachs, Phys. Rev. Lett.,96,151101(2006)
    [5]J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, Science,313,1617 (2006)
    [6]Martin T. Bell, Alexander D. Gingell, James M. Oldham, Timothy P. Softley, and Stefan Willitsch, Faraday Discuss.,142,73 (2009)
    [7]S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quemener, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, Science,327,853 (2010)
    [8]S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Faraday Discuss.,142,351 (2009)
    [9]D. DeMille, Phys. Rev. Lett.,88,067901 (2002)
    [10]J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J. M.Doyle, Nature,395,148 (1998)
    [11]H. L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett.,83,1558 (1999)
    [12]E. Narevicius, A. Libson, C. G. Parthey, I. Chavez, J. Narevicius, U. Even, Mark G. Raizen, Phys. Rev. A,77,051401 (2008)
    [13]R. Fulton, A. I. Bishop, P. F. Barker, Phys. Rev. Lett.,93,243004 (2004)
    [14]Simon Merz, Nicolas Vanhaecke, Wolfgang Jager, Melanie Schnell, and Gerard Meijer, Phys.Rev.A,85,063411 (2012)
    [15]S. R. Procter, Y. Yamakita, F. Merkt, and T. P. Softley,Chem. Phys. Lett.,374,667 (2003).
    [16]S. A. Rangwala, et al, Phys.Rev.A,67,043406 (2003)
    [17]M. Gupta and D. Herschbach, J. Phys. Chem. A,105,1626-1637,(2001)
    [18]E. S. Shuman, et al, Nature,467,820 (2010)
    [19]M. Zeppenfeld, et al, Nature,491,570 (2010)
    [20]M. T. Hummon, et al, Phys. Rev. Lett.,110,143001 (2013)
    [21]B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quemener, J. L. Bohn, and J. Ye, Nature,492, 396 (2012).
    [22]J. D. Miller, R. A. Cline, and D. J. Heinzen, Phys. Rev. Lett.,71,2204 (1993)
    [23]P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratliff, S. L. Rolston, and M. E. Wagshul, Phys. Rev. Lett.,71,2200 (1993)
    [24]S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, Science,302,2101 (2003)
    [25]C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature,424,47 (2003)
    [26]M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta,Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett.,91,250401 (2003)
    [27]R. Krems, B. Friedrich, and W. C. Stwalley.(ED.) Cold molecules:theory, experiment, applications, (Taylor and Francis Group, LLC) Chapter 13. (2009)
    [28]W. C. Campbell,et alt, Phys. Rev. Lett,98,213001 (2007)
    [29]S. D. Hogan,et al, Phys. Chem. Chem. Phys.,13,18705-18723 (2011)
    [30]R. Fulton,et al, Nature physics,2,465 (2006)
    [31]A I Bishop, et al, New Journal of Physics,12,073028 (2010)
    [32]D. Townsend, A. L. Goodgame, S. R. Procter, S.R.Mackenzie, and T. P. Softley, J. Phys. B,34,439(2001)
    [33]Y. Yamakita, S. R. Procter, A. L. Goodgame, T. P. Softley,and F. Merkt, J. Chem. Phys. 121,1419(2004).
    [34]E. Vliegen, H. J. Worner, T. P. Softley, and F. Merkt, Phys.Rev. Lett.,92,033005 (2004).
    [35]E. Vliegen and F. Merkt, J. Phys. B,38,1623 (2005).
    [36]S.D. Hogan and F. Merkt, Phys. Rev. Lett.100,043001 (2008).
    [37]E. Vliegen and F. Merkt, Phys. Rev. Lett.97,033002 (2006).
    [38]E. Vliegen, S.D. Hogan, H. Schmutz, and F. Merkt, Phys.Rev. A,76,023405 (2007).
    [39]S.D. Hogan, et al, Phys.Rev.Lett.,103,123001 (2009)
    [40]S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, Phys. Rev. Lett, 100,043203 (2008)
    [41]B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Klos, D. Patterson, J. M. Doyle and J. Ye, Phys. Chem. Chem. Phys.,13,19059 (2011)
    [42]M. Schnell,etal, Angew. Chem. Int. Ed.,48,6010,(2009)
    [43]J. M. Sage, et al, Phys. Rev.Lett.,94,203001 (2005)
    [44]C. Chin, R. Grimm, P. Julienne and E. Tiesinga, Rev. Mod. Phys.,82,1225 (2010)
    [45]H. J. Loesch and B. Scheel, Phys. Rev. Lett.,85,2709 (2000)
    [46]T. E. Wall, Phys.Rev. A,80,043407 (2009)
    [47]S. Putzke, et al, Phys. Chem. Chem. Phys.,13,18962-18970 (2011)
    [48]M. Strebel, S. Spieler, F. Stienkemeier, and M. Mudrich, Phys.Rev. A,84,053430 (2011)
    [49]Yong Xia, et al, Phys. Rev. Lett.,100,043003 (2008)
    [50]F. M. H. Crompvoets, et al, Phys.Rev.Lett.,89,093004 (2002)
    [51]C. E. Heiner, et al, nature physics,3,115 (2007)
    [52]P. C. Zieger, et al, Phys.Rev.Lett.,105,173001 (2010)
    [53]J. Baudon et al., J. Phys. B,32, R173 (1999).
    [54]B. Brezger et al., Phys. Rev. Lett.,88,100401 (2002).
    [55]Donatella Cassettari,et al, Phys.Rev.Lett.,85,5483 (2000)
    [56]S. J. Wark, et al, J. phys. B At. Mol. Opt. Phys.,25,4229 (1992)
    [57]Stephan A. Schulz, et al, Phys.Rev.Lett. 93,020406 (2004)
    [58]A. I. G. Florez, et al, Phys. Chem. Chem. Phys.,13,18830-18834 (2011)
    [59]H. L. Bethlem, et al, Nature,406,491 (2000)
    [60]H. L. Bethlem, et al,Phys. Rev. A,74,063403 (2006)
    [61]Brian C. Sawyer, et al, Phys.Rev.Lett.,98,253002 (2007)
    [61]T. Takekoshi, B.M. Patterson, and R. J. Knize, Phys.Rev.Lett.,81,5105 (1998)
    [62]E.R. Hudson, et al, Phys.Rev.Lett.,100,203201 (2008)
    [63]D. P. Katz, J. Chem. Phys.,107,8491 (1997)
    [64]F. M.H. Crompvoets, et al, Nature,411,174 (2001)
    [65]A. Kellerbauer et al., Nucl. Instrum. Methods Phys. Res.,Sect. B 266,351 (2008).
    [66]T.C. Killian et al., Phys. Rev. Lett.,83,4776 (1999).
    [67]M.D. Lukin et al., Phys. Rev. Lett,.87,037901 (2001).
    [68]T. Rieger, T. Junglen, S. A. Rangwala, G. Rempe, and P. W. H. Pinkse, Phys. Rev. A,73, 061402(R)(2006)
    [1]O. Stern, W. Gerlach, Z. Phys.8,110 (1921)
    [2]J. Reuss, in:G. Scholes (Ed.), Atomic and Molecular Beam Methods, vol.1, Oxford University Press, Oxford, p.277, (1988)
    [3]D.H. Parker, R.B. Bernstein, Annu. Rev. Phys. Chem.,40,561 (1989)
    [4]S. E. Novick, P. B. Davies, P. B. Dyke, W. Klemperer, J. Am. Chem. Soc.,95,8547 (1973)
    [5]H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping, Springer, Berlin (1999)
    [6]H. L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett.,83,1558 (1999)
    [7]R. Krems, B. Friedrich and W. C. Stwalley, (ED.) Cold molecules:theory, experiment, applications, (Taylor and Francis Group, LLC) Chapter 13.(2009)
    [8]H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, G. Meijer, Nature,406,491 (2000)
    [9]H. L. Bethlem, F. M. H. Crompvoets, R.T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, Phys. Rev. A,65,053416 (2002)
    [10]J.R. Bochinski, Eric R. Hudson, H. J. Lewandowski, Gerard Meijer, and J. Ye, Phys. Rev. Lett.,91,243001 (2003)
    [11]S. Y. T. van deMeerakker et al., J. Phys. B,39, S1077 (2006)
    [12]E.R. Hudson, C. Ticknor, B. C. Sawyer, C. A. Taatjes, H. J. Lewandowski, J. R. Bochinski, J. L. Bohn, and J. Ye, Phys. Rev. A.,66.063404 (2006)
    [13]S. Jung, G. Tiemann, C. Lisdat, Phys. Rev. A,74,040701(R) (2006)
    [14]S. K. Tokunaga, J. M Dyne, E. A. Hinds and M. R Tarbutt, New J. Phys.,11,055038 (2009)
    [15]T. E. Wall, J. F. Kanem, J. M. Dyne, J. J. Hudson, B. E. Sauer, E. A. Hinds and M. R. Tarbutt, Phys. Chem. Chem. Phys.,13,18991 (2011)
    [16]X. Wang, et al, arxiv.org/pdf/1301.2136 (2013)
    [17]M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G Meijer, E.A. Hinds, Phys.Rev. Lett.,92,173002 (2004)
    [18]Kirstin Wohlfart, Fabian Gratz, Frank Filsinger, Henrik Haak, Gerard Meijer, and Jochen Kupper, Phys. Rev. A,77,031404 (R) (2008)
    [19]H. L. Bethlem, et al, Phys.Rev. Lett.,84,5744 (2000)
    [20]H. L. Bethlem, Deceleration and Trapping of Polar Molecules using Time-varying Electric Fields, Thesis Katholieke Universiteit Nijmegen (2002)
    [21]B. C. Sawyer, B. K. Stuhl, B. L. Lev, J. Ye and E. R. Hudson, Eur. Phys. J. D,48,197 (2008)
    [22]Ludwig Scharfenberg, Henrik Haak, Gerard Meijer, and Sebastiaan Y. T. van de Meerakker, Phys. Rev. A,79,023410 (2009)
    [23]Andreas Osterwalder, Samuel A. Meek, Georg Hammer, Henrik Haak and Gerard Meijer, Phys. Rev. A,81,051401 (R) (2010)
    [24]N. E. Bulleid, R.J. Hendricks, E.A. Hinds, Samuel A. Meek, Gerard Meijer, Andreas Osterwalder, M.R. Tarbutt, arxiv.org/abs/1204.5877 (2012)
    [25]Hendrick L. Bethlem, Deceleration and trapping of polar molecules using Time-varying electric fields, Ph.D thesis, University of Nijmegen, (2002)
    [26]R.B. Bernstein. Chemical dynamics via Molecular Beam and Laser Techniques, Oxford University Press, New York, (1982)
    [27]Eric R. Hudson, Cold Molecule Production via Stark Deceleration, Ph.D thesis, University of Colorado, (2006)
    [28]J. Reuss, in:G. Scholes (Ed.), Atomic and Molecular Beam Methods, vol.1, Oxford University Press, Oxford, Chapter 2, (1988)
    [1]King, J. G., Zacharias, J. R., Quaterly Progress Report, Research Laboratory of Electronics, Massachusetts Institute of Technology 48 (Jan.15) (1958)
    [2]King, J. G., Experiments with slow molecules. In:Proceedings of the 13th Annual Symposium on Frequency Control, Asbury Park. U.S. Army Signal Research and Development Laboratory, p.603 (1959).
    [3]G. Scoles (ED.), Atomic and Molecular Beam Methods, (New York:Oxford University Press) P.366 (1986)
    [4]R. Locht, B Leyh, W Denzer, G Hagenow, and H Baumgartel. Chemical Physics,155(3), 407-422,(1991)
    [5]Moana Nolde, Karl-Michael Weitzel and Colin M. Westernb, Phys. Chem. Chem. Phys.,7, 1527(2005)
    [6]Golub, R., On decelerating molecules. Ph.D. thesis, Massachusetts Institute of Technology. (1967)
    [7]Auerbach, D., Bromberg, E. E. A., Wharton, L.,Altemate-gradient focusing of molecular beams, J. Chem. Phys.,45,2160 (1966)
    [8]R. Wolfgang, Chemical accelerators, Sci.Am.219(4),44. (1968).
    [9]H. L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett.,83,1558 (1999)
    [10]S. Hoekstra, et al., Phys. Rev. Lett.,98,133001 (2007)
    [11]S. Y. T. van de Meerakker et al., J. Phys. B,39, S1077 (2006)
    [12]S. K. Tokunaga, J. M Dyne, E. A. Hinds and M. R Tarbutt, New J. Phys.,11,055038 (2009)
    [13]M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, E.A. Hinds, Phys.Rev. Lett.,92,173002 (2004)
    [14]H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, G. Meijer, Nature,406,491 (2000)
    [15]H. L. Bethlem, F. M. H. Crompvoets, R.T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, Phys. Rev. A,65,053416 (2002)
    [16]S. Jung, G. Tiemann, C. Lisdat, Phys. Rev. A,74,040701(R) (2006)
    [17]E.R. Hudson, C. Ticknor, B. C. Sawyer, C. A. Taatjes, H. J. Lewandowski, J. R. Bochinski, J. L. Bohn, and Jun Ye, Phys. Rev. A,66,063404 (2006)
    [18]T. E. Wall, J. F. Kanem, J. M. Dyne, J. J. Hudson, B. E. Sauer, E. A. Hinds and M. R. Tarbutt, Phys. Chem. Chem. Phys.,13,18991 (2011)
    [19]X. Wang, et al, arxiv.org/pdf/1301.2136 (2013)
    [20]Kirstin Wohlfart, Fabian Gratz, Frank Filsinger, Henrik Haak, Gerard Meijer, and Jochen Kupper, Phys. Rev. A,77,031404 (R) (2008)
    [21]H. L. Bethlem, et al, Phys.Rev. Lett.,88,133003 (2002)
    [22]S. A. Meek, Horst Conrad, Gerard Meijer,Science,324,1699(2009)
    [23]S.D. Hogan, et al.,Phys.Rev. Lett.,108,063008 (2012)
    [24]A. Marian, H. Haak, P. Geng, and G. Meijer, Eur. Phys. J. D,59,179-181 (2010)
    [25]N.E. Bulleid, R.J. Hendricks, E.A. Hinds,Samuel A. Meek,G. Meijer, A. Osterwalder, and M.R. Tarbutt, Phys.Rev. A,86,021404(R) (2012)
    [26]A. Osterwalder, S. A. Meek, G. Hammer, H. Haak, and G. Meijer, Phys.Rev.A 81, 051401(R)(2010)
    [27]S. A. Meek, M. F. Parsons, G.Heyne, V. Platschkowski, H. Haak, et al., Rev. Sci. Instrum.,82,093108 (2011)
    [28]Hendrick L. Bethlem, Giel Berden, Andre J. A. van Roij, Floris M.H. Crompvoets, and Gerard Meijer, Phys.Rev. Lett.,84,5744 (2000)
    [29]B. C. Sawyer, B. K. Stuhl, B. L. Lev, J. Ye and E. R. Hudson, Eur. Phys. J. D,48,197 (2008)
    [30]S. Y. T. van de Meerakker, Nicolas Vanhaecke, Hendrick L. Bethlem and Gerard Meijer, Phys. Rev. A,73,023401 (2006)
    [31]Eric R. Hudson, J.R. Bochinski, H. J. Lewandowski, Brian C. Sawyer, and Jun Ye, Eur. Phys. J. D,31,351 (2004)
    [32]L. P. Parazzoli, N. Fitch, D. S. Lobser, H J Lewandowski, New J. Phys.,11,055031 (2009)
    [33]J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, Science,313,1617 (2006)
    [34]Brian C. Sawyer, Benjamin K, Stuhl, Mark Yeo, Timur V. Tscherbul, Matthew T. Hummon, Yong Xia, Jacek K$os, David Patterson, John M. Doyle and Jun Ye, Phys. Chem. Chem. Phys.,13,19059 (2011)
    [35]L. Scharfenberg, K.B. Gubbels, M. Kirste, G. C. Groenenboom, A. vander Avoird, G. Meijer, and S. Y. T. van de Meerakker, Eur. Phys. J. D,65,189 (2011)
    [36]Moritz Kirste, Xingan Wang, H. Christian Schewe, Gerard Meijer, Kopin Liu, Ad van der Avoird, Liesbeth M.C. Janssen, Koos B. Gubbels, Gerrit C. Groenenboom, Sebastiaan Y.T. van de Meerakker, Science,338,1060 (2012)
    [37]Ludwig Scharfenberg, Henrik Haak, Gerard Meijer, and Sebastiaan Y. T. van de Meerakker, Phys. Rev. A,79,023410 (2009)
    [38]O. Bucicov, M.Nowak, S. Jung, G.Meijer, E.Tiemann, and C.Lisdat, Eur. Phys. J. D,46, 463 (2008)
    [39]Sebastiaan Y. T. van de Meerakker, Paul H.M. Smeets, Nicolas Vanhaecke, Rienk T. Jongma, and Gerard Meijer, Phys. Rev. Lett.,94,023004 (2005)
    [40]Martin T. Bell, Alexander D. Gingell, James M. Oldham, Timothy P. Softley, and Stefan Willitsch, Faraday Discuss.,142,73 (2009)
    [41]S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quemener, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, Science,327,853 (2010)
    [42]S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Faraday Discuss.,142,351 (2009)
    [43]J. van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, G. Meijer, Eur. Phys. J. D,31,337 (2004)
    [44]E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, J. Ye, Phys. Rev. Lett.,96,143004 (2006)
    [45]J. J. Hudson, B. E. Sauer, M. R. Tarbutt, E. A. Hinds, Phys. Rev. Lett.,89,023003 (2002)
    [46]E. Reinhold, R. Buning, U. Hollenstein, A. Ivanchik, P. Petitjean, W. Ubachs, Phys. Rev. Lett.,96,151101(2006)
    [47]D. DeMille, Phys. Rev. Lett.,88,067901 (2002)
    [48]L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Kpper, G. Meijer, Phys. Rev. Lett.,102,023001 (2009)
    [1]W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, Nature,413,498 (2001)
    [2]T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer and P. Kruger, Nat. Phys.,1,57 (2005)
    [3]T. van Zoest, et al., Science,328,1540 (2010)
    [4]R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag and C. Henkel, Adv. At. Mol. Opt. Phys.,48,263 (2002)
    [5]J. Fortagh and C. Zimmermann, Rev. Mod. Phys.,79,235 (2007)
    [6]D. DeMille, Phys. Rev. Lett.,88,067901 (2002)
    [7]A. Andr6, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf and P.Zoller, Nat. Phys.,2,636 (2006)
    [8]S. A. Meek, H. Conrad, G Meijer, Science,324,1699 (2009)
    [9]S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G Rempe, Phys. Rev. A,67, 043406 (2003)
    [10]S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, Phys. Rev. Lett., 100,043203 (2008)
    [11]B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Klos, D. Patterson, J. M. Doyle and J. Ye, Phys. Chem. Chem. Phys.,1319059 (2011)
    [12]B. Bertsche, and A. Osterwalder, Phys. Rev. A,82,033418 (2010)
    [13]B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G Hulet, Phys. Rev. A,60,3878 (1999)
    [14]T. Rieger, T. Junglen, S. A. Rangwala, G Rempe, and P. W. H. Pinkse, Phys. Rev. A,73, 061402(R) (2006)
    [15]H. Tsuji, T. Sekiguchi, T. Mori, T. Momose, H. Kanamori, J. Phys. B:At., Mol. Opt. Phys.,43,095202 (2010)
    [16]M. T. Bell, A. D. Gingell, J. M. Oldham, T. P. Softley, S. Willitsch, Faraday Discuss., 14273 (2009)
    [17]D. Patterson and J. M. Doyle, J. Chem. Phys.,126 154307 (2007)
    [18]B. G U. Englert, M. Mielenz, C. Sommer, J. Bayerl, M. Motsch, P. W. H. Pinkse, G Rempe, and M. Zeppenfeld, Phys. Rev. Lett.,107,263003 (2011)
    [19]L. Z. Deng, Y. Xia, and J. P. Yin, Chinese Phys.,16,707 (2007)
    [20]M. Motsch, L. D. van Buuren, C. Sommer, M. Zeppenfeld, G Rempe, and P. W. H. Pinkse, Phys. Rev. A,79,013405 (2009)
    [21]H. Tsuji, Y. Okuda, T. Sekiguchi, H. Kanamori, Chem. Phys. Lett.,463,331 (2007)
    [22]M. Motsch, C. Sommer, M. Zeppenfeld, L. D. van Buuren, P. W. H. Pinkse and G Rempe, New J. Phys.,11,055030 (2009)
    [23]T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, Eur. Phys. J. D, 31,365 (2004)
    [24]M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, Phys. Rev. A, 55,3684 (1997)
    [25]W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, (6th ed.) (McGraw-Hill) P.541 (2001)
    [26]M. Gupta and D. Herschbach, J. Phys. Chem. A,103,20670 (1999)
    [27]G Scoles (ED.), Atomic and Molecular Beam Methods, (New York:Oxford University Press) P.27 (1986)
    [28]D. P. Katz,J. Chem. Phys.,107,8491 (1997)
    [29]Hiroshi Nishimura, Glen Lambertson, Juris G Kalnins, and Harvey Gould, Rev. Sci. Instrum.,74,3271 (2003)
    [30]F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma,and G Meijer, Nature,411,174 (2001)
    [31]C. E. Heiner, et al, Nat. Phys.,3,115 (2007)
    [32]L.Z. Deng, Y. Xia, and J. P. Yin, J. Opt. Soc. Am. B,27, A88 (2010)
    [33]http://www.evaporatedcoatings.com/transparent-conductive-coatings.htm.
    [1]R. Folman, P.Kruger, J. Schmiedmayer, J. Denschlag and C. Henkel, Adv. At. Mol. Opt. Phys.,48,263-356 (2002)
    [2]T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer and P. Kruger, Nat. Phys.,1,57 (2005)
    [3]T. van Zoest, et al., Science,328,1540 (2010)
    [4]J. Fortagh and C. Zimmermann, Rev. Mod. Phys.,79,235 (2007)
    [5]D. DeMille, Phys. Rev. Lett.,88,067901 (2002)
    [6]A. Andre, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf and P.Zoller, Nat. Phys.,2,636 (2006)
    [7]S. A. Meek, H. Conrad, G. Meijer, Science,324,1699 (2009)
    [8]陈锡辉,张银鸿,LabVIEW程序设计从入门到精通,北京,清华大学出版社(2007)
    [9]郑对元,精通LabVIEW虚拟仪器程序设计,北京,清华大学出版社(2012)
    [10]杨高科,LabVIEW虚拟仪器项目开发与管理,北京,机械工业出版社(2012)
    [11]肖成勇,雷振山,魏丽,LabVIEW 2010基础教程,北京,中国铁道出版社(2012)
    [12]胡仁喜,高海宾,LabVIEW 2010中文版虚拟仪器从入门到精通,北京,机械工业出版社(2012)
    [13]雷振山等,LabVIEW高级编程与虚拟仪器工程应用,北京,中国铁道出版社,(2012)
    [14]岂兴明,LabVIEW入门与实战开发100例,北京,电子工业出版社(2011)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700