同周期控制交流伺服系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控装备是典型的机电系统,是装备制造业的核心。为达到数控装备高速和高精度的发展目标,需要对其进行机电一体化的全局最优化设计,这要求NC指令周期和伺服系统的机械环周期、电流环周期完全同步。本文旨在研究交流伺服系统机械环和电流环的同周期控制问题,使其获得更加优越的性能,并为数控装备全同周期的实现提供同周期伺服系统平台。
     为证明同周期控制的优越性,本文建立了交流永磁同步电机d-q坐标系下的数学模型。对比同周期和不同周期两种控制结构的控制效果,同周期控制系统波动极小,更接近于理想曲线。推导了同周期控制和不同周期控制系统的闭环传递函数,同周期系统传递函数相对阶数最低,最稳定。根据控制系统模型设计了软件仿真系统平台,设置机械环和电流环在不同周期和同周期控制情况下,分别进行速度控制仿真。仿真结果表明,同周期控制可更有效地抑制负载转矩波动。针对同周期控制将会引发的电流采样噪声、速度分辨率低以及计算量大等问题,提出了有效解决途径——用全整数运算来进行控制算法设计,设计全整数的电流环状态观测器和机械环状态观测器。
     针对实现同周期控制需要解决的计算量大的问题,提出了全整数控制算法设计的基本规则。为获得高效高精度的矢量变换算法,简化了矢量变换公式,设计了可以快速地获得高精度正弦和余弦值的查表算法。针对三相脉宽调制中母线电压不能被充分利用的问题,设计了电压矢量中心点平移算法,证明了其有效性和无方向误差。根据同周期控制交流伺服系统电流环模型和机械环传递函数,设计了伺服控制主程序流程图和同周期控制程序流程图和系统软件。研制了包括主控板、功率板和电源板在内的系统硬件。
     为解决同周期控制中的电流采样噪声问题,推导了低通滤波器的递推公式和电流环状态观测器的递推公式,并提出了极点选取原则。设计了电流环调节器,并讨论了控制参数取值方法。建立了电流环的仿真模型和状态观测器的仿真模型,通过电流控制仿真确定了观测器极点选取和系统控制参数范围,并验证了观测器的有效性和优越性。编写了电流低通滤波器和电流环状态观测器的程序模块,在试验平台上进行了电流控制试验,试验结果证明状态观测器能够更有效地抑制电流采样噪声,达到更高的电流响应频率。
     针对同周期控制中,机械环频率高所导致的速度分辨低的问题,推导了速度数字低通滤波器的递推形式,并设计了机械环状态观测器,给出了观测器的收敛条件,并进行了极点选取。在电流环仿真模型的基础上,搭建了机械环仿真模型,对机械环和观测器进行了仿真调试。控制仿真结果证明了机械环状态观测器的有效性。编写了速度滤波器程序模块和机械环状态观测器程序模块,进行了速度控制试验。试验结果证明,应用了状态观测器的系统具有较高的响应速度和稳定性。
     针对高速电机控制中的高频电流控制问题,分析得出PWM频率不小于电流频率6倍的结论。针对当前位置检测器件无法在高速情况下正常工作的现状,提出了高速电机控制对位置检测器件的要求。本文系统中单对极磁性编码器的特性符合高速电机控制的要求。针对高速电机矢量控制中电压矢量变换的角度误差较大的问题,提出了超前补偿方法。针对编码器角度上报方式造成的角度反馈滞后问题,推导了角度反馈滞后量计算公式。设计了4对极20,000r/min永磁同步电机,用同周期伺服控制器对其进行了高速控制试验,高速电机的最高控制转速达到了22,000r/min。
     高速电机控制试验的成功,验证了本文研制的同周期控制交流伺服系统,可在PWM频率与电流频率达到极限比例的情况下进行高频电流控制和电机伺服控制,充分证明了此伺服系统具有非常优良的控制性能。
CNC equipment is a sort of typical electro-mechanical system, which is the core of equipment manufacturing industry. To realize the performance of high-speed and high-precision, the whole optimal design based on the mechanotronics is necessary, and it requires the cycle of NC instruction to be the same with the cycles of machine and current in the servo system. The thesis purposes on the uniform cycle control of machine-loop and current-loop to get the better performance for the AC servo system, and provides a uniform cycle servo system platform to achieve the integrate uniform cycle control in the CNC equipment.
     In order to validate the superiority of uniform cycle control, the math model of permanent magnet synchronous motor (PMSM) in the d-q coordinates is built. Compared the control effects of the uniform cycle control structure with the ones of the different cycle control structure, the fluctuation of the uniform cycle control is extremely unconspicuous, and the curves of output are more ideal. The transfer functions of uniform cycle control system and different cycle control system are derived respectively in this thesis. The transfer function of uniform cycle control system is provided with the lowest relative degree and the best stability. According to the models of the control system, the simulation platform is designed. Based on the simulation platrom, the velocity control is simulated with the uniform cycle control and the different cycle control. For the problems of current sampling noise, low velocity resolution and burdensome calculation based on the uniform cycle control, the effective solutions are proposed, which include the control algorithm with the integrate int calculation and the integrate int observer of current-loop and machine-loop.
     For the sake of realizing the uniform cycle control, a mass of calculation is needed to be carried out. In this thesis, the regulation based on the integrate int computing is proposed. To obtain the high-speed and high-precision vector transformation algorithm and simplify the vector transformation formulation, the algorithm of table looking-up which can get high-precision sine and cosine amount rapidly is designed. For the problem that the busbar voltage cannot be utilized sufficiently in 3-phrases PWM control, the algorithm of voltage vector center point translation is put forward, and the validity and precision are verified. Basd on the transfer function of current-loop model and mechanical-loop model in the uniform cycle system, the flow chart of main program for servo control and uniform cycle control are designed. And the control software of system is develped. The hardwares which include control board, power board and power supply board are also designed and developed.
     To solve the problem of current sampling noise in uniform cycle control system, the recurrence formulas of the low-pass filter and the observer in current-loop are achieved, and the regulation of pole’s selecting is discussed. Also, the adjustor in current-loop is designed and the method of control parameters’selceting is discussed. The simulation models of current-loop and observer are established, and the observer poles’selection and control parameter’s range are acquired from the current control simulation, and the superiority of the observer is validitied. And then, the program models for current low-pass filter and current observer are built. Taking the current control experiment on the experimental platform, the results show that the observer can press the current sampling noise effectively and gain the higher current response frequency.
     In the uniform cycle servo system, the high machine-loop frequency brings the problem of low velocity resolution. The recurrence of low-pass digital velocity filter is derived, the convergence condition is proposed, and the pole’s selection is dicussed. Based on the current-loop simulation model, the machine-loop simulation model is built, and the simulations of machine-loop and observer are carried out. The simulation results show the validity of the mechanical observer. Also, the velocity filter and machine-loop observer program modules are built, and the velocity control experiment is achieved based on the experimental platform. The experimental results indicate that the system adopting observer in current-loop and machine-loop is of higher response and stability.
     For the high frequency current control in the high-speed motor, the thesis achieves the conclusion that the frequency of PWM is requied to be 6 times lower than the current frequency. The present position detecting device cannot achieve nice effect in the high-speed condition, and the requirement for the position device in high-speed motor control is proposed. The characteristics of the single pole magnet encoder in the thesis meet the demand of high-speed motor control. For the problem that the angle errors exist in voltage vector transformation, the advancing compensation principle is put foward. Also, the method of angle uploading in encoder induces the delay of angle feedback, and the delay calculation formula of angle feedback is derived. Then, the 4-poles PMSM (20,000 rpm) was designed, and the motor has achieved the highest speed of 22,000 rpm based on the uniform cycle servo control equipment.
     The successful application in the high-speed motor control indicates that the uniform cycle servo system in this thesis can achieve the high frequency current control and servo control in the condition of that the frequencies of PWM and current get their ultimate proportion. It bears out that the servo system is of the excellent control performance.
引文
1 (日)武藤一夫.机电一体化.王益全,滕永红,于慎波.科学出版社, 2007: 2
    2国务院关于加快振兴装备制造业的若干意见.国发(2006) 8号.2006.2.13
    3李小辉.嵌入式数控系统开发平台的研究.天津大学硕士论文. 2006: 2~4
    4 K. D. Oldknow, I. Yellowley. Design Implementation and Validation of a System for the Dynamic Reconfiguration of Open Architecture Machine Tool Controls. International Journal of Machine Tools & Manufacture. 2001, 41(6): 795~808
    5 G. Pritschow, Y. Altintas, F. Jovane. Open Controller Architecture-past Present and Future. CIRP Annals-Manufacturing Technology. 2001, 50(2): 463~470
    6张志燕,李斌,朱国力,等.基于PC+NC的开放式数控系统平台的研究与应用.机械与电子. 2005, (5): 6~8
    7李爱平,张建国. NC嵌入PC型开放式数控的研究.组合机床与自动化加工技术. 2001, (12): 31~37
    8 http://www.osaca.org.
    9 C. Sawada, O. Akira. Open Controller Architecture OSEC-II: Architecture Overview and Prototype Systems. Emerging Technologies and Factory Automation Proceedings. ETFA’97. Los Angeles, USA. 1997, 9: 543~550
    10游有鹏.开放式数控系统关键技术研究.南京航空航天大学博士论文. 2001: 6~7
    11 http://www.omac.org
    12 H. T. Yau, M. T. Lin, M. S. Tsai. Real-time NURBS Interpolation Using FPGA for High Speed Motion Control. Computer-Aided Design. 2006, 38: 1123~1133
    13 N. Liu, G. Wang, Y. B. Zou. Research on a Real-time Interpolator DSP Based for NURBS. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China. 2006: 8206~8210
    14 H. T. Yau, M. T. Lin, Y. T. Chan. Design and Implementation of Real-time NURBS Interpolator Using a FPGA-Based Motion Controller. Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan. 2005: 56~61
    15 J. W. Jeon, Y. K. Kim. FPGA Based Acceleration and Deceleration Circuit for Industrial Robots and CNC Machine Tools. Mechatronics. 2002, 12: 635~642
    16 http://www.eckelmann.de/en/images/ENC55_DB_EN.pdf
    17陈蔡涛.基于XScale处理器的嵌入式数控系统软硬件技术研究.华中科技大学硕士论文. 2006: 17~25
    18王广丰,赵东标.基于ARM处理器的嵌入式数控系统.机械与电子. 2007, (2):26~28
    19吴文君,顾琳,徐笠云,等.基于ARM及嵌入式Linux的线切割数控系统开发.制造业自动化. 2009, 31(2): 75~78
    20 J. W. Jeon, Y. Y. Ha. A Generalized Approach for the Acceleration and Deceleration of Industrial Robots and CNC Machine Tools. IEEE Transactions on Industrial Electronics. 2000, 47(1): 133~139
    21 H. B. Leng, Y. J. Wu, X. H. Pan. Research on Cubic Polynomial Acceleration and Deceleration Control Model for High Speed NC Machining. Journal of Zhejiang University Science A. 2008, 9(3): 358~365
    22 N. Tounsi, T. Bailey, M. A. Elbestawi. Identification of Acceleration Deceleration Profile of Feed Drive Systems in CNC Machines. International Journal of Machine Tool & Manufacture. 2003, 43: 441~451
    23 W. T. Lei, M. P. Sung. NURBS-based Fast Geometric Error Compensation for CNC Machine Tools. International Journal of Machine Tools & Manufacture. 2008, 48: 307~319
    24 J. Cui, Z. Y. Chu. An Improved Approach for the Acceleration and Deceleration of Industrial Robots and CNC Machine Tools. Proceedings-IEEE ICIT’2005, Cejle, Slovenia. 2005: 1269~1273
    25 D. C. H. Yang, K. Tom. Parametric Interpolation Versus Linear Interpolator for Precision CNC Machining. Computer-Aided Design. 1994, 26(3): 225~233
    26 R. V. Fleisig, A. D. Spence. A Constant Feed and Reduced Angular Acceleration Interpolation Algorithm for Multi-axis Machining. Computer-Aided Design. 2001, 33: 1~15
    27俞益飞,罗良玲,李瑞,等.自动加减速算法对数控加工误差的影响.机械工程与自动化. 2005, (5): 31~33
    28姜平. CNC系统中指数升降速控制曲线的算法.微特电机. 2003, (5): 16~21
    29陈慰曾.加减速控制算法及其对数控加工的影响.机械制造. 2000, (11): 36~37
    30郭新贵,李从心.一种新型柔性加减速算法.上海交通大学学报. 2003, 37(2): 205~207
    31李加文,陈宗雨,李从心.基于函数逼近的三角函数加减速方法.机床与液压. 2006, (3): 66~67
    32许良元,桂贵生,彭丹丹.高速加工中加减速控制的研究.中国制造业信息化. 2005, 34(2): 124~126
    33 K. J. Zheng, L. Cheng. Adaptive S-curve Acceleration/Deceleration Control Method. Proceeding of the 7th World Congress on Intelligent Control and Automation, Chongqing, China. 2008: 2752~2765
    34 S. T. Meng, W. N. Hao, T. Y. Hong. Development of an Intergrated Look-ahead Dynamics-based NURBS Interpolator for High Precision Machinery. Computer-Aided Design. 2008, 40: 554~556
    35 M. H. Hu, X. Q. Shi, T. J. Wang. A Note on Cubic Polynomial Interpolation. Computers and Mathematics with Applications. 2008, 56: 1358~1363
    36 K. Erkorkmaz, Y. Altintas. High Speed CNC System Design Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation. International Journal of Machine Tools & Manufacture. 2001, 41: 1323~ 1345
    37 S. H. Nam, M. Y. Yang. A Study on Generalized Parametric Interpolator with Real-time Jerk-limited Acceleration. Computer-Aided Design. 2004, 36: 27~36
    38 X. G. Shi, B. G. Xu, W. Xie. Design and Implementation for Jerk Limited Trajectory Plan with Real-time Look-ahead Interpolator. Proceeding of the 27th Chinese Control Conference, Kunming, Yunnan, China. 2008: 135~139
    39赵巍.数控系统的插补算法及加减速控制方法研究.天津大学博士论文. 2004: 5~7
    40 L. Sotiris, Omirou. A CNC Interpolation Algorithm for Boundary Machining. Robotics and Commputer-Integrated Manufacturing. 2004, 20: 255~264
    41 B. Bahr, X. M. Xiao, K. Krishnan. A Real-time Scheme of Cubic Parametric Curve Interpolations for CNC Systems. Computers in Industry. 2001, 45: 309~317
    42 S. Bedi, I. Ali, N. Quan. Advanced Interpolation Techniques for CNC Machines. ASME Journal Engineering Industry. 1993, 115: 329~336
    43 M. Shpitalni, Y. Koren, C. C. Lo. Real-time Curve Interpolators. Computer-Aided Design. 1994, 26(11): 832~838
    44 S. S. Yeh, P. L. Hsu. The Speed-controlled Interpolation for Machining Parametric Curves. Computer-Aided Design. 1999, 31: 349~357
    45 R. T. Farouki, Y. F. Tsai. Exact Taylor Series Coefficients for Variable-feedrate CNC Curve Interpolatiors. Computer-Aided Design. 2001, 33: 155~165
    46 M. C. Tsai, C. W. Cheng, M. Y. Cheng. A Real-time NURBS Surface Interpolator for Precision Three-axis CNC Machining. Machine Tools & Manufacture. 2003, 43: 1217~1227
    47 S. S. Yeh, P. L. Hsu. Adapive-feedrate Interpolation for Parametric Curves with a Confined Chord Error. Computer-Aided Design. 2002, 34: 229~237
    48 T. Yong, R. Narayanaswami. A Parametric Interpolator with Confined Chord Errors, Acceleration and Deceleration for NC machining. Computer-Aided Design. 2003, 35: 1249~1259
    49 M. T. Lin, M. S. Tsai, H. T. Yau. Development of Real-time Look-ahead Algorithmfor NURBS Interpolator with Consideration of Servo Dynamics. Proceedings of the
    46th IEEE Conference on Decision and Control New Orieans, LA, USA. 2007: 1862~1867
    50 X. G. Shi, B. G. Xu, W. Xie. Design and Implementation of S-shape Acceleration/Deceleration Algorithm based on Rounding Error Compensation Tactic. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China. 2008: 7912~7916
    51 Y. Z. Mohammed, A. Panahi. A review of three PWM techniques. PACC 1997, (11): 257~261
    52 H. W. Breock, H. C. Skudelny, G. V. Stanck. Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors. IEEE Transactions on Industry Applications. 1988, 24(I): 142~150
    53杨贵杰,孙力.空间矢量脉宽调制方法的研究.中国电机工程学报. 2001, (5): 79~83
    54 K. L. Zhou, D. W. Wang. Relationship Between Space-Vector Modulation and Three-Phase Carrier-Based PWM: A Comprehensive Analysis . IEEE Transactions on Industry Electronics. 2002, 49(1): 186~196
    55 D. G. Holmes. The Significance of Zero Space Vector Placement for Carrier-Based PWM Schemes. IEEE Transactions on Industry Applications. 1996, 32(5): 1122~1129
    56 H. T. Moon, H. S. Kim, M. J. Youn. A Discrete-Time Predictive Current Control for PMSM. IEEE Transactions on Power Electronics. 2003, 18(1): 464-472
    57 J. X. Xu, S. K. Panda, Y.J. Pan, T. H. Lee, B. H. Lam. A Modular Control Scheme for PMSM Speed Control With Pulsating Torque Minimization. IEEE Transactions on Industry Electronics. 2004, 51(3): 526~536
    58 Y. I. Mohamed, T. K. Lee. A daptive Self-Tuning MTPA Vector Controller for IPMSM Drive System. IEEE Transactions on Energy Conversion. 2006, 21(3): 636~644
    59 N. Urasaki, T. Senjyu, K. Uezato, T. Funabashi. An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives. IEEE Transactions on Power Electronics. 2005, 20(5): 1150~1160
    60王传忠,杨霞,李强.专家—模糊滑模变结构控制伺服系统的研究.河北工业大学学报, 2001, 30(5): 52~55
    61李久胜,王炎.基于滑模原理的鲁棒交流伺服控制器.哈尔滨工业大学学报. 2000, 32(2): 19~23
    62 A. Consoli, A. Raciti, A. Testa. Experimental Low-chattering Sliding-mode Controlof a PM Motor Drive. Proc. EPE Conf. 1991, (1): 13~18
    63 S. B. Lee. Closed-Loop Estimation of Permanent Magnet Synchronous Motor Parameters by PI Controller Gain Tuning. IEEE Transactions on Energy Conversion. 2006, 21(4): 863~870
    64 N. Matsui, H. Ohash. DSP-based Adaptive Control of a Brushless Motor. IEEE Transactions on Industry Applications. 1992, 28(2): 375~380
    65 R. B. Sepe, J. H. Lang. Real-time Adaptive Control of PM Synchronous Motor. IEEE Transactions on Industry Applications. 1991, (4): 706~714
    66 E. Cerruo, A. Consoli, A. Raciti, A. Testa. Adaptive Fuzzy Control of High Performance Motion Systems. Proc. IEEE Transactions on Industry Electronics. 1992, 1: 88~94
    67 Y. X. Su, C. H. Zheng, B. Y. Duan. Automatic Disturbances Rejection Controller for Precise Motion Control of Permanent-Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics. 2005, 52(3): 814~823
    68 Y. Zhang, C. M. Akujuobi, W. H. Ali, C. L. Tolliver, L. S. Shieh. Load Disturbance Resistance Speed Controller Design for PMSM. IEEE Transactions on Industrial Electronics. 2006, 6(53): 1198~1208
    69 H. L. Huy, K. Slimani, P. Viarouge. A Predictive Current Controller for Synchronous Motor Drive. Proc. EPE Conf. 1991, 2: 114~119
    70 R. D. Lorenz, M. R. Buhl, D. M. Divan. Design and Implementation of Neural Networks for Digital Current Regulation for Inverter Drives. IEEE IAS Annu. Meet. Rec. 1991, 1: 415~421
    71 B. M. Tryzynadlowski, S. Legowski. Application of Neural Networks to the Optimal Control of 3-Ph. Voltage-controlled Power Inverter. Proc. IECON, 1992: 524~529
    72 C. Cavallaro, A. O. D. Tommaso, R. Miceli. Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches. IEEE Transactions on Industrial Electronic. 2005, 52(4): 1153~1160
    73 S. Shinnaka. New“D-State-Observer”-Based Vector Control for Sensorless Drive of Permanent-Magnet Synchronous Motors. IEEE Transactions on Industry Applications. 2005, 41(3): 825~833
    74 T. K. Boukas, T. G. Habetler. High-Performance Induction Motor Speed Control Using Exact Feedback Linearization With State and State Derivative Feedback. IEEE Transactions on Power Electronics.. 2004, 19(4): 1022~1028
    75 M. C. Huang. The Comparison of Sensorless Estimation Techniques for PMSM between Extended Kalman Filter and Flux-linkage Observer. Applied PowerElectronics Conference and Exposition. 2006, (19-23): 654~659
    76 Y. S. Kim, Y. K. Choi, J. H. Lee. Speed-sensorless Vector Control for Permanent-magnet Synchronous Motors Based on Instantaneous Reactive Power in the Wide-speed Region. IEE Proceeding-Electronic Power Applications. 2005, 152(5): 1343~1349
    77 J. K. Seok. Sensorless Speed Control of Non salient Permanent-Magnet Synchronous Motor Using Rotor-Position-Tracking PI Controller. IEEE Transactions on Industrial Electronics. 2006, 53(2): 399~405
    78 M. Boussak. Implementation and Experimental Investigation of Sensorless Speed Control with Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive. IEEE Transactions on Power Electronics. 2005, 20(6): 1413~1422
    79 O. Wallmark. Sensorless Control of Salient PMSM Drives in the Transition Region. IEEE Transactions on Industrial Electronics. 2006, 53(4): 1179~1187
    80 S. Ichikawa, M. Tomita, S. Doki, S. Okuma. Sensorless Control of Permanent-Magnet Synchronous Motors Using Online Parameter Identification Based on System Identification Theory. IEEE Transactions on Power Electronics. 2006, 53(2): 363~372
    81李烨,严欣平.永磁同步电动机伺服系统研究现状及应用前景.微电机. 2001, (4): 30~33
    82 F. Brahamsen. On the Energy Optimized Control of Standard and High-Efficiency Induction Motors in CT and HVAC Applications. IEEE Trans actions on Industry Applications. 2002, 34(4): 822~831
    83王秀芝.高性能BLDCM伺服系统发展趋势及研究现状.电气自动化. 1996, (2): 15~19
    84陈伯时.交流调速系统.机械工业出版社. 1998
    85李志民,张遇杰.同步电动机调速系统.机械工业出版社. 1996
    86 F. Blaschke. Principle of Field Orientation as Used in the New Transvektor Control System for Induction Machines. Siemens-Z. 1971, 45(10): 757-760
    87 L. Takahashi, T. Noguchi. A New Quick-response and High-efficiency Control Strategy of an Induction Motor. IEEE Transactions on Industry Applications. 1986, 22(5): 820~827
    88 M. Depenbrock. Direct Self-control (DSC) of Inverter Fed Induction Machine. PESC 87 Record: 18th Annual IEEE Power Electronics Specialists Conference (Cat. No.87CH2459-6). IEEE. 1987, 6: 32~41
    89 Guglielmi, P. Pastorelli, M. Pellegrino. A Position-Sensorless Control of PermanentMagnet Assisted Synchronous Reluctance Motor. IEEE Transactions on Industry Applications. 2004, 40(2): 615~622
    90 S. Shinnaka. New Sensorless Vector Control Using Minimum-order Flux State Observer in a Stationary Reference Frame for Permanent-magnet Synchronous Motors. IEEE Transactions on Industrial Electronics. 2006, 53(2): 388~398
    91 P. Tiitinen, M. Surandra. The Next Generation Motor Control Method Direct Torque Control. In Proceedings of the 1996 International Conference on Power Electronics. Drives and Energy Systems for Industrial Growth (Cat. No.96TH8111). New York, NY, USA. 1996, 7: 37~43
    92 G. Griva. Wide Speed Range DTC Drive Performance with New Flux Weakening Control for Induction Motor Drives. In PESO 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196). New York. NY. USA. 1998, 2: 599~604
    93 A. Damiano. An Adaptive Speed Sensorless Observer for Induction Motor Drives. In IECON 98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200). New York, NY, USA. 1998, 3: 592~600
    94 M. F. Rahman. A Direct Torque Controlled Permanent Magnet Synchronous Motor Drive without a Speed Sensor. In IEEE International Electric Machines and Drives Conference. IEMDC'99. Proceedings (Cat. No.99EX272). IEEE Piscataway, NJ, USA. 1999, 12:3~5
    95 M. E. Hague, L. Zhong, M. F. Rahman. A Sensorless Speed Estimator for Application in a Direct Torque Controller of an Interior Permanent Magnet Synchronous Motor Drive, Incorporating Compensation of Offset Error. In 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289). NJ. USA. 2002, 1:76~81
    96 M. F. Rahman. A Direct Torque-controlled Interior Permanent-magnet Synchronous Motor Drive Without a Speed Sensor. IEEE Transactions on Energy Conversion. 2003, 18(1): 17~22
    97 J. K. Seok, J. K. Lee, D. C. Lee. Sensorless Speed Control of Nonsalient Permanent Magnet Synchronous Motor Using Rotor Position Tracking PI Controller. IEEE Transactions on Industrial Electronics, 2006, 53(2): 399~405
    98 K. H. Kim, I. C. Baik, M. J. Youn. Simple and Robust Digital Current Control Scheme of Permanent Magnet Synchronous Motor Using Time Delay Control Approach. Electrical Letters. 1999, 35(12): 1027~1028
    99 S. Mir, M. E. Elbuluk, D. S. Zinger. PI and Fuzzy Estimators for Tuning the Stator Resistance in Direct Torque Control of Induction Machines, IEEE Transactions onPower Electronics. 1998, 13(2): 279~287
    100 C. J. Kwon, W. Y. Han, C. G. Lee. Speed Control of PMSM Using a Robust Adaptive Controller. SICE. 2001: 12~15
    101 Guney, Y. Oguz, F. Serteller. Dynamic Behavior Model of Permanent Magnet Synchronous Motor Fed by PWM Inverter and Fuzzy Logic Controller for Stator Phase Current. Flux and Torque Control of PMSM. IEMDC. 2001: 479~485
    102 L. A. Cabrera, M. E. Elbuluk, I. Husain. Tuning the Stator Resistance of Induction Motors Using Artificial Neural Network, IEEE Transactions on Power Electronics. 1997, 12(5): 779~787.
    103 L. Saleh, M. A. Badr, A. S. Elwer. Analysis of Controlled Permanent Magnet Synchronous Motor Using Artificial Neural Network, ICEMS 2001. 2001, 2: 791~795
    104 R. Krishnan, R. Monajemy, N. Tripathi. Neural Control of High Performance Drives: an Application to the PM Synchronous Motor Drive. IECON '95. 1995, 1: 38~43
    105郭庆鼎,王丽梅.神经网络在伺服系统中的应用.电气传动. 1997, (1): 17~20
    106李艳,邵日祥,邵世煌,等.带有神经网络估计器的模糊直接转矩控制.电气传动. 1997, (1): 11~16
    107 M. G. Simoes, B. K. Bose. Neural Network Based Estimation of Feedback Signals for Vector Controlled Induction Motor Drive. IEEE Transactions on Industry Application. 1995, 31(3): 620~629
    108王小东,陈伯时,夏承光.基于单神经元的自适应PID控制器直流调速系统的研究.电气传动. 1996, (4): 29~32
    109 Solsona, M.L. Valla, C.A. Muravchik. Nonlinear Reduced Order Observerfor Permanent Magnet Synchronous Motors. IEEE Transactions on Industry Electronics. 1996, 43(4): 492~497
    110 V. Petrovic, R. Ortega, A.M. Stankovic, G. Tadmor. Design and Implementation of an Adaptive Controller for Torque Ripple Minimization in PM Synchronous Motors. IEEE Transactions on Power Electronics. 2000,15(5): 871~880
    111 K.J. Astrom, J. J. Anton, K. E. Arzen. Expert Control. Automation. 1986, 22(3): 277~286
    112 A. Rahman, M. A. Hoque. On-line Adaptive Artificial Neural Network Based Vector Control of Permanent Magnet Synchronous Motors. IEEE Transactions on Energy Conversion. 1998, 13(4): 311~318
    113 B. K. Bose. Fuzzy Logic and Neural Network Applications in Power Electronicsand Motion Control. IEEE Proc. 1994, 82(8): 1303~1323
    114 C .Baik, K. H. Kim, M. J. Youn. Robust Nonlinear Speed Control of PM Synchronous Motor Using Adaptive and Sliding Mode Control Techniques, IEEE Transactions on Power Applications. 1998, 145(4): 369~376
    115 Konghirun, M. Xu. A Fast Transient-Current Control Strategy in Sensorless Vector Controlled Permanent Magnet Synchronous Motor. IEEE Transactions on Power Electronics. 2006, 21(5): 1508~1512
    116 Y. A. I. Mohamed. Adaptive Self-Tuning Speed Control for Permanent Magnet Synchronous Motor Drive with Dead Time. IEEE Transactions on Energy Conversion. 2006, 21(4): 855~862
    117 L. Xiao, Y. J. Zhou, J. Huang. The High Efficiency AC Servo Control System for a Missile. Electrical Machines and Systems. 2005. ICEMS 2005. Proceedings of the Eighth International Conference. 2005,1: 699~702
    118 B. H. Bae, S. K. Sul, J. H. Kwon, J. S. Shin. Impleme Ntation of Sensorless Vector Control for Super-High Speed PMSM of Turbo-Compressor. IEEE Transactions on Industry Applications. 2003, 39(3): 811~818
    119 D. G. Luenberger. Observers for Multivariable Systems, IEEE Transactions on Automatic Control. 1996, 11: 190-197
    120徐永向.单霍尔传感器高速永磁同步电机的控制与转子损耗研究.哈尔滨工业大学博士论文. 2005
    121 B. H. Bae S. K. Sul. A Compensation Method for Time Delay of Full Digital Synchronous Frame Current Regulator of PWM AC Drives. IEEE Transactions on Industry Applications. 2003,39(3): 802-810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700