中性分子的激光导引及其连续冷分子束的产生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷分子在分子光谱、精密测量、分子冷碰撞及冷化学等方面有着非常重要的应用。近十多年来,冷分子的产生及其相关研究吸引了众多的眼球。本文围绕中性分子的激光导引及其连续冷分子束的产生开展理论方案的研究和探索。
     我们提出了利用空心光子晶体光纤中红失谐的高斯模式导引中性分子的方案。我们基于一个经典模型理论计算了分子的直导引效率和弯曲导引效率,并利用Monte-Carlo方法数值模拟了分子导引的动力学过程,研究了分子的导引效率、导引后分子束的横向和纵向速度分布等。模拟结果与理论计算值吻合得很好。当激光功率为2kW时,I2分子的直导引效率约为24.6%;当激光功率为200W且光纤的曲率半径为0.2cm时,I2分子的弯曲导引效率约为1.2%,并获得了连续的冷分子束。
     我们提出了利用空芯光纤中红失谐的HE11模S型弯曲导引中性分子束的方案,计算了空芯光纤中I2分子的光学势,并通过数值模拟研究了分子导引效率、导引后分子束的横向和纵向温度与入射激光功率及光纤曲率半径的关系。当入射激光功率为6KW、两弯曲部分的曲率半径为2cm、入射分子束的横向和纵向温度分别为0.5K和5K时,相应的分子导引效率为0-26%。导引后分子束的横向和纵向温度分别为1.9mK和0.5K,出射分子束的束流为108-109s-。
     我们提出了利用弯曲集成光纤束对中性分子进行全光型速度滤波的新方案,计算了I2分子在双色消逝波场中的光学势,并根据一个经典理论模型计算了分子的导引效率、导引后分子束的横、纵向温度。我们采用经典Monte-Carlo方法模拟了被导引分子的运动轨迹,研究了出射分子束的导引效率、横向和纵向速度和空间分布等。当双色激光功率分别为10W(1064nm)和3.58W(266nm)、波导弯曲半径为R=0.2cm、入射碘分子束的横纵向温度分别为1K和5K时,相应的导引效率为4.1×10-7、导引后分子束的横纵向温度分别为0.29mK和57mK,出射分子束的束流为105-106s-1。
     我们提出了采用四根平板波导实现分子束的U型弯曲导引及速度滤波的新方案,计算了四根平板波导空心区域的消逝波场分布及碘分子的光学势和总囚禁势,并数值研究了分子的导引效率、导引后分子束的横、纵向温度等。当入射激光功率为200W,弯曲导引段的曲率半径为2cm时,出射分子束的横向和纵向温度分别为340μK和15.3mK,相应的束流为104-105s-1。
     我们还提出了利用腔增强高斯光束导引中性分子的新方案。当分子束入射方向与腔轴线之间存在一定的夹角时,可以实现对低速分子的速度滤波。我们计算了腔内高斯光束的光场分布及碘分子的光学势,并利用Monte-Carlo方法数值研究了分子的导引效率、导引后分子束的横、纵向温度等。当入射激光的功率为100W,入射束流与腔轴线之间夹角θ=60。时,出射分子束的横向和纵向温度分别为4mK和134mK,相应的束流为108~109s-1。
Cold molecules offer new opportunities for molecular spectroscopy, precision measurement, cold collisions, and cold chemistry. Over the decade, there is a great interest in the production of cold molecules and their manipulation. This thesis is dedicated to the theoretical study of laser guiding of neutral molecules and generation of cw cold molecular beams.
     We propose a promising scheme to guide arbitrary neutral molecules in a hollow-core photonic band gap (HC-PBG) fiber by using a red-detuned Gaussian mode. We theoretically calculate the guiding efficiencies for both the straight guide and bent guide by using a classical model, and study the dynamic behavior of the laser guided molecules by Monte-Carlo simulation. The simulated values for the guiding efficiency, the transverse and longitudinal velocity distributions of the guided molecular beams agree well with those obtained theoretically. When the input laser power is 2kW, the straight guiding efficiency for I2 molecules is about 24.6%. While the input laser power is 200W and the radius of the curvature of the laser fiber is R=0.2cm, the bent guiding efficiency for I2 molecules is about 1.2%, and a cw cold molecular beam will be generated.
     We propose a novel scheme to bently guide neutral molecules in a hollow optical fiber using a red-detuned HE11 mode. We theoretically calculate the optical potential for I2 molecules inside the hollow fiber and numerically investigate the dependences of the guiding efficiency, the transverse and longitudinal temperatures of guided I2 molecules on both the laser power and the radius of the curvature of the bent guide. Our study shows that and when an input laser is 6kW, and an input I2 molecular beam with a transverse temperature of 0.5K and a longitudinal temperature of 5K is used, a cw cold I2 molecular beam with a transverse temperature of 1.9mK and a longitudinal one of 0.5K will be generated by using a S-shaped hollow optical fiber with a 2cm radius-of- curvature for two bends, and the corresponding guiding efficiency and output flux are about 0.126% and the order of 108~109s-1,respectively.
     We propose a new scheme to generate a cw cold molecular beam by optically guiding molecules around an S-shaped integrated fiber bundle. We calculate the optical potential for I2 molecules inside the two-color evanescent field around the fiber bundle, and theoretically estimate the guiding efficiency of the guided molecular beam as well as its transverse and longitudinal temperatures based on a classical model. We also perform numerical simulations for the process of guiding molecules through the bent guide, and obtain the guiding efficiency of the output molecular beam as well as its spatial and velocity distributions in both transverse and longitudinal directions. When the power of two input lasers are 10W (1064nm) and 3.58W (266nm), the radius of the curvature of the fiber bundle is 0.2cm, and the transverse and longitudinal temperatures of the input I2 molecular beam are 0.5K and 5K, a cw cold I2 molecular beam with a transverse temperature of 0.29mK and a longitudinal one of 57mK will be produced, and the corresponding guiding efficiency and output flux are about 4.1×10-7 and the order of 105~106s-1,respectively.
     We propose a U-shaped laser guiding and velocity filtering scheme for cold molecules by using the evanescent waves inside four planar waveguides. We theoretically calculate the distribution of evanescent fields and the optical potential for I2 molecules inside the four planar waveguides, and numerically investigate the final guiding efficiency as well as the transverse and longitudinal temperatures of the guided I2 molecular beam. Our research shows that when the power of each incident laser is 200W, and the curvature radius of the bent guide is 2cm, a cw cold molecular beam with a transverse temperature of 0.34mK and a longitudinal one of 15.3mK can be obtained, and the corresponding output flux is about 104~105s-1
     We also propose a laser guiding scheme for cold molecules by using a cavity enhanced Gaussian beam. We calculate the light field distribution and the optical potential for I2 molecules inside the optical cavity, and study the dynamic behavior of laser guided molecules by classical Monte-Carlo simulation. Our study shows that when the input laser power is 100W and the angle between the input molecular beam and the axis of the optical cavity isθ=60°, a cw cold molecular beam with a flux of 108~109s-1, a transverse temperature of 4mK and a longitudinal one of 134mK will be generated.
引文
1. E. A. Cornell and C. E. Wieman, "Nobel Lecture:Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments," Rev. Mod. Phys.74, 875-893 (2002).
    2. W. Ketterle, "Nobel lecture:When atoms behave as waves:Bose-Einstein condensation and the atom laser," Rev. Mod. Phys.74,1131-1151 (2002).
    3. W. Ketterle, "When atoms behave as waves:Bose-Einstein condensation and the atom laser (Nobel Lecture)," ChemPhysChem 3,736-753 (2002).
    4. S. Bose, "Plancks gesetz und lichtquantenhypothese," Z. Phys.26,178-181 (1924).
    5. A. Micheli, G. K. Brennen, and P. Zoller, "A toolbox for lattice-spin models with polar molecules," Nat. Phys.2,341-347 (2006).
    6. H. P. Buchler, E. Demler, M. Lukin, A. Micheli, N. Prokofev, G. Pupillo, and P. Zoller, "Correlated 2D quantum phases with cold polar molecules:controlling the shape of the interaction potential," Phys. Rev.Lett.98,060404-1-4 (2007).
    7. D. W. Wang, M. D. Lukin, and E. Demler, "Quantum fluids of self-assembled chains of polar molecules," Phys. Rev. Lett.97,180413-1-4 (2006).
    8. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, New York, Springer, (1999).
    9. M. Schnell and G. Meijer, "Cold Molecules:Preparation, Applications, and Challenges," Angew. Chem. Int. Ed.48,6010-6031 (2009).
    10. H. R. Thorsheim, J.Weiner, and P. S. Julienne, "Laser-induced photoassociation of ultracold sodium atoms," Phys. Rev. Lett.58,2420-2423 (1987).
    11. P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratliff, S. L. Rolston, and M. E. Wagshul, "Spectroscopy of Na2 by photoassociation of laser-cooled Na," Phys. Rev. Lett.71,2200-2203 (1993).
    12. J. D. Miller, R. A. Cline, and D. J. Heinzen, "Photoassociation spectrum of ultracold Rb atoms," Phys. Rev. Lett.71,2204-2207 (1993).
    13. T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H. C. Nagerl, and R. Grimm, "Evidence for Efimov quantum states in an ultracold gas of caesium atoms," Nature 440,315-318 (2006).
    14. M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, "Observation of Bose-Einstein condensation of molecules," Phys. Rev. Lett.91,250401-1-4 (2003).
    15.I. Bloch, J. Dalibard, and W. Zwerger, "Many-body physics with ultracold gases," Rev. Mod. Phys.80,885-964 (2008).
    16. J. Deiglmayr, A. Grochola, M. Repp, K. Mortlbauer, C. Gluck, J. Lange, O. Dulieu, R. Wester, and M. Weidemuller, "Formation of ultracold polar molecules in the rovibrational ground state," Phys. Rev. Lett.101,133004-1-4 (2008).
    17. M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, "Optical pumping and vibrational cooling of molecules," Science 321, 232-234 (2008).
    18. N. V. Vitanov, T. Halfmann, B.W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem.52, 763-809(2001).
    19. F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. Hecker Denschlag, "Ultracold triplet molecules in the rovibrational ground state," Phys. Rev. Lett.101, 133005-1-4(2008).
    20. S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, "High-Flux Beam Source for Cold, Slow Atoms or Molecules," Phys. Rev. Lett.95,173201-1-4 (2005).
    21. D. Patterson and J. M. Doyle, "Bright, guided molecular beam with hydrodynamic enhancement," J. Chem. Phys.126,154307-1-5 (2007).
    22. H. L. Bethlem, G Berden, and G Meijer, "Decelerating Neutral Dipolar Molecules," Phys. Rev. Lett.83,1558-1561 (1999).
    23. H. L. Bethlem and G. Meijer, "Production and application of translationally cold molecules," Int. Rev. Phys. Chem.22,73-128 (2003).
    24. H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G Meijer, "Electrostatic trapping of ammonia molecules," Nature 406, 491-494(2000).
    25. J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, "Phase space manipulation of cold free radical OH molecules," Phys. Rev. Lett.91, 243001-1-4(2003).
    26. S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, "Deceleration and electrostatic trapping of OH radicals," Phys. Rev. Lett. 94,023004-1-4(2005).
    27. K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, "Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states," Phys. Rev. A 78,033421-1-8(2008).
    28. S. Hoekstra, J. J. Gilijamse, B. Sartakov, N. Vanhaecke, L. Scharfenberg, S. Y. T. van de Meerakker, and G. Meijer, "Optical pumping of trapped neutral molecules by blackbody radiation," Phys. Rev. Lett.98,133001-1-4 (2007).
    29. S. Hoekstra, M. Metsala, P. C. Zieger, L. Scharfenberg, J. J. Gilijamse, G. Meijer, and S. Y. T. van de Meerakker, "Electrostatic trapping of metastable NH molecules," Phys. Rev. A 76,063408-1-6 (2007).
    30. E. R. Hudson, C. Ticknor, B. C. Sawyer, C. A. Taatjes, H. J. Lewandowski, J. R. Bochinski, J. L. Bohn, and J. Ye, "Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals," Phys. Rev. A 73,063404-1-6 (2006).
    31. S. Jung, E. Tiemann, and C. Lisdat, "Cold atoms and molecules from fragmentation of decelerated SO2," Phys. Rev. A 74,040701(R)-1-4 (2006).
    32. H. L. Bethlem, A. J. A. van Roij, R. T. Jongma, and G. Meijer, "Alternate gradient focusing and deceleration of a molecular beam," Phys. Rev. Lett.88,133003-1-4 (2002).
    33. M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, "Slowing heavy, ground-state molecules using an alternating gradient decelerator," Phys. Rev. Lett.92,173002-1-4 (2004).
    34. E. Vliegen, H. J. Worner, T. P. Softley, and F. Merkt, "Nonhydrogenic effects in the deceleration of rydberg atoms in inhomogeneous electric fields," Phys. Rev. Lett.92,033005-1=4(2004).
    35. E. Vliegen and F, Merkt, "On the electrostatic deceleration of argon atoms in high Rydberg states by time-dependent inhomogeneous electric fields," J. Phys. B 38, 1623-1636(2005).
    36. Y. Yamakita, S. R. Procter, A. L. Goodgame, T. P. Softley, and F. Merkt, "Deflection and deceleration of hydrogen Rydberg molecules in inhomogeneous electric fields," J. Chem. Phys.121,1419-1431 (2004).
    37. N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, "Multistage Zeeman deceleration of hydrogen atoms," Phys. Rev. A 75,031402(R)-1-4 (2007).
    38. S. D. Hogan, D. Sprecher, M. Andrist, N. Vanhaecke, and F. Merkt, "Zeeman deceleration of H and D," Phys. Rev. A 76,023412-1-11 (2007).
    39. S. D. Hogan, A. W. Wiederkehr, M. Andrist, H. Schmutz, and F. Merkt, "Slow beams of atomic hydrogen by multistage Zeeman deceleration," J. Phys. B 41, 081005-1-4(2008).
    40. S. D. Hogan, A. W. Wiederkehr, H. Schmutz, and F. Merkt, "Magnetic trapping of hydrogen after multistage zeeman deceleration," Phys. Rev. Lett.101,143001-1-4 (2008).
    41. E. Narevicius, A. Libson, C. G. Parthey, I. Chavez, J. Narevicius, U. Even, and M. G. Raizen, "Stopping supersonic beams with a series of pulsed electromagnetic coils:An atomic coilgun," Phys. Rev. Lett.100,093003-1-4 (2008).
    42. E. Narevicius, A. Libson, C. G. Parthey, I. Chavez, J. Narevicius, U. Even, and M. G. Raizen, "Stopping supersonic oxygen with a series of pulsed electromagnetic coils:A molecular coilgun," Phys. Rev. A 77,051401(R)-1-4 (2008).
    43. R. Fulton, A. I. Bishop, and P. F. Barker, "Optical Stark Decelerator for Molecules," Phys. Rev. Lett.93,243004-1-4 (2004).
    44. R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, "Optical Stark deceleration of nitric oxide and benzenemolecules using optical lattices," J. Phys. B39, S1097-S1109 (2006).
    45. R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, "Controlling the motion of cold molecules with deep periodic optical potentials," Nature Phys.2,465-468 (2006).
    46. J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich and J. M. Doyle, "Magnetic trapping of calcium monohydride molecules at millikelvin temperatures," Nature 395,148-150 (1998).
    47. P. Barletta, J. Tennyson, and P. F. Barker, "Creating ultracold molecules by collisions with ultracold rare-gas atoms in an optical trap," Phys. Rev. A 78, 052707-1-4(2008).
    48. D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, "Vibrational cooling of cesium molecules using noncoherent broadband light," Phys. Rev. A 80,051401(R)-1-4 (2009).
    49. G. Morigi, P. W. H. Pinkse, M. Kowalewski, and R. de Vivie-Riedle, "Cavity cooling of internal molecular motion," Phys. Rev. Lett.99,073001-1-4 (2007).
    50. T. Salzburger and H. Ritsch, "Collective transverse cavity cooling of a dense molecular beam," New Journal of Physics 11,055025-1-22 (2009).
    51.尹亚玲,《中性分子束光学Stark减速与反射的理论研究》,博士论文,华东师范大学(2008)。
    52. B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, "Magneto-optical trap for polar molecules," Phys. Rev. Lett.101,243002-1-4 (2008).
    53. E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, "Radiative force from optical cycling on a diatomic molecule," Phys. Rev. Lett.103,223001-1-4 (2009).
    54. F. Robicheaux, "A proposal for laser cooling of OH molecules," J. Phys. B 42, 195301-1-8(2009).
    55.王义遒.原子的激光冷却与陷俘.北京:北京大学出版社,2007.
    56. P. F. Barker, "Doppler Cooling a Microsphere," Phys. Rev. Lett.105,073002-1-4 (2010).
    57. A. Ashkin and J. M. Dziedzic, "Observation of Resonances in the Radiation Pressure on Dielectric Spheres," Phys. Rev. Lett.38,1351-1354 (1977).
    58. T. Junglen, T. Rieger, S. A. Rangwala, P.W. H. Pinkse, and G. Rempe, "Slow ammonia molecules in an electrostatic quadrupole guide," Eur. Phys. J. D 31, 365-373 (2004).
    59. H.Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, "Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter," Chem. Phys. Lett.436,331-334 (2007).
    60. Y. Liu, M. Yun, Y. Xia, L. Deng and J. Yin, "Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering," Phys. Chem. Chem. Phys.12,745-752(2010).
    1. H. J. Loesch and B. Scheel, "Molecules on Kepler orbits:an experimental study," Phys. Rev. Lett.85,2709-2712 (2000).
    2. J. Schmiedmayer, "Guiding and trapping a neutral atom on a wire," Phys. Rev. A 52, R13-R16(1995).
    3. S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, "Continuous source of translationally cold dipolar molecules," Phys. Rev. A 67, 043406 (2003).
    4. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, "Two-dimensional trapping of dipolar molecules in time-varying electric fields," Phys. Rev. Lett.92,223001 (2004).
    5. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, "Slow ammonia molecules in an electrostatic quadrupole guide," Eur. Phys. J. D 31, 365-373 (2004).
    6. S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, "High-flux beam source for cold, slow atoms or molecules," Phys. Rev. Lett.95,173201 (2005).
    7. D. Patterson and J. M. Doyle, "Bright, guided molecular beam with hydrodynamic enhancement," J. Chem. Phys.126,154307 (2007).
    8. Y. Xia, L. Z. Deng, and J. P. Yin, "Electrostatic guiding of cold polar molecules on a chip," Appl. Phys. B 81,459-464 (2005).
    9. L. Z. Deng, Y. Xia, and J. P. Yin, "A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states," Chin. Phys. Lett.22,1887-1890 (2005).
    10. M. Sun and J. Yin, "Controllable electrostatic guiding for cold polar molecules on the surface of a chip," Phys. Rev. A 78,033426 (2008).
    11. Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, "Electrostatic surface guiding for cold polar molecules:experimental demonstration," Phys. Rev. Lett.100,043003 (2008).
    12. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 53,063602 (2001).
    13. H. Ito, T. Nakata, K. Sakaki, M. Ohtsul, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett.76,4500 (1996).
    14. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53, R648-R651 (1996).
    15. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, "Optical-dipole-force fiber guiding and heating of atoms," Phys. Rev. A 55, 3684-3696(1997).
    16. R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, "Interferometer-type structures for guided atoms," Phys. Rev. Lett.89,220402 (2002).
    17. J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, "High-throughput of single high-power laser pulses by hollow photonic band gap fibers," Laser Phys. Lett.4,444-448 (2007).
    18. J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, "Demonstration of an IR-optimized air-core photonic band-gap fiber," in European Conference on Optical Communication (IEEE,2000), pp.41-42.
    19. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783-1809(1964).
    20. F. Benabid, J. C. Knight, and P. St. J. Russell, "Particle levitation and guidance in hollow-core photonic crystal fiber," Opt. Exp.10,1195-1203 (2002).
    21. M. Saito, S. Sato, and M. Miyagi, "Loss characteristics of infrared hollow waveguides in multimode transmission," J. Opt. Soc. Am. A 10,277-282 (1993).
    22. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, "Deflection of neutral molecules using the nonresonant dipole force," Phys. Rev. Lett.79,2787-2790 (1997).
    23. H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, "Optical deflection of molecules," Phys. Rev. A 57, 2794-2801 (1998).
    24. P. F. Barker and M. N. Shneider, "Slowing molecules by optical microlinear deceleration," Phys. Rev. A 66,065402 (2002).
    25. V. Gapontsev, D. Gaponsev, N. Platonov, O.shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness," in Conference on Lasers and Electro-Optics (IEEE,2008), pp.508.
    26. H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, "Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter," Chem. Phys. Lett.436,331-334 (2007).
    27. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen and T.P. Hansen, "Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres," Proc. SPIE 5618,30-38 (2004).
    28. Y. L. Yin, Y. Xia, and J. Yin, "Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam," Chin. Phys. B 17, 3672-3677 (2008).
    29. H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, "Prospects for precision measurements on ammonia molecules in a fountain," Eur. Phys. J. ST 163,55-69(2008).
    30. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, "Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules," Phys. Rev. Lett.100,043203 (2008).
    1. J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, "Measurement of the electron electric dipole moment using YbF molecules," Phys. Rev. Lett.89, 023003-1-4(2002).
    2. J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, "Near-threshold inelastic collisions using molecular beams with a tunable velocity," Science 313,1617-1620 (2006).
    3. E. R. Hudson, C. Ticknor, B. C. Sawyer, C. A. Taatjes, H. J. Lewandowski, J. R. Bochinski, J. L. Bohn, and J. Ye, "Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals," Phys. Rev. A 73,063404-1-6 (2006).
    4. D. DeMille, "Quantum computation with trapped polar molecules," Phys. Rev. Lett.88,067901-1-4 (2002).
    5. A. Andre, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, "A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators," Nat. Phys.2,636-642 (2006).
    6. H. L. Bethlem, G. Berden, and G. Meijer, "Decelerating neutral dipolar molecules," Phys. Rev. Lett.83,1558-1561 (1999).
    7. H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, "Electrostatic trapping of ammonia molecules," Nature 406, 491-494(2000).
    8. H. J. Loesch and B. Scheel, "Molecules on Kepler orbits:an experimental study," Phys. Rev. Lett.85,2709-2712 (2000).
    9. T. Junglen, T. Rieger, S. A. Rangwala, P.W. H. Pinkse, and G. Rempe, "Slow ammonia molecules in an electrostatic quadrupole guide," Eur. Phys. J. D 31, 365-373 (2004).
    10. H.Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, "Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter," Chem. Phys. Lett.436,331-334 (2007).
    11. D. Patterson and J. M. Doyle, "Bright, guided molecular beam with hydrodynamic enhancement," J. Chem. Phys.126,154307-1-5 (2007).
    12. Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, "Electrostatic surface guiding for cold polar molecules:experimental demonstration," Phys. Rev. Lett.100, 043003-1-4(2008).
    13. Y. Liu, M. Yun, Y. Xia, L. Deng and J. Yin, "Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering," Phys. Chem. Chem. Phys. 12,745-752 (2010).
    14. J. A. Harrington and C. G. Christopher, "Hollow sapphire fibers for the delivery of CO2 laser energy," Opt. Lett.15,541-543 (1990).
    15. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783-1809(1964).
    16. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, "Optical potential for atom guidance in a cylindrical-core hollow fiber," Opt. Comm.115,57-64 (1995).
    17. M. Saito, S. Sato, and M. Miyagi, "Loss characteristics of infrared hollow waveguides in multimode transmission," J. Opt. Soc. Am. A 10,277-282 (1993).
    18. M. Miyagi, "Bending losses in hollow and dielectric tube leaky waveguides," Appl. Opt.20,1221-1229 (1981).
    19. M. Miyagi, K. Harada, Y. Aizawa, and S. Kawakami, "Transmission properties of circular dielectric-coated metallic waveguides for infrared transmission," Proc. Soc. Photo-Opt. Instrum. Eng.484,117-123 (1984).
    20. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, "Deflection of neutral molecules using the nonresonant dipole force," Phys. Rev. Lett.79,2787-2790 (1997).
    21. H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, "Optical deflection of molecules," Phys. Rev. A 57, 2794-2801 (1998).
    22. P. F. Barker and M. N. Shneider, "Slowing molecules by optical microlinear deceleration," Phys. Rev. A 66,065402-1-4 (2002).
    23. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, "Optical-dipole-force fiber guiding and heating of atoms," Phys. Rev. A 55, 3684-3696(1997).
    24. R. Liu, Q. Zhou, Y. Yin, and J. Yin, "Laser guiding of cold molecules in a hollow photonic bandgap fiber," J. Opt. Soc. Am. B 26,1076-1083 (2009).
    25. D. Patterson, J. Rasmussen, and J. M. Doyle, "Intense atomic and molecular beams via neon buffer-gas cooling," New J. Phys.11,055018-1-12 (2009).
    26. Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, "Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice" Opt. Express 17,10706-10717 (2009).
    27. H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, "Prospects for precision measurements on ammonia molecules in a fountain," Eur. Phys. J. ST 163,55-69(2008).
    28. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, "Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules," Phys. Rev. Lett.100,043203-1-4 (2008).
    1. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, "Ultracold photoassociation spectroscopy:Long-range molecules and atomic scattering," Rev. Mod. Phys.78,483-535 (2006).
    2. T. Kohler, K. Goral, and P. S. Julienne, "Production of cold molecules via magnetically tunable Feshbach resonances," Rev. Mod. Phys.78,1311-1361 (2006).
    3. E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, "Atom-molecule coherence in a Bose-Einstein condensate," Nature 417, 529-533(1998).
    4. J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle, "Magnetic trapping of calcium monohydride molecules at millikelvin temperatures," Nature,395,148-150 (1998).
    5. D. Patterson, J. Rasmussen and J. M. Doyle, "Intense atomic and molecular beams via neon buffer-gas cooling," New J. Phys.11,055018-1-12 (2009).
    6. H. L. Bethlem, G. Berden, and G. Meijer, "Decelerating neutral dipolar molecules," Phys. Rev. Lett.83,1558-1561 (1999).
    7. Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, "Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice," Opt. Exp.17, 10706-10717(2009).
    8. E. Narevicius, A. Libson, C. G. Parthey, I. Chavez, J. Narevicius, U. Even and M. G. Raizen, "Stopping supersonic oxygen with a series of pulsed electromagnetic coils:A molecular coilgun," Phys. Rev. A 77,051401-1-4(R) (2008).
    9. J. Ramirez-Serrano, K.E. Strecker, and D.W. Chandler, "Modification of the velocity distribution of H2 molecules in a supersonic beam by intense pulsed optical gradients," Phys. Chem. Chem. Phys.8,2985-2989 (2006).
    10. R. Fulton, A. I. Bishop, M. N. Shneider and P. F. Barker, "Controlling the motion of cold molecules with deep periodic optical potentials," Nature Phys.2,465-468 (2006).
    11. T. Junglen, T. Rieger, S. A. Rangwala, P.W. H. Pinkse, and G. Rempe, "Slow ammonia molecules in an electrostatic quadrupole guide," Eur. Phys. J. D 31, 365-373 (2004).
    12. H.Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, "Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter," Chem. Phys. Lett.436,331-334 (2007).
    13. Y. Liu, M. Yun, Y. Xia, L. Deng and J. Yin, "Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering," Phys. Chem. Chem. Phys.12,745-752 (2010).
    14. D. Patterson and J. M. Doyle, "Bright, guided molecular beam with hydrodynamic enhancement," J. Chem. Phys.126,154307-1-5 (2007).
    15. V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, "Atom trapping and guiding with a subwavelength-diameter optical fiber," Phys. Rev. A 70,011401-1-4(R)(2004).
    16. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, "Optical potential for atom guidance in a cylindrical-core hollow fiber," Opt. Commun.115,57-64 (1995).
    17. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, "Deflection of neutral molecules using the nonresonant dipole force," Phys. Rev. Lett.79,2787-2790 (1997).
    18. H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, "Optical deflection of molecules," Phys. Rev. A 57, 2794-2801(1998).
    19. U. Hohm, "Analysis of the vibrationally resolved polarizability spectrum of I2 in the range of the B3Πu+←X1Σg+ transition," Mol. Phys.96,7-13 (1999).
    20. L. Chen, W. Cheng, and J. Ye, "Hyperfine interactions and perturbation effects in the B0u+(3Πu) state of 127I2," J. Opt. Soc. Am. B 21,820-832 (2004).
    21. A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Prentiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61,023608-1-11 (2000).
    22. W. J. Thomes, Jr., M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, "Fiber optic cables for transmission of high-power laser pulses in spaceflight applications," presented at the International Conference on Space Optics, Rhodes, Greece,4-8 October 2010.
    23. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, "Optical-dipole-force fiber guiding and heating of atoms," Phys. Rev. A 55, 3684-3696(1997).
    24. H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, "Prospects for precision measurements on ammonia molecules in a fountain," Eur. Phys. J. ST 163,55-69(2008).
    25. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, "Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules," Phys. Rev. Lett.100,043203-1-4 (2008).
    1. K. Southwell, "Ultracold matter," Nature 416,205-205 (2002).
    2. I. Bloch, J. Dalibard, and W. Zwerger, "Many-body physics with ultracold gases," Rev. Mod. Phys.80,885-964 (2008).
    3. C. Monroe, "Quantum information processing with atoms and photons," Nature 416,238-246 (2002).
    4. C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge,2008).
    5. D. Skouteris, D. E. Manolopoulos, W. S. Bian, H. J. Werner, L. H. Lai, and K. P. Liu, "van der Waals Interactions in the Cl+HD Reaction," Science 286,1713-1716 (1999).
    6. N. Balakrishnan, "On the role of van der Waals interaction in chemical reactions at low temperatures," J. Chem. Phys.121,5563-5566 (2004).
    7. R. V. Krems, "Molecules near absolute zero and external field control of atomic and molecular dynamics," Int. Rev. Phys. Chem.24,99-118 (2005).
    8. R.V. Krems, "Cold controlled chemistry," Phys. Chem. Chem. Phys.10, 4079-4092 (2008).
    9. S. C. Althorpe and D. C. Clary, "Quantum scattering calculations on chemical reactions," A. Rev. Phys. Chem.54,493-529 (2003).
    10. E. Herbst, "The chemistry of interstellar space," Chem. Soc. Rev.30,168-176 (2001).
    11. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, "Optical potential for atom guidance in a cylindrical-core hollow fiber," Opt. Commun.115,57-64 (1995).
    12. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, "Deflection of neutral molecules using the nonresonant dipole force," Phys. Rev. Lett.79,2787-2790 (1997).
    13. H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, "Optical deflection of molecules," Phys. Rev. A 57, 2794-2801 (1998).
    14.张连水,李云静,李晓苇,傅广生,碘分子单频及双频多光子光谱[J].物理学报,1997,46(6):1088-1095.
    15. U. Hohm, "Analysis of the vibrationally resolved polarizability spectrum of I2 in the range of the B3Πu+←X1Σg+ transition," Mol. Phys.96,7-13 (1999).
    16. A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Prentiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61,023608-1-11 (2000).
    17. H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, "Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter," Chem. Phys. Lett.436,331-334 (2007).
    18. T. Junglen, T. Rieger, S. A. Rangwala, P.W. H. Pinkse, and G. Rempe, "Slow ammonia molecules in an electrostatic quadrupole guide," Eur. Phys. J. D 31, 365-373 (2004).
    19. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, "Optical-dipole-force fiber guiding and heating of atoms," Phys. Rev. A 55, 3684-3696(1997).
    20. D. Patterson, J. Rasmussen and J. M. Doyle, "Intense atomic and molecular beams via neon buffer-gas cooling," New J. Phys.11,055018-1-12 (2009).
    21. D. Patterson and J. M. Doyle, "Bright, guided molecular beam with hydrodynamic enhancement," J. Chem. Phys.126,154307-1-5 (2007).
    22. Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, "Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice," Opt. Exp.17, 10706-10717(2009).
    23. H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, "Prospects for precision measurements on ammonia molecules in a fountain," Eur. Phys. J. ST 163,55-69(2008).
    24. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, "Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules," Phys. Rev. Lett.100,043203-1-4 (2008).
    1. P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratliff, S. L. Rolston, and M. E. Wagshul, "Spectroscopy of Na2 by photoassociation of laser-cooled Na," Phys. Rev. Lett.71,2200-2203 (1993).
    2. J. D. Miller, R. A. Cline, and D. J. Heinzen, "Photoassociation spectrum of ultracold Rb atoms," Phys. Rev. Lett.71,2204-2207 (1993).
    3. T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H. C. Nagerl, and R. Grimm, "Evidence for Efimov quantum states in an ultracold gas of caesium atoms," Nature 440,315-318 (2006).
    4. S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, "High-Flux Beam Source for Cold, Slow Atoms or Molecules," Phys. Rev. Lett.95,173201-1-4 (2005).
    5. H. L. Bethlem, G. Berden, and G. Meijer, "Decelerating Neutral Dipolar Molecules," Phys. Rev. Lett.83,1558-1561 (1999).
    6. S. D. Hogan, A.W. Wiederkehr, H. Schmutz, and F. Merkt, "Magnetic Trapping of Hydrogen after Multistage Zeeman Deceleration," Phys. Rev. Lett.101, 143001-1-4(2008).
    7. R. Fulton, A. I. Bishop, and P. F. Barker, "Optical Stark Decelerator for Molecules," Phys. Rev. Lett.93,243004-1-4 (2004).
    8. T. Junglen, T. Rieger, S. A. Rangwala, P.W. H. Pinkse, and G. Rempe, "Slow ammonia molecules in an electrostatic quadrupole guide," Eur. Phys. J. D 31, 365-373 (2004).
    9. H.Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, "Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter," Chem. Phys. Lett.436,331-334 (2007).
    10. Y. Liu, M. Yun, Y. Xia, L. Deng and J. Yin, "Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering," Phys. Chem. Chem. Phys.12,745-752(2010).
    11. D. Patterson and J. M. Doyle, "Bright, guided molecular beam with hydrodynamic enhancement," J. Chem. Phys.126,154307-1-5 (2007).
    12. J. Ye, L. S. Ma, and J. L. Hall, "Molecular iodine clock," Phys. Rev. Lett.87, 270801-1-4(2001).
    13.贾佑华,掺杂Yb3+:ZBLAN玻璃材料的激光冷却,博士论文,华东师范大学(2008)
    14. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, "Deflection of neutral molecules using the nonresonant dipole force," Phys. Rev. Lett.79,2787-2790 (1997).
    15. H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, "Optical deflection of molecules," Phys. Rev. A 57, 2794-2801 (1998).
    16.张连水,李云静,李晓苇,傅广生.碘分子单频及双频多光子光谱[J].物理学报,1997,46(6):1088-1095.
    17. U. Hohm, "Analysis of the vibrationally resolved polarizability spectrum of I2 in the range of the B3Πu+←X1Σg+ transition," Mol. Phys.96,7-13 (1999)
    18. D. Patterson, J. Rasmussen and J. M. Doyle, "Intense atomic and molecular beams via neon buffer-gas cooling," New J. Phys.11,055018-1-12 (2009).
    19. Y. Yin, Q. Zhou, L. Deng, Y. Xia, and J. Yin, "Multistage optical Stark decelerator for a pulsed supersonic beam with a quasi-cw optical lattice," Opt. Exp.17, 10706-10717 (2009).
    20. H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, "Prospects for precision measurements on ammonia molecules in a fountain," Eur. Phys. J. ST 163,55-69(2008).
    21. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, "Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules," Phys. Rev. Lett.100,043203-1-4 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700