混合动力汽车控制策略与动力电池系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染是当今世界可持续发展所面临的两大根本问题,混合动力汽车在技术、经济和环境等方面具有综合优势,是目前缓解这两个问题的有效途径。完善混合动力系统控制策略是提高燃油经济性和减少污染排放的重要手段,而动力电池的性能测试及电池管理系统是混合动力汽车的重要组成部分。
     基于并联结构的分布式XL2000混合动力轿车控制系统,依据驾驶员需求划分了混合动力轿车的五种运行模式,构建了模式切换图;根据整车控制目标要求,提出了基于发动机万有特性参数及遵循车辆驱动优先、动力电池能量维持、再生制动最大能量回收三个原则的转矩管理策略;搭建了混合动力轿车系统模型,进行了控制策略仿真。
     把传统汽车的速度跟踪控制引入到混合动力汽车控制中,根据转矩管理策略把混合动力汽车的目标转矩分配为发动机和电机的目标转矩,实现了发动机和基于MAP图的电机逆转矩控制,妥善处理了电机和发动机混合驱动问题,达到速度跟踪控制的目的。
     从混合动力汽车的实际需求出发,以C8052F020和MC68HC908GZ16单片机作为控制系统核心,组成上下位机测控系统,实现了电池管理系统的硬件、软件和CAN总线设计。在分析动力电池在混合动力汽车行驶时的充放电工作过程的基础上,建立了一种镍氢动力电池等效电路及其动力电池的参数模型,提出了基于稳态开路电压和状态空间的SOC动态估算方法。
     设计了基于工控机和RS485总线的包括温度巡检仪、电压巡检仪、充电设备、放电设备的分布式动力电池性能测试系统,提出了恒流放电、恒电阻放电和恒功率放电算法,通过控制与动力电池相连的多路大功率场效应管的通断,利用PWM脉宽调制原理调节放电电流,覆盖了放电电流的调节范围,从而实现动力电池的放电控制,为模拟电动汽车行驶工况下的动力电池工作过程构建了实验环境。
Energy shortage and environment pollution are two serious problems that can prevent the world from developing forward rapidly. In this case, HEV’s(hybrid electric vehicle) are the key to solve the problems. It has advantages in many fields, such as technology, economy and environment. To improve on the control strategy design of HEV is an important way to enhance fuel efficiency and reduce pollution emission. The traction battery performance testing and management system are two important parts of HEV’s.
     In this thesis, According to the driver’s requirements and the distributed control system based on parallel structure for XL2000 HEV, five operation modes are defined and mode changing figure of the HEV is built. In the system, based on control requirement for the vehicle, the torque management strategy on the engine and motor is proposed according to the characteristic parameter and the three principles which include vehicle drive first, traction battery energy keeping, regenerative brake energy reuse. Based on the HEV, the control system model is built and the control strategy is simulated
     In the control of HEV, traditional tracking speed technology is used. According to the torque management strategy, the target torque is distributed to the engine and the motor, and the inverse torque control is implemented on engine and motor based on MAP to resolve the issue of the combination drive of the motor and the internal combustion engine. Thus the speed tracking control is achieved.
     For the requirements of the practical application, C8051F020 and MC68HC908GZ16 form the test and control system as control core in major- server structure. At the same time, the related hardware, software for the battery management system and CAN bus are designed. Moreover, on the basis of the analyzing the charging and discharging process of traction battery in running electric vehicles, a equivalent electric circuit of Ni-MH battery and its parameter model are proposed in detail. And a method to estimate SOC dynamically based on stable open voltage and state space is also proposed.
     The distributed traction battery performance test system is designed which include temperature tester including measure point, voltage tester including many batteries, charging device and discharging device based on industrial computers and RS485.Thealgorithms of constant current discharging, constant resistance discharging and constant power discharging are designed. Traction battery discharging control is realized by controlling power MOSFET connect or break which connect to the traction battery. Using PWM impulse modulation theory to adjust the discharging current enlarge the current regulation range. All this work built the experiment environment to simulate the traction battery working in the running hybrid electric vehicles.
引文
[1] [1] Thomas L.Quinn and Bor Yann Liaw, Electric Vehicle Rapid charging Infrastructure in Hawaii, SAE 2000-01-1606.
    [2] John Decicco, Feng An and Marc Ross, Technical options for improving the fuel economy of U.S. cars and light trucks by 2010-2015, April 2001.
    [3] 岳东鹏、郝志勇等,混合动力电动汽车研究开发及前途展望,拖拉机与农用运输车 2004 No.2。
    [4] 何洪文等,混合动力电动汽车技术发展与现状,车辆与动力技术 2004 No.2。
    [5] Evaluaton of a Toyota Prius hybrid system (THS), EPA420-98-006 August 1998.
    [6] 麻良友等,混合动力电动汽车的结构与特性分析,汽车研究与开发 2000(4)。
    [7] 黄榕清等,浅议汽车混合动力系统的布置,汽车研究与开发 1999(5)。
    [8] 黄妙华、喻厚宇,串联混合动力电动客车控制策略的优化设计,武汉理工大学学报,2003 No.8。
    [9] 李晓英、于秀敏等,串联混合动力汽车控制策略,吉林大学学报(工学版)2005 No.3。
    [10] 李明泽,混合动力电动汽车驱动控制系统研究:[硕士学位论文],武汉理工大学,2002。
    [11] 孟铭、杜爱民,并联式混合动力汽车的基本控制策略和实时控制策略的比较分析,内燃机工程 2005 No.3。
    [12] 王勇、张欣等,混合动力汽车的控制策略研究,北京汽车 2004(2)。
    [13] 高海鸥等,Prius 混合动力汽车驱动系统键合图建模仿真,武汉理工大学学报,2004,26(I):63~65。
    [14] 赵克刚、黄向东、罗玉涛,混联式混合动力电动汽车动力总成的优化匹配与监控,吉林大学学报(工学版)2005 No.3。
    [15] 罗玉涛,混联式混合动力电动汽车的关键技术研究:[博士学位论文],华南理工大学 2002。
    [16] Ivan Meenjak, Phil Gow, Dennis A.Corrigan, Subhash K.Dhar and Stanford R.Ovshinsky, Ovonic power and energy storage technologies for the next generation of vehicles, SAE 2000-01-01-1590.
    [17] D.Ryan and R.LaFollette, Power Supply and Energy Storage for Autonomous MEMS, SAE 2000-01-3619.
    [18] Albert Landgrebe and Irwin Welnstock etc., Overview of technologiesfor batteries for electric and hybrid vehicles, SAE 2002-01-1949.
    [19] Chester G.Motloch, Jon P.Christophersen etc., High-power battery testing procedures and analytical methodologies for HEV’s, SAE 2002-01-1950.
    [20] M.Schweizer-Berberich and etc., Advanced batteries for the 42V power net and hybrid electric vehicles, SAE 2004-01-0065.
    [21] Yoshitaka Kambe, Kenji Esaki and etc., Development of lithium-ion battery for vehicles, SAE 2004-01-0066.
    [22] Dave Rice and Jon Beutler, Compatibility testing and smart monit oring of the hawker battery on the ELDEC(Boeing) chargers, SAE 2002-01-3216.
    [23] 万沛霖,电动汽车的关键技术,北京理工大学出版社,1998。
    [24] Jonas Hellgren and Bengt Jacobson, A Systematic Way of Choosing Driveline Confi guration and Sizing components in Hybrid vehicle, SAE 2000-01-3098。
    [25] 段延波、张武高,混合动力电动汽车技术分析,柴油机 2003(1)。
    [26] Jonas Hellgren and Bengt Jacobson, A Systematic Way of Choosing Driveline Configuration and Sizing components in Hybrid vehicle, SAE 2000-01-3098.
    [27] 王仁贞、李玉芳、于蕾艳,并联混合动力车辆结构及其能量分配控制策略,2004 年电动汽车、清洁燃料汽车与汽车环保技术交流研讨会。
    [28] 冯能莲、李克强等,基于 CAN 总线的混合动力汽车控制系统体系结构研究,汽车技术 2003 No.8。
    [29] 张俊智、王丽芳,不同混合动力电动轿车方案的比较与分析,汽车工程 2002 No.4。
    [30] 梁龙、张欣、李国岫,混合动力电动汽车驱动系统的开发与应用,汽车工程2001 No.2。
    [31] Richard Nesbitt, Christian Muehifeld and Sudhakar Pandit, Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC), SAE 2003-01-3280.
    [32] 朱正礼等, CAN 总线系统在电动轿车上的应用,汽车工程 2003 No.4。葛林、周文化、徐航,通信网络在汽车中的应用研究,汽车技术 2000 No.11。
    [33] 董珂、李克强等,CAN 总线在混合动力电动车上的应用,清华大学学报 2003 No.8。
    [34] Ronald G.Landman, Design and analysis of CAN networks for vehicles, SAE 2000-01-2585.
    [35] Henry K.Ng, John A.Anderson and etc., Engine start characteristics of two hybrid electric vehicles(HEVs) – Honda Insight and Toyota Prius, SAE 2001-01-2492.
    [36] Field operations program-Honda Insight hybrid electric vehicle performance characterization report, INEEL-EXT-02-0102 March 2002.
    [37] 刘正耀、其鲁、晨晖、安平,丰田 Prius 混合电动车测试分析,2004 年电动汽车、清洁燃料汽车与汽车环保技术交流研讨会。
    [38] 卢万成、陈贤章等,混合动力汽车控制系统与控制策略,2004 年电动汽车、清洁燃料汽车与汽车环保技术交流研讨会。
    [39] 万仁君,电动汽车分布式控制系统的总线调度与整车控制策略的研究:[博士学位论文],天津大学 2004。
    [40] 童毅、欧阳明高、张俊智,并联式混合动力汽车控制算法的实时仿真研究, 机械工程学报 2003 No.10。
    [41] Jin-Hwan Jung and etc., Power control strategy for fuel cell hybrid electric vehicles, SAE 2003-01-1136。
    [42] Valerie H.Johnson, Keith B.Wipkeand David J.Rausen, HEV control Strategy for real-time of fuel economy and emission, SAE 2000-01-143.
    [43] Bradley Glenn, Gregory Washington and Giorgio Rizzoni, Operation and control strategies for hybrid electric automobiles, SAE 2000-01-1537.
    [44] 张欣、郝小健、李从心、岑艳,并联式混合动力电动汽车动力总成控制策略的仿真研究,汽车工程 2005 No.2。
    [45] Guan D H, Wu W D, Zhang A Q, Tire modeling for vertical properties by using experimental modal parameters [J], Society of automotive Eng SP, 1998, 1338:17-20.
    [46] Guan D H, Zhang A Q, Yam L H, et al. Modeling of tire rolling properties by using experimental modal parameters [J], Society of automotive Eng Trans, 2000, 0361:1-5.
    [47] 童毅、张俊智、欧阳明高,混合动力汽车扭矩管理策略,清华大学学报 2003 No.8。
    [48] Aymeric rouseau, Benoit Deville and etc., Honda Insight validation using PSAT, SAE 2001-01-2538.
    [49] K.J.Kelly, M.Zolot and etc., Test results and modeling of the Honda Insight using advisor, NREL August 2001.
    [50] Kenneth J.Kelly, Matthew etc., Test results and modeling of the Honda insight using ADVISOR, Sae 2001-01-2537.
    [51] AVL Cruise User’s Manual, AVL,2002.
    [52] S.M.Lukic and etc., On the suitability of a new high-power lithium ion battery for hybrid electric vehicle application, SAE 2003-01-2289.
    [53] Tong Yi, etc., Coordinating control oriented research on algorithm of engine torque estimation for parallel hybrid electric powertrain system, SAE 2004-01-0424.
    [54] Masayuki Yasuoka etc., An integrated control algorithm for an SI engine and a CVT, SAE 1999-01-0752.
    [55] Wootaik Lee, Hyunji Park and Myoungho Sunwoo, Development of a vehicleelectric power simulator for optimizing the electric charging system, SAE 2000-01-0451.
    [56] Xiaoling He and Jeffrey Hodgson, Hybrid electric vehicle simulation and estimation for UT-HEV, SAE 2000-01-3105.
    [57] Paul Atwood, Stepgen Gurski etc., Degree of Hybridation modeling of a fuel cell hybrid electric sport utility vehicle, SAE 2001-01-0236.
    [58] Xiaoling He, Battery modeling for HEV simulation model development, SAE 2001-01-0960.
    [59] Macro Gadola, Andrea Candelpergher and Riccardo Adami, The inpact of non-linear aerodynamics on racecar behavior and lap time simulation, SAE 2002-01-3332.
    [60] Pritpal Singh,Anil Pothireddy etc., Modeling of an electric stock car, SAE 2002-01-3338.
    [61] Pual Nelson, Dennis Dees, Khalil Amine and Gary Henriksen, Modeling the performance of lithium-ion batteries for fuel cell vehicles, SAE 2003-01-2285.
    [62] Mehrdad Ehsani, Yimin Gao and Karen L.Butler, Application of electrically Peaking Hybrid(ELPH) propulsion system to a full-size passenger car with simulated design verification, IEEE 1999.
    [63] Yasser Yacoub and Alain Chevalier, Rapid prototyping with the controller area network(CAN), SAE 2001-01-1224.
    [64] Hong-wen He, Lian-Yun Peng and Feng Chun Sun, Study on power battery’s performance evaluation, SAE 2004-01-0068.
    [65] Sanjay R.Bhatikar ,Roop L.Mahajan etc., Artificial Neural network based energy storage system modeling for hybrid electric vehicles, SAE 2000-01-1546.
    [66] 冉振亚、曹文明、杨超、赵树恩,新型双能源电动汽车控制系统的仿真研究,汽车工程 2005 No.2。
    [67] Sonia Val, Mario, Maza and Santiago Baselga, Analysis simulators and their effects on the users definition of a method to evaluate the onset of motion sickness in the users driving simulators, SAE 2001-01-3380.
    [68] L.R.hunt, G.meyer, Stable inversion for nonlinear systems, Automatica, Vol.33, No.08, P1548~1549, 1997.
    [69] G.Zeng, L.R.hunt, Stable inversion for nonlinear discrete_time systems, IEEE transactions on automatic control, Vol.45, No.6, June 2000.
    [70] R.C.Ko, M.C.Good, S.K. Halgamuge, Adaptive calibration of feedforward controllers for nonminimun-phase tracking systems, Proceeding of the American control conference, San Diego, California, June 1999.
    [71] A.Babinski, Input-output data based tracking control, Proceeding ofthe American control conference, San Diego, California, June 1999.
    [72] Masanori Ichinos, Atsushi Yokoyama and etc., Hardware-in-the-loop simulator with auto building vehicle model for adaptive cruise control system, SAE 2004-01-1243.
    [73] Daniel Whelan etc., Improved low-emission vehicle simulator for evaluation of sampling and analytical systems, SAE 2002-01-0049.
    [74] Josko Deur, Danijel Pavkovl and Nedjeijko peri, An adaptive nonlinear strategy of electronic throttle control, SAE 2004-01-0897.
    [75] Li Jiangqiu, Yang Minggao, Zhou Ming and Li Xihao, Advanced torque estimation and control algorithm of diesel engines, SAE 2002-01-0198.
    [76] Anthony Corsetti etc., In-vehicle engine torque model validation, SAE 2002-01-1143.
    [77] T.Jaine, A.charlet and P.higelin, and Y.chamaillard, High frequency IMEP estimation and filtering for torque based SI engine control, SAE 2002-01-1276.
    [78] Byung Kwan Shin, Jin Oh Hahn and Kyo ii Lee, development of shift control algorithm using estimated turbine torque, SAE 2000-01-1150.
    [79] Jonathan C.Wheals , etc., Torque vectoring AWD Driveline: design, simulation, capabilities and control, SAE 2004-01-0863.
    [80] Peter J.Maloney, Embedded torque estimator for diesel engine control application, SAE 2004-01-1371.
    [81] E.Grunbacher, P.Langthaler, G.Stainmaurer, L.Del Re and H.Kokal, Adaptive inverse torque control of a Diesel engine using adaptive mapping updat e, SAE 2003-01-0397.
    [82] Michael Duoba, Henry Ng and Robert Larsen, In-situ mapping and Analysis of the Toyota Prius HEV engine, SAE 2000-01-3096.
    [83] 王永章等,机床的数字控制技术,哈尔滨工业大学出版社,19955(7)。
    [84] 薛毅,数值分析与实验,北京工业大学出版社,2005 年 3 月。
    [85] Josko Deur, Danijel Pavkovl and Nedjeijko peri, An adaptive nonlinear strategy of electronic throttle control, SAE 2004-01-0897.
    [86] Harmohan Sigh and Thrimulai Palanisamy, TruChargeTM advanced system for supporting vehicle batteries and eliminating unscheduled battery maintenance, SAE 1999-01-3748.
    [87] Takeshi Miyamoto, Etsuo Oogami, Masato Origuchi, Tadashi Tsuji and Norihiko Hirata, Development of a lithium-ion battery system for HEVs, SAE 2000-01-1057.
    [88] Michael Cox and Kevin Bertness, Vehicle-integrated battery and power system management based on conductance technology to enable intelligent generating systems (inGEN?), SAE 2001-01-2715.
    [89] Thomas Stuart, Fang Fang etc., A modular battery management systemfor HEVs, SAE 2002-01-1918.
    [90] Michael Cox, Kevin Bertness andJim Klang, Field results of battery management technology integration into a vehicle application e (inGEN?), SAE 2002-01-3259.
    [91] L.Bowen, R.Zarr and S.Denton, A microcontroller-based intelligent battery? system, IEEE 1994.
    [92] Manoj Maskey, Micheal Parten, Darrell Vines and Tim Maxwell, An intelligent battery management system for electric and hybrid electric vehicles, IEEE 1999.
    [93] M.J.Isaacson R.P.Hollendsworth and etc., Advanced lithium ion battery charger, IEEE 2000.
    [94] Boris Tsenter, Battery management for hybrid electric vehicle and telecommunication application, IEEE 2002.
    [95] 宫学庚,电动汽车电池管理系统的研究:[博士学位论文],北京航空航天大学 2004。
    [96] 邬宽明,CAN 总线原理和应用系统设计,北京航空航天大学出版社,1996。
    [97] Robert Bosch Gmbh, CAN specification version 2.0, Germany 1991.
    [98] Hans-Christian Reuss, Extended frame format – a new option of the CAN product concept & application laboratory hamburg, F.R.Gemany.
    [99] Ronald G.Landman, Design and analysis of CAN networks for vehicles, SAE 2000-01-2585.
    [100]Frank Voorburg, Rapid application development for embedded systems using CAN calibration protocol, SAE 2002-01-1170.
    [101] Yasser Yacoub and Alain Chevalier, Rapid prototyping with the controller area network (CAN), SAE 2001-01-1224.
    [102] Data sheet: Sja1000 stand-alone CAN controller, Philips 2000.1。
    [103] 齐国光等,电动汽车电量计量技术研究,清华大学学报,1997 No.3。
    [104] Jinchen Peng, Yaobin Chen, Russ Eberhart. Charge estimator designed using computational intelligence approaches. IEEEE, 2000.
    [105] Shuo Bang, Jay farrel, Jie Du and Matthew Barth, Battery state of charge estimation, Proceeding of the American control conference, Arlington, Va June 25~27 2001.
    [106] 薛振框等,电动汽车蓄电池剩余电量计量技术的研究,清华大学学报,1997年 No.3
    [107] Chenghui Cai, Dong Du, Zhiyu Liu, Hua Zhang. Artificial Neural Network in Estimation of Battery State of Charge (SOC) with Nonconventional Input Variables Selected by correlation Analysis.Proceeding of the First International Conference of Machine Learning and Cybernetics, Beijing 4-5 November 2002.
    [107] Guan-Chyun Hsieh, Liang-Rui Chen and Kuo-Shun Huang, Fuzzy-controlled li-ion battery charge system with active SOC controller, IEEE Transactions, Vol.48,No.3, June 2001.
    [108] 胡明辉等,混合动力汽车电池管理系统 SOC 的评价,重庆大学学报,2003 No.4。
    [109] 朱元等,电动汽车动力电池 SOC 预测技术研究,电源技术,2000 No.3。
    [110] Jinchun Peng, Yaobin Chen and Russ Eberhart, Battery pack SOC estimator design using computational intelligence approaches, IEEE 2001.
    [111] 邵海岳等,电动汽车用 Ni/MH 电池建模及基于状态空间的 SOC 估计方法,汽车工程 2004 No.5。
    [112] R.Giglioli, P.Cerolo Charge and Discharge Fourth Order Dynamic Model of the Lead Battery,Hong Kong 1998.
    [113] Valerie H.Johnson, Matthew D.Zolot, Ahmad A.Pesaran, Development and Validation of a Temperature-Dependent Resistance/Capacitance Battery Model for Advisor, EVS 18 Berlin,2001。
    [114] Runjiin Ma, Li Sun, Hongfan Tian, The Identification of Dynamic Model and Self Tuning Prediction of SOC for EV battery, EVS 18 Berlin, 2001.
    [115] Johan Forestier, M.S.Thesis, Impendance measurement and modeling for a nickel-mental Hydride Traction Battery, School of Engineering Physics, Ume University,2000.
    [116] J.W.Weidner, P.Timmermann, Effect of Proton diffusion, Electron Conductivity and Charge-Transfer Resistance on Nickel hydride discharge curves, J.Electronchem, SOC,Vol.141,No.2, pp.349-351, 1994。
    [117]FreedomCAR battery test manual for power-assist hybrid electric vehicles, October 2003.
    [118]Thomass A.Stoneham, F-22 aircraft battery-charger-controller system, SAE 1999-01-1363.
    [119] George Au etc., Fielded lithium ion and Nickel metal hydride battery and charger system for U.S. army, SAE 1999-01-1405.
    [120]Y.J.Cho and B.H.Cho, A novel battery charger-discharger of the regulated-peak-power-tracking-system, SAE 1999-01-2445.
    [121]K.S.Lee, Y.J.Cho, K.Y.Yang and B.H.Cho, A novel charger/discharger for the parallel connected battery module system, SAE 2000-01-3602.
    [122]Lawrence Stein and Joseph Ryan, A networked unit of Employment command element designed for efficient battery charging, SAE 2004-01-3165.
    [123] 段志强等,动力电池数字化测试系统??DSP 在电池检测中的应用,电源技术 2005 No.2.
    [124] 谭子求、殷小贡等,基于 DSP 的大容量智能充电系统的研究与设计,电源技术 2004 No.5。
    [125] 贾高峰、韩赞东、王克争,电动汽车用动力电池组性能测试系统,电源技术 2004 No.11。
    [126] 马以春,蓄电池综合性能测试系统的研制,电源技术 2005 No.1。
    [127] Raymond Hobbs etc., Development of optimized fast charge algorithm for lead acid batteries, SAE 1999-01-1157.
    [128] 王维平,现代电力电子技术及应用,东南大学出版社,2001(11) 。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700