冷分子静电表面弯曲导引新方案的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,原子与分子物理进入壮观的发展阶段,新颖的气体原子和分子冷却技术发挥着关键的作用。冷原子与冷分子的研究使得原子物理与分子物理连成一体,同时将物理领域与化学领域更紧密地连起来。超冷原子与冷原子有着许多共同的优势,冷分子和超冷分子在不久的未来会进一步提升基础研究领域的探测精度。分子比原子有更多的自由度,这样分子一方面增加了实验过程中操控分子的复杂性,然而分子在这些复杂性的对面,它为基础领域的精密测量和量子操控拓展了广阔的操作空间。
     本文首先综述了冷分子和超冷分子的基本理论知识,冷分子和超冷分子的产生方案和进展及其应用。其次,我们提出了基于两根载荷长直导线和两平行电极板实现极性分子表面弯曲导引的新方案,计算了芯片表面的空间电场强度分布,并以ND3为研究对象,计算了不同转动态的布居,计算相应的斯塔克势分布;计算并分析了该方案导引中心位置与电势参数和几何参数关系,研究了空间电场分布与各参数的依赖关系;利用蒙特卡罗方法模拟了极性分子的直导引和弯曲导引,最后给出了导引后分子束的温度。再者,我们利用缓冲气体冷却和静电弯曲导引实验装置产生冷分子,在室温下进行多种分子(多原子分子、对称和非对称陀螺分子)两次静电弯曲导引实验的研究,又进行CH3F缓冲气体冷却后两次静电弯曲导引实验的研究,研究了导引信号强度与导引电压、分子样品流量和He气体流量的关系。
     我们研究的方案可以进行弱场搜寻态分子的导引与操控,还可以构建各特定的光学分子仪器:例如不同半径分子速度滤波器和分子存储环;缓冲气体冷却和弯曲导引可以将分子的平动温度冷却至2K,其内态温度更低,为冷分子的存储与囚禁以及进一步实验研究奠定了基础。
Over the last decades, atomic and molecular physics has come into a spectacular bloom, the newfashioned techniques to translationally cool (or slow down) gas atoms and molecules play unique roles in a number of diverse areas of fundamental interest. The study of slow atoms and molecules has led to uncharted territories ---- not just of atomic and molecular physics, but of physics at large. Cold molecules inspire many scientists. Ultracold atoms and cold atoms have many advantages in common, cold molecules and ultracold molecules in the near future, will further enhance the detection accuracy of basic research. Molecules have more freedom than atoms, molecules on the one hand increase difficulties in the process of the experimental controlling molecular; On the other hand, these complex molecules lay expansional fundation for precision measurement and quantum control. We compare the molecular and atomic, cold molecules can further develop many very interesting researches, what a pity, atoms does not own. Cold molecules reach a new height in basic research.
     In this paper, firstly, we review the basic theoretical knowledge of the ultra-cold molecules and cold molecules, the experimental generation and recent progress of cold molecules and ultra-cold molecules and their application. Secondly, we propose a novel scheme guiding cold polar molecules on the surface of a molecular chip by an electrostatic field generated by the combination of two parallel charged wires and sheets, and perform careful researches on our scheme to realize guiding for cold polar molecules. We also calculate the spatial distributions of the electric fields and their stark potential for ND3 molecules. Then we analyze the relationships between the electric field and the geometric parameters of two parallel charged sheet-wire system; we calculate and study the straight and bent guiding cold polar molecules by Monte-Carlo simulation. The transverse and longitudinal velocity distributions of the output guided molecular beam are simulated.
     We also generate cold molecules by stark velocity filter at room temperature. The buffer gas cooling technique is combined with the Stark velocity filter, obtaining a translationally and rotationally cold molecular (CH3F) beam. We measure the flux dependence and temperature of the filtered molecular beam on the guiding voltage, as well as on the reservoir pressure, and compare experimental results with simulation and that of other groups.
     Our study shows that we can use the proposed two parallel charged sheet-wire scheme to realize the manipulation and control of cold polar molecules in our surface guide on a chip and form special molecule elements, such as molecule storage ring and molecule velocity filter. The lowest attainable translational temperature of the cold molecules generated by buffer gas cooling combined with velocity filtering is about 1K, and their internal temperature is lower. The prospects and the future applications to studies of new physics and cold chemistry are presented, as well as future developments of researches on cold molecules in our lab. It lays foundation for trapping and storage of molecules and so on.
引文
[1]J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, cold molecules. Eur. Phys. J. D31,149(2004)
    [2]Avi Pe'er, Evgeny A. Shapiro, Matthew C. Stowe, Moshe Shapiro, and Jun Ye.Precise Control of Molecular Dynamics with a Femtosecond Frequency Comb.Phys. Rev. Lett.98,113004 (2007)
    [3]E. A. Shapiro, A. Pe'er, J. Ye, and M. Shapiro. Piecewise adiabatic population transfer in a molecule via a wave packet Phys. Rev. Lett.101,023601 (2008)
    [4]E.R. Hudson, H.J. Lewandowski, B.C. Sawyer and J. Ye, Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant,Phys.Rev.Lett.96,143004 (2006).
    [5]R. V. Krems,Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem.24,99 (2005)
    [6]印建平主编《原子分子光学》(2006)
    [7]A. V. Avdeenkov and J. L. Bohn,Collisional dynamics of ultracold OH molecules in an electrostatic field. Phys. Rev. A 66,052718 (2002).
    [8]J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Measurement of the Electron Electric Dipole Moment Using YbF Molecules,Phys.Rev. Lett.89,023003 (2002).
    [9]Krems R V, Molecules near absolute zero and external field control of atomic and molecular dynamics.Chem. Chem. Phys.10 4079(2008)
    [10]Z. Li, S. V. Alyabyshev, and R. V. Krems. Ultracold Inelastic Collisions in Two Dimensions, Phys. Rev. Lett.100,073202 (2008)
    [11]Taylor E H and Datz S, Anatomy of an Elementary Chemical Reaction. Chem. Phys.23 1711(1955)
    [12]Shapiro M and Brumer P, Principles of the Quantum Control of Molecular Processes (New Jersey:Wiley Inter-Science)
    [13]Gilijamse, J., S. Hoekstra, S. Y. T. v. d. Meerakker, G. C. Groenenboom and G. Meijer.Near-Threshold inelastic collisions using molecular beams with a tunable velocity. Sciene 313,5793,1617-1620 (2006)
    [14]B. C. Sawyer. B. K. Stuhl, D. Wang, E. Yeo, and J. Ye Molecular beam collisions with a magnetically trapped target.Phys. Rev. Lett.101,203203 (2008)
    [26]Yong Xia, Yalin Yin, Haibo Chen, Lianzong Deng, and Jianping Yin, Elecrostatic surface guiding for cold polar molecules:Experimental demonstration, Phys. Rev. Lett.,100(4),043003 (2008)
    [27]Lianzhong Deng and Jianping Yin, Beam splitter for guided polar molecules with a Y-shaped charged wire. Opt. Lett.32 (12),1695-1697 (2007)
    [28]J. M. Doyle, B. Friedrich, J. Kim, and D. Patterson, Buffer-gas loading of atoms and molecules into a magnetic trap. Phys. Rev. A 52, R2515(1995)
    [29]B. Friedrich, R. deCarvalho, J. Kim, J. D. Weinstein, and J. M.Doyle, Trans. Magnetic trapping of atomic chromium. J. Chem. Soc, Faraday.94.1783(1998)
    [30]J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle, Nature 395,148(1998)
    [31]T.V. Tscherbul, J. Klos, H-I Lu, E. Tsikata, W.C. Campbell, A. Dalgarno, J.M. Doyle. Cold N+NH Collisions in a Magnetic Trap M.H. Hummon.Phys Rev Lett 106, 053201 (2011)
    [32]D. Patterson and J.M. Doyle. A Bright,Guided Moleculer Beam With Hydrodynamic Enhancement. J. Chem. Phys.126,154307 (2007)
    [34]W.C. Campbell, T. V. Tscherbul, H.-I Lu, E. Tsikata, R. V. Krems, and J.M. Doyle. Mechanism of Collisional Spin Relaxation in Triplet-Sigma Molecules.Phys Rev Lett 102,013003(2009)
    [35]T.V. Tscherbul, J. Klos, A. Dalgarno, B. Zygelman, Z. Pavlovic, M.T. Hummon, H. Lu, E. Tsikata, and J.M. Doyle. Collisional properties of cold spin-polarized nitrogen gas:theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules. Physical Review A 82,042718 (2010)
    [36]Brahms, T.V. Tscherbul, P. Zhang, J. Klos, H.R. Sadeghpour, A. Dalgarno, J.M. Doyle and T.G. Walker. Formation of van der Waals molecules in buffer gas cooled magnetic traps N.Phys. Rev. Lett.105,033001 (2010)
    [37]H.L.Bethlem,G.Berden,A.J.A.van Roij,F.M.H.Crompvoets,and GMeijer,Trapping Neutral Molecules in a Traveling Potential Well, Phys.Rev.Lett.84,5744 (2000)
    [38]H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, Electrostatic trapping of ammonia molecules,Nature 406,491 (2000)
    [39]J. R. Bochinski, et al, Phase Space Manipulation of Cold Free Radical OH Molecules, Phys. Rev. Lett.94,023004(2005)
    [40]S. Y. T. van de Meerakker, et al, Deceleration and Electrostatic Trapping of OH Radicals Phys. Rev. Lett.91,243001(2003)
    [41]M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds.Slowing Heavy, Ground-State Molecules using an Alternating Gradient Decelerator.Phys. Rev. Lett.92,173002 April 27(2004)
    [42]Eric R. Hudson, et al, Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals.Phys. Rev.A 73(6) 063404 (2006)
    [43]Sebastian Jun, et al, Cold atoms and molecules from fragmentation of decelerated SO2 Phys.Rev.A 74(4),040701 (2006)
    [45]A. J. Kennan, J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Production and State-Selective Detection of Ultracold RbCs Molecules, Phys. Rev. Lett. 92,153001 (2004)
    [46]S. D. Kraft, P. Staanum, J. Lange, L. Vogel, R. Wester, and M. Weidem" uller,Formation of ultracold LiCs molecules, J. Phys. B 39,S993 (2006)
    [47]D. Wang, J. Qi, M. F. Stone, O. Nikolayeva, H. Wang, B. Hattaway, S. D. Gensemer, P. L. Gould, E. E. Eyler, and W. C. Stwalley, Photoassociative Production and Trapping of Ultracold KRb Molecules, Phys. Rev. Lett.93,243005(2003)
    [48]S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, R. Grimm. Bose-Einstein condensation of molecules.Science 302,2101 (2003)
    [49]C.A. Stan, M.W. Zwierlein, C.H. Schunck, S.M.F. Raupach, and W. Ketterle.Observation of Feshbach resonances between two different atomic species.Phys. Rev. Lett.93.143001 (2004).
    [50]E. S. Shuman, J. F. Barry& D. DeMille.Journal name. Laser cooling of a diatomic molecule.Nature 467,19 September (2010)
    [51]F Robicheaux, A proposal for laser cooling of OH molecules. J. Phys. B. 0953-4075(2009)
    [52]Lianzhong Deng, Yong Xia, and Jianping Yin, Electrostatic surface storage ring for cold polar molecules. J. Opt. Soc. Am. B.0740-3224 June 2010
    [53]陈扬骎 杨晓华主编《激光光谱测量技术》(2009)
    [54]Lianzhong Deng and Jianping Yin, Beam splitter for guided polar molecules with a Y-shaped charged wire. Opt. Lett.32 (12),1695-1697 (2007)
    [55]印建平《激光冷却与囚禁》(2004)
    [56]Meek, S.A., and Gerard Meijer. Trapping molecules on a chip. Science 324,(2009)
    [57]Lianzhong Deng, Jianping Yin.Experimental Demonstration ofaControllable Electrostatic Molecular BeamSplitter.Phys. Rev. Lett.106,140401 (2011)
    [58]Min Sun, and Jianping Yin, Contorllable electrostatic guiding for cold polar molecules on the surface of a chip, Phys. Rev., A78 (3),033426 (2008)
    [59]Min Sun, andJianping Yin, Controllable surface guiding for cold polar molecules with four charged wires, J. Opt. Soc. Am., B25 (7), (2008)
    [71]W. C. Wiley, I. H. Mclaren, Time-of-Flight Mass Spectrometer with Improved Resolution, Rev.Sci.Instrum.26,1150(1955).
    [72]D. C. Clary,A theory for the photodissociation of polyatomic molecules, with application, J. Chem. Phys.84,4288 (1986).
    [73]John M. Doyle, Bretislav Friedrich, Jinha Kim and David Patterson, Buffer gas loading of atoms and molecules into a magnetic trap, Phys.Rev.A 52, R2515(1995)
    [74]Jinha Kim, Bretislav Friedrich, Daniel P. Katz, David Patterson, Jonathan D.Weinstein, obert DeCarvalho, and John M. Doyle, Buffer-Gas Loading and Magnetic Trapping of Atomic uropium, Phys.Rev.Lett.78,3665(1997)
    [75]J. D. Weinstein, Robert deCarvalho, Jinha Kim, David Patterson, Bretislav Friedrich, and John M. Doyle, Magnetic Trapping of Atomic Chromium,Phys.Rev.A 57,3173(1998)
    [76]D. Patterson and J. M. Doyle, Bright, guided molecular beam with hydrodynamic enhancement, J. Chem. Phys.126,154307 (2007)
    [77]C. Sommer, L. D. van Buuren, M. Motsch, S. Pohle, J. Bayerl, P.W..Pinkse,and G. Rempe, Continuous guided beams of slow and internally cold polar molecules, Faraday Discuss.142,203 (2009)
    [78]L. D. van Buuren, C. Sommer, M. Motsch, S. Pohle, M. Schenk, J. Bayerl,P.W. H. Pinkse, and G. Rempe, Electrostatic Extraction of Cold Molecules from a Cryogenic Reservoir, Phys. Rev. Lett.102,033001 (2009)
    [91]A. C. Vutha, W. C. Campbell, Y. V. Gurevich, N. R. Hutzler, M. Parsons,D. Patterson, E. Petrik, B. Spaun, J. M. Doyle, G. Gabrielse and D De-Mille,Search for the electric dipole moment of the electron with thorium monoxide,J. Phys. B 43, 074007(2010)
    [92]E. S. Shuman, J. F. Barry and D. DeMille,Laser cooling of a diatomic molecule,Nature 467,820 (2010)
    [93]E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, Radiative Force from Optical Cycling on a Diatomic Molecule, Phys.Rev.Lett.103,223001 (2009)
    [94]Donaly H.Levy, Laser Spectroscopy of Cold Gas-Phase Molecules, Ann.Rev.Phys.Chem 31,197-225 (1980)
    [95]Wolfgang Demtr oder, Molecular Physics, (Wiley-VCH,Weinheim,2005)
    [96]S.G. Karshenboim, Some possibilities for laboratory searches for variations of fundamental constants,Can. J. Phys.78,639 (2000)
    [97]J.P. Uzan,The fundamental constants and their variation:observational and theoretical status, Rev. Mod. Phys.75,403 (2003)
    [98]E.Bodo and F.A.Gianturco,Features of chemical reactions at vanishing kinetic energy:the presence of internally hot reagents, Eur.Phys.J.D 31,423 (2004)
    [99]N.Balakrishnan and A.Dalgarno, Chemistry at ultracold temperatures, Chem.Phys.Lett.341,653 (2001)
    [100]T.Takayanagi and Y.Kurosaki, Theoretical study of kinetic isotope effects on rate constants for the H2+C2H and H+C2H2 reaction and its isotopicvariants, J.Chem.Phys.109,8929(1998)
    [101]E.Bodo,F.A.Gianturco,N.Balakrishnan,and A.Dalgarno, Chemical reactions in the limit of zero kinetic energy:virtual states and Ramsauer minima inF+H2 and HF+H, J.Phys.B 37,3641 (2004)
    [102]P.F. Week and N.Balakrishnan,Chemical reactivity of ultracold polar molecules: investigation ofH+HCl and H+DCl collisions, Eur.Phys.J.D 31,417 (2004)
    [103]D. DeMille, Quantum Computation with Trapped Polar Molecules, Phys.Rev. Lett.88,067901 (2002).
    [104]C. M. Tesch and R. de Vivie-Riedle, Quantum Computation with Vibrationally Excited Molecules, Phys. Rev. Lett.89,157901(2002)
    [105]A. Andr'e, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl,R. J. Schoelkopf, and P. Zoller, A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators, Nature Phys.2,636 (2006).
    [106]R.Cote,Quantum Information Processing:Bridge between two length Scales, Nature Phys.2,583 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700