介观干涉仪中的量子输运
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介观体系这一概念是人们在研究凝聚态物理时从无序系统中逐渐形成的。由于介观系统所具有的独特量子行为,使得以量子理论为基础的半导体介观电子学成为凝聚态物理及半导体材料物理等领域的研究前沿之一。当前,随着科学技术的发展和微加工技术的进步,实验上已经能够制备出尺寸能够达到介观尺寸的量子器件。因此,对介观系统中的电子输运的研究不论从理论上还是从实验上都引起了物理学家们的极大兴趣。另外,量子相干现象已在各种介观器件的电子输运实验中观测到。Aharonov-Bohm (AB)效应展示的介观环结构中量子相干现象就是一个典型的实例。当外加磁场改变时,电子通过两条路径所产生的量子干涉效应将引起量子平行电阻中的电导振荡。对于一个孤立的介观环,磁通可以在环内产生沿着环路流动的电流,这种电流被称作持续流。1995年,Javarnnar和Deo等人在研究开放介观环的过程中发现,在无磁场的情况下介观环里也会出现一个沿着环路循环的电流。而且只要在环两端施加的偏压不变,这个电流就是无耗散的,会一直存在。这就打破了以前人们认为的只有在有磁场存在的情况下环路中才会出现循环电流的观念。刚开始人们把这个电流也叫做持续流。但是随着研究的不断深入,人们发现这个电流和前面的持续流截然不同。直到现在,人们对持续流和循环流的性质和物理起源仍然不是很了解。
     本论文主要是研究介观干涉器件中的量子输运现象。特别是对介观环中的持续流和循环流的本质做了进一步的比较。具体将研究Buttiker和Jayannavar-Deo图像中的持续流定义引起的差别,以及介观干涉仪中由不同的物理根源引起的持续流定义。实际上,对于存在AB磁通的电子输运,Onsager关系要求输运电流必须是AB磁通的偶函数。由这个必要条件,我们预言这两个不同的电流公式有不同的物理起源。而其中的一个是基于局域电流的量子干涉性所引起的循环流。
     在第二章中,为利用上述结论来研究量子器件中的量子输运现象,我们设计了一个不存在外磁场存在情况下的理想的两端口环路介观干涉仪(介观环)。我们回答了电子透射中Fano反共振点是否是出现循环流的必要条件的问题。同时,我们总结出了一个普适的两端口介观环中循环流的定义式。此定义式区分了Buttiker定义式中经典循环流和量子循环流混淆的部分,完全抛开了其经典的一面。从根源上阐明了其具有的普适性。我们发现即使在介观环的上下两臂长相等而量子干涉发生在传播波和衰减波之间的时候,在透射系数不为点(Fano反共振点)的时候仍然会出现一个循环流。由此可以看出循环流不仅仅在上下臂长不相等的时候才会出现。这就打破了以往人们对循环流的普遍认识。当介观环上下臂长的不对称性一直增加到某一临界值的时候,第一个Fano反共振点才会出现,而且Fano反共振点附近有循环流的存在。简言之,本章的研究证明在两端口的介观干涉仪中Fano反共振点并不是循环流产生的必要条件。
     在第三章中,我们进一步研究了当两端口的介观环的其中一端连接一个超导体的情形。我们主要关注于电子在此介观干涉仪中由于超导体相关性和Fano干涉效应的共同作用下所产生的一系列量子输运现象。我们发现由于超导体相关性和量子干涉效应,在准粒子激发能为零的时候,介观干涉仪中的量子输运产生了所谓的Fano-Andreev反共振现象。在准粒子激发能为有限值的时候,每一个Fano-Andreev反共振点都会被劈裂成两个。在这些劈裂的Fano-Andreev反共振点上,包括输运电流和循环流在内的所有电流都会消失。但是对于较高的超过超导能隙的激发能量,准粒子会直接透射进超导体,从而破坏处于较高能量那个Fano-Andreev反共振点。在Fano-Andreev反共振能量附近,由于干涉仪中上下臂长不对称所引起的量子干涉形成的循环流在复能量空间上出现了两种类型的反共振结构。循环流的大小和方向在很大程度上依赖于超导相关性。在远离Fano-Andreev反共振点的地方,我们发现在特定的费米能区间内会出现只有电子型准粒子循环流或空穴型准粒子循环流的情形。因此,只有空穴型准粒子循环流存在的现象也可以作为一种用来实验上验证Andreev空穴准粒子存在的方法。另外,我们也讨论了超导体界面上的界面势效应对输运电流和循环流的影响。我们发现被纯净超导界面的电流幅值所归一化的输运电流和循环流有着同样的电流行为,并且它们显示出同样的I (Z) Z电流曲线。这就意味着超导界面势对输运电流和循环流的影响是相同的。这个普适的归一化电流随着界面势的变化遵循着三种不同的电流特征行为类型。我们也讨论到了Fano-Andreev反共振能量附近三种不同的电流特征行为类型之间的转变行为,并且给出了一个电流行为转变图。我们观察到此介观干涉仪中的一种准振荡行为的电流特征也是首次被发现。这也是由超导相关性和量子干涉的综合效应所引起的一个独特的介观现象。
     在第四章中,对本论文做了简要的总结,概括了本论文中的不足之处,并展望了后续的研究工作和方向。
The concept of mesoscopic sysyems is gradually formed when the physicistsstudying the disordered systems in the condensed matter physics. Due to the uniquequantum mechanics properties, it already leded the semiconductor nanoelectronics,which is based on the quantum theories, becoming to one of the hot topic in condensedmatter physics, materials and semiconductor physics. Nowadays, with the developmentsof the science, technology and micro-machining technology, it is possible to product thequantum device whose size can reach to the mesoscopic size. Hence, studing of theelecton transport in mesoscopic systems, whatever for theory or experiment, has beenattracted much interests.
     Futhermore, the quantum coherent phenomenons have been observed in varies ofthe mesoscopic systems for electron transport, especially the Aharonov-Bohm (AB)effects exhibited the quantum coherence in mesoscopic ring structutes. When applyingan external magnetic field, quantum coherence from electrons passing through twopaths will result conductance oscillation in parallel quantum resistances. Due to themagnetic flux in an isolated mesoscopic ring, it can produce a circulating current alongthe ring direction. This current is namely the persitent currents. After the study of thepersitent currents, in1995, Javarnnar and Deo found that, when they investigate theopen mesoscopic ring, it also exists a current circulating along the ring direction withoutthe external magnetic field. Moreover, if the applied bias is stable, this current isdissipation and has exists forever. It breaks down the thinking way of physicists for that,only with the case of the magnetic field existing, the current can circulate in themesoscopic ring. At the beginning, people called this current to be persistent current.However, with the deeper understanding this current, people found that this currentcirculating along the ring direction is totally different from the persisten current. Until tonow, people still can not clearly understand the properties and oringin of the persistencurrents and the circulating currents.
     This work will study the quantum transport in mesoscopic interfere devices,especially for the essence of further comparison between the persistent current and thecirculating current in mesoscopic rings. It is also studied the difference from thecirculating current definitions in the pictures of Buttiker and Jayannavar-Deo, and gavea circulating current definition original from the different physics in mesoscopic interferometer rings. Actally, for the electron transport with AB magnetic flux, Onsagerrelations require the transport current should be the even function of the AB magneticflux. Due to this necessary requirement, we count that this two current formulas havedifferent origin in physics. One of them is the circulating current produced by thequantum interference which is based on the even function of the local current.
     To the above illustrating, in Sec. II, we will study a two-lead mesoscopicinterferometer ring without the applied magnetic field. We will answer the Fanoantiresonance is the necessary requirement to produce the circulating current in electrontransport. We give a universal definition of the circulating current for the two-leadmesoscopic interferometers. This definition can distinguish the Buttik’s definition inclassical and quantum parts which are confused quite often. It also removes the classicalpart completely.It is found that the quantum interference between the propagating andthe evanescent waves can induce a circulating current without transmissions zeros evenfor a mesoscopic interferometer with symmetric arm lengths. A Fano antiresonance ofthe electron transmission was shown to start appearing at a critical value of theasymmetric arm lengths. As a result, it was shown that Fano antiresonance is not anecessary requirement for circulating currents in two-terminal mesoscopicinterferometers.
     Furthermore, in Sec. III, we have investigated the quantum interference andcorrelation for electron transport through an Andreev interferometer. We found that theasymmetric line shape of Fanoantiresonances transmissions is generated in ourinterferometer when the quasiparticle excitation energy is zero. When the quasiparticleexcitation energy less than the superconducting gap energy, the Fano-antiresonances ofthe electrons and holes is split into two, which locate at a lower and a higher energiesthan the antiresonance energy, due to the superconducting correlation andFano-interference. However, the electron-like quasiparticle can directly transport intothe superconductor if the excitation energy becomes bigger than the superconductor gapenergy, it lead to the Fano-Andreev antiresonances survive for hole-like quasiparticletransport but the higher energy one for electron-like quasiparticle disappears. We alsofound that the circulating quasiparticle currents can be induced in the interferometeraround the Fano-Andreev antiresonant energies due to the asymmetric arm lengthes ofthe interferometer. We also discussed the effects of non-zero interfacial potential on thetransport and circulating currents. We find that, at the superconductor interface, thetransport and the circulating currents normalized by their current amplitudes for the clean superconductor interface have the same I(Z)-Z curve. Based on this universalnormalized current, the three types of normalized current behaviors are clarified.Compared to normal superconducting junctions, one of the three types of the currentbehaviors shows a quasi-oscillating suppression as the interface potential strengthincreases. It is shown that, when the Fermi energy near the Fano-Andreev antiresonanceenergy, the interplay between the superconducting correlation and quantum interferenceraise the unique oscillating-like behavior due to the manybody correlation and thequantum interference in our interferometer for the Andreev transport. The quasiparticletransport currents do not exhibit such a behavior. Also, for given Fermi energies, wediscuss the critical values of the excitation energy for the current behavior transitionamong the three types of the normalized currents. Hence, the current behaviors show acharacteristic transition diagram in association with the excitation energy. When theFermi energy becomes far away from the Fano-Andreev antiresonance, it is found thatonly Andreev hole current can circulate along the interferometer loop for a certainFermi energy region. It may be another demonstration of the existence of Andreev hole.
     In Sec. IV, I briefed the summery and conclusion for this thesis, and mentionedsome deficiencies which should be improved henceforth. Also, I give several goodprospects for keeping study this area.
引文
[1]张立德,牟季美著.纳米材料学[M].辽宁科学技术出版社,1994,1-12.
    [2]袁寿财.朱长纯著.纳米电子技术[J].半导体技术,1999,24:1-9.
    [3]陈元平著,介观纳米体系的电子输运性质[T].湘潭大学,2007,5-14.
    [4]赵正平著.21世纪初微电子技术发展展望[J].半导体情报,1999,36:1-9.
    [5]夏建白,朱邦芬著.半导体超晶格物理[M].上海科学出版社,1995,15-16.
    [6] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantumtheory[J]. Phys. Rev.,1959,115:485-491.
    [7] Y. Imry, Introduction to mesoscopic physics[M]. Oxford University Press, Oxford,1997:5-40.
    [8] S. Datta. Electronic transport in mesoscopic systems[M]. Cambridge University Press,Cambridge, U.K.,1995:6-42.
    [9] P. S. Deo and A. M. Jayannavar. Quantum waveguide transport in serial stub and loopstructures[J]. Phys. Rev. B,1994,50:11629-11639.
    [10] C. W. J. Beenakker and H. van Houten. Quantum transport in semiconductornanostructures[J]. Solid State Physics,1991,44:1-228.
    [11] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J.G. Williamson, J. P. Kouwenhoven, D.van der Marel, and C. T. Foxon. Quantized conductance of point contacts in atwo-dimensional electron gas[J]. Phys. Rev. Lett.,1988,60:848-850.
    [12] R. Dingle, W. Wiegmann, and C. H. Henry. Quantum states of confined carriers in very thinAlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures[J]. Phys. Rev. Lett.,1974,33:827-830.
    [13]高迎芳,介观环的量子输运[T],山西大学,2005,2-16.
    [14]杨晓东,介观体系的量子输运研究[T],北京工业大学,2004,24-30.
    [15] A. Y. Cho and H. C. Casey. GaAs-AlxGa1-xAs double-teterostucture lasers prepared bymolecular-beam epitaxy[J]. Appl. Phys. Lett.,1974,25:288-290.
    [16] B. F. Zhu and K. Huang. Effect of Valence-band hybridization on the excition spectra inGaAs-Ga1-xAlxAs quantum wells[J]. Phys. Rev. B,1987,36:8102-8108.
    [17] D. Gershoni and H. Temkin. Optical properties of III-V strained-layer quantum well[J]. J.Lumin,1989,44:381-392.
    [18] J. Q. Liang, F. Peng, and X. X. Ding. Persistent current induced by magnetic flux in apolyacetylene ring and Fr hlich superconductivy[J]. Phys. Lett. A,1995,201:369-374.
    [19] Z. J. Li, J.Q. Liang, and F. C. Pu. The Aharonov-Casher phase and persistent current in apolyacetylene ring[J]. J. Phys.: Condens. Matter,2001,13:617-627.
    [20] A. P. Jauho, N. S. Wingreen, and Y. Meir. Time-dependent transport in interacting andnoninteracting resonant-tunneling systems[J]. Phys. Rev. B,1994,50:5528-5544.
    [21] M. Büttiker. The quantum phase of flux correlations in waveguides[J]. Physica B,1991,175:199-212.
    [22] M. Büttiker. Symmetry of electrical conduction[J]. IBM J. Res. Dev.,1988,32:317-335.
    [23] A. Tonomura. Observation of Aharonov-Bohm effect by electron holography[J]. Phys. Rev.Lett.,1982,48:1443–1446.
    [24] R. Kubo. Statistical-cechanical theory of irreversible processes. I. General Theory and SimpleApplications to Magnetic and Conduction Problems[J]. J. Phys. Soc. Jpn.,1957,12:570-586.
    [25] R. Landauer, IBM J. Rev. Dev,1957,1:223-234.
    [26] M. Büttiker, Y. Imry, T. Landauer, and S. Pinhas. Generalized many-channel conductanceformula with application to small rings[J]. Phys. Rev. B,1985,31:6207-6215.
    [27] M. Büttiker. Four-terminal phase-coherent conductance[J]. Phys. Rev. Lett.,1986,57:1761-1764.
    [28] Ya. M. Blanter and M. Büttiker. Shot noise in mesoscopic condctors[J]. Physics Reports,2000,336-487(1).
    [29] J. B. Xia. Quantum waveguide theory for mesoscopic structures[J]. Phys. Rev. B,1992,45:3593-3600.
    [30] L. L. Chang, L. Esaki, and R. Tsu. Resonant tunneling in semiconductor double barriers[J].Appl. Phys. Lett.,1974,24:593-594.
    [31] B. S. Andereck and E. Abrahams. Numerical studies of inverse localisation length in onedimension[J]. J. Phys. C,1980,13: L383-341.
    [32] T. Martin and R. Landauer. Wave-packet approach to noise in multichannel mesoscopicsystems[J]. Phys. Rev.B,1992,45:1742-1755.
    [33] D. A. Ryndyk, R. Gutierrez, B. Song, and G. Cuniberti. Green Function Techniques in theTreatment of Quantum Transport at the Molecular Scale[J]. arkiv:0805.0628.
    [34] M. Buttiker, Y. Imry, and R. Landauer. Josephson behavior in small normal one-dimensionalrings[J]. Phys. Lett. A,1983,96:365-367.
    [35] R. Tsu and L. Esaki. Tunneling in a finite Superlattice[J]. Appl. Phys. Lett.,1973,22:562-564.
    [36] E. E. Mendez. Resonant tunneling of holes in AlAs-GaAs-AlAs heterostructures[J]. Appl.Phys. Lett.,1985,47:415-417.
    [37] E. E. Mendez. Observation by resonant tunnelin of hign-energy states in GaAs-Ga1-xAlxAsquantum wells[J]. Phys. Rev. B,1986,33:7368-7372.
    [38] M. Büttiker. Coherent and sequential tunneling in series barriers[J]. IBM J. Res. Dev.,1988,32:63-74.
    [39] B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G. Williamson, C. E. Timmering,M. E. I. Broekaart, C. T. Foxon, and J. J. Harris. Observation of zero-dimensional states in aone-dimensional electron interferometer[J]. Phys. Rev. Lett.,1989,62:2523-2526.
    [40] S. Y. Cho, T. Choi, and C.-M. Ryu. Qantum transport in mesospic rings with stubs[J]. Int. J.Mod. Phys. B,1996,10:3569-3581.
    [41] T. P. Pareek, P. S. Deo, and A. M. Jayannavar. Effect of impurities on the currentmagnification in mesoscopic open rings[J]. Phys. Rev. B,1995,52:14657-14663.
    [42] S. Washburn and R. A. Webb. Quantum transport in small disordered samples from thediffusive to the ballistic regime[J]. Rep. Prog. Phys.,1992,55:1311-1383.
    [43] A. Fuhrer, S. L uscher, T. Ihn, T.Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler.Energy spectra of quantum rings[J]. Nature (London),2001,413:822-825.
    [44] V. J. Goldman, D. C. Tsui, and J. E. Cunningham. Observation of intrsic bistability inresonant-tunneling structures[J]. Phys. Rev. Lett.,1987,58:1256-1258.
    [45] H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D. Stone. Classical and quantumballistic-transport anomalies in microjunctions[J]. Phys. Rev. B,1991,44:10637–10675.
    [46] S. Kawabata. Semiclassical theory of h/e Aharonov-Bohm oscillation for doubly connectedballistic cavities[J]. Phys. Rev. B,1998,58:6704–6707.
    [47] C.-H. Chung and T.-H. Lee. Tunable Fano-Kondo resonance in side-coupled double quantumdot systems[J]. Phys. Rev. B,2010,82:085325(1-8).
    [48] A. M. Jayannavar and P. S. Deo. Persistent currents in the presence of a transport current[J].Phys. Rev. B,1995,51:10175-10178.
    [49] U. Fano. Effects of configuration interaction on intensities and phase shifts[J]. Phys. Rev.,1996,1124:1866-1878.
    [50] E. Tekman and P. F. Bagwell. Fano resonances in quasi-one-dimensional electronwaveguides[J]. Phys. Rev. B,1993,48:2553-2559.
    [51] L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat. Magnetization of mesoscopic copperrings: Evidence for persistent currents[J]. Phys. Rev. Lett.,1990,64:2074-2077.
    [52] Z. Feng and H. Q. Xu. Symmetry of spin transport in two-terminal saveguides with aspin-orbital interaction and magnetic field modulations[J]. Phys. Rev. Lett.,2005,94:246601(1-4).
    [53] E. N. Bulgakov et al.. Hall-Like Effect induced by spin-orbit iInteraction[J]. Phys. Rev. Lett.,1999,83:376-379.
    [54] Y. Jiang and M. B. A. Jalil. Enhanced spin injection and magneto conductance by controllableRashba coupling in a ferromagnet/two-dimensional electron gas structure[J]. J. Phys. CondensMatter,2003,15: L31-41.
    [55] M. Nishioka and A. M. Goldman. Spin transport through multilayer grapheme[J]. Appl. Phys.Lett.,2007,90:252505-252508.
    [56] L. W. Molenkamp and G. Schmidt. Rashba Hamiltonian and electron transport[J]. Phys. Rev.B,2001,64:121202-121206(R).
    [57] J. Eroms and D. Weiss. Andreev reflection at high magnetic fields: Evidence for electron andhole transport in edge states[J]. Phys. Rev. Lett.,2005,95:107001(1-4).
    [58] G. Bastian. Quasi-particle interference effects in a ballistic superconductor-Semiconductor-superconductor Josephson junction[J]. Phys. Rev. Lett.,1998,81:1686-1689.
    [59] A. Chrestin, T. Matsuyama, and U. Merkt. Evidence for a proximity-induced energy gap inNb/InAs/Nb junctions[J]. Phys. Rev. B,1997,55:8457-8465.
    [60] Y. Zhang and F. Zhai. Effect of an in-plane magnetic field on the spin transport through aRashba superlattice[J]. Phys. Rev. B,2009,79:085311(1-8).
    [61] J.-S. Jeong and H.-W. Lee. Ballistic spin field-effect transistors: Multichannel affects[J]. Phys.Rev. B,2006,74:195311(1-18).
    [62] F. Chi, J. Zheng, and L.-L. Sun. Spin-polarized current and spin accumulation in athree-terminal two quantum dots ring[J]. Appl. Phys. Lett.,2008,92:172104-172107.
    [63] F. Zhai, K. Chang and H. Q. Xu. Spin current diode based on an electron waveguide withspin-orbit interaction[J]. Appl. Phys. Lett.,2008,92:102111-102114.
    [64] F. Chi and J. Zheng. Spin separation via a three-terminal Aharonov–Bohm interferometers[J].Appl. Phys. Lett.,2008,92:062106-062109.
    [65] E. I. Rashba. Spin currents in thermodynamic equilibrium: The challenge of discerningtransports currents[J]. Phys. Rev. B,2003,68:241315-241318(R).
    [66] B. K. Nikolic and S. Souma. Decoherence of transported spin in multi-channel spin-orbit-coupled spintronic devices: Scattering approach to spin-density matrix from the ballistic to thelocalized regime[J]. Phys. Rev. B,2005,71:195328(1-16).
    [67] D. Grundler. Large Rashba splitting in InAs quantum wells due to electron wave fFunctionpenetration into the barrier layers[J]. Phys. Rev. Lett.,2000,84:6074-6077.
    [68] V. Vargiamidis and H. M. Polatoglou. Fano resonance and persistent current in mesoscopicopen rings: Influence of coupling and Aharonov-Bohm flux[J]. Phys. Rev. B,2006,74:235323-235337.
    [69] C. Benjamin and A. M. Jayannavar. Features in evanescent Aharonov-Bohm interferometry[J].Phys. Rev. B,2003,68:085325-085331.
    [70] S. Bandopadhyay, P. S. Deo and A. M. Jayannavar. Quantum current magnification in amultichannel mesoscopic ring[J]. Phys. Rev. B,2004,70:075315-075324.
    [71] W. Park and J. Hong. Analysis of coherent current flows in the multiply connected openAharonov-Bohm rings[J]. Phys. Rev. B,2004,69:035319-035326.
    [72] P. W. Anderson. Theory of dirty superconductors[J]. J. Phys. Chem. Solids,1959,11:26-30.
    [73] G. Boato, M. Bugo, and C. Rizzuto. Effect of transition-metal impurities on the criticaltemperature of superconducting Al, Zn, In, and Sn, Phys. Rev.,1966,148:353–361.
    [74] W. Bauriedl and G. Heim. Superconducting properties of ion implantedIn Mn alloys[J]. Z.Phys. B,1977,26:29-36.
    [75] M.-A. Park, M. H. Lee, and Y.-J. Kim. Compensation of magnetic impurity effect insuperconductors by radiation damage[J]. Physica C: Superconducivity,1998,306,96-100.
    [76] Y.-J. Kim. A constraing on the anomalous Green’s function[J]. Mod. Phys. Lett. B,1996,10:555-565.
    [77] L. P. Gor’kov and E. I. Rashba. Superconducting2D system with lifted spin degeneracy:mixed singlet-triplet state[J]. Phys. Rev. Lett.,2001,87:037004-037008.
    [78] K. Yosida. Remarks on the theory of superconductivity[J]. Phys. Rev.,1958,111:1255-1259.
    [79] O. I. Zavialov and A. M. Malokostov. V. A. Fock and N. N. Bogoliubov and their role inestablishing modern quantum field theory[J]. Theor. and Math. Phys.,1999,120:1133-1144.
    [80] G. E. Blonder, M. Tinkham, and T. M. Klapwijk. Transition from metallic to tunnelingregimes in super-conducting microconstrictions: Excess current, charge imbalance, andsupercurrent conversion[J]. Phys. Rev. B,1982,25:4515-4532.
    [81] A. F. Andreev. The thermal conductivity of the intermediate state in superconductors[J]. Zh.Eksp, Teor. Fiz.,1964,46:1823-1825.
    [82] Y. Takagaki. Transport properties of semiconductor-superconductor junctions in quantizingmagnetic fields[J]. Phys. Rev. B,1998,57:4009-4016.
    [83] T. D. Moore and D. A. Williams. Andreev reflection at high magnetic fields[J]. Phys. Rev. B,1999,59:7308-7311.
    [84] H. Y. Yu, Y. T. Hou, M. F. Li, and D.-L. Kwong. Holes tunneling current throughoxynitride/oxide stack and the stack optimization for p-MOSFETs[J]. IEEE: Electron DeviceLetters,2002,23:285-288.
    [85] H. De Raedt, K. Michielsen, and T. M. Klapwijk. Andreev reflection in nanoscalemetal-superconductor devices[J]. Phys. Rev. B,1994,50:631-634.
    [86] J. R. Kirtley. Inelastic transport through normal-metal–superconductor interfaces[J]. Phys.Rev. B,1999,47:11379-11383.
    [87] M. P. Anantram and S. Datta. Current fluctuations in mesoscopic systems with Andreevscattering[J]. Phys. Rev. B,1996,53:16390-16402.
    [88] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman. Coherence and phase sensitivemeasurements in a quantum dot[J]. Phys. Rev. Lett.,1994,74:4047–4050.
    [89] J. H. Harris and M. D. Semon. A review of the Aharonov-Carmi thought experimentconcerning the inertial and electromagnetic vector potentials[J]. Foundations of Physics,1980,10:151-162.
    [90] M. Peshkin, Aharonov-Bohm effect in bound states: Theoretical and experimental status[J].Phys. Rev. A,1981,23:360-361.
    [91] D. M. Greenberger, D. K. Atwood, J. Arthur, C. G. Shull, and M. Schlenker. Is there anAharonov-Bohm effect for neutrons?[J]. Phys. Rev. Lett.,1981,47:751-754.
    [92] V. Chandrasekhar, M. J. Rooks, S. Wind, and D. E. Prober. Observation of Aharonov-Bohmelectron interference effects with periods h/e and h/2e in individual micron-Size, normal-metal rings[J]. Phys. Rev. Lett.,1985,55:1610-1613.
    [93] B. R Bulka. Quantum interference in small metallic rings in a magnetic field[J]. EurophysicsLetters (EPL),1987,3:95-100.
    [94] J. Peng, B. Wang, and D. Y. Xing. Tunable Andreev reflection in an Aharonov-Bohminterferometer[J]. Phys. Rev. B,2005,71:214523-214528.
    [95]曾谨言著,量子力学[M].科学出版社,2007,142-148.
    [96] O. Madelung. Introduction to solid-state theory[JM]. Springer-Verlag1978.
    [97] J. Gong and Q. Wang. Geometric phase in PT-symmetric quantum mechanics[J]. Phys. Rev. A,2010,82:012103(1-4).
    [98] D. Xiao, M.-C. Chang and Q. Niu. Berry phase effects on electronic properties[J]. Rev. Mod.Phys.,2010,82:1959–2007.
    [99] J. Liu and L. B. Fu. Berry phase in nonlinear systems[J]. Phys. Rev. A,2010,81:052112(1-5).
    [100] Y. V. Nazarov and Y. M. Blanter. Quantum transport[M]. Cambridge University Press(Cambridge),2009,63-81.
    [101] D. Weinmann. The physics of mesoscopic systems [M]. Institut de Physique et Chimie desMateriaux de Strasbourg, France.2005.4-12.
    [102] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar. Fano resonances in nanoscale structures[J].Rev. Mod, Phys.,2010,82:2257-2298.
    [103] G. M. Jones. Quantum transport in nanoscale semiconductor devices[M]. ProQuestInformation and Learning Company, United States,2006,3-20.
    [104] P. H nggi and F. Marchesoni. Artificial Brownian motors: Controlling transport on thenanoscale[J]. Rev. Mod. Phys.,2009,81:387–442.
    [105] S. Sil, P. Entel, G. Dumpich, and M. Brands. Role of quantum interference in ferromagneticthin films[J]. Phys. Rev. B,2005,72:174401(1-9).
    [106] S. Bellucci and P. Onorato. Crossover from the ballistic to the resonant tunneling transport foran ideal one-dimensional quantum ring with spin-orbit interaction[J]. Phys. Rev. B,2008,78:235312(1-5).
    [107]陈翌庆著.纳米材料学基础[M].中南大学出版社,2009,103-106.
    [108] V. J. Goldman, R. Tsu, and J. E. Cunningham. Resonant tunneling in magnetic field: Evidencefor space-charge buildup[J]. Phys. Rev. B,1987,35: R9387-9391.
    [109] E. E. Mendez and K. von Klitzing. Physics and applications of quantum wells andsuperlattices[J]. NATO ASI Series,1996:154-178.
    [110] Y. A. Bychkov and E. I. Rashba. Properties of a2D electron gas with lifted spectraldegeneracy[J]. Pis’ma Zh. Eksp, Tero. Fiz,184,39:66-69.
    [111] U. Zülicke and C. Schroll. Interface conductance of ballistic ferromagnetic-metal-2DEGhybrid systems with Rashba spin-orbit coupling[J]. Phys. Rev. Lett.,2001,88:029701-1.
    [112] R. Knobel, N. Samarth, J. G. E. Harris, and D. D. Awschalom. Measurements of Landau-levelcrossings and extended states in magnetic two-dimensional electron gases[J]. Phys. Rev. B,2002,65:235327-235331.
    [113] M. Scheffler, R. Zimmermann. Thin solid films [M]. World Sc., Singapore,1996,3-10.
    [114] J. E. Muller. Effect of a nonuniform magnetic field on a two-dimensional electron gas in theballistic regime[J]. Phys. Rev. Lett.,1992,68:385-388.
    [115] M. I. Katsnelson and F. Guinea. Transport through evanescent waves in ballistic graphenequantum dots[J]. Phys. Rev. B,2008,78:075417(1-9).
    [116] V. A. Sablikov and Y. Y. Tkach. Evanescent states in two-dimensional electron systems withspin-orbit interaction and spin-dependent transmission through a barrier[J]. Phys. Rev. B,2007,76:245321(1-10).
    [117] T. J. Cui, X. Q. Lin, Q. Cheng, H. F. Ma, and X. M. Yang. Experiments on evanescent-waveamplification and transmission using metamaterial structures[J]. Phys. Rev. B,2006,73:245119(1-9).
    [118] B. L. Altshuler, P. A. Lee, and R.A. Webb. Mesoscopic phenomena in solids[J]. ElsevierNorth-Holland,1991:76-81.
    [119]阎守胜,甘子钊著.介观物理[M].北京大学出版社,1995,20-22.
    [120] H. Grabert and M. H. Devoret. Single charge tunneling[M]. Plenum Press, New York,1991:121-126.
    [121] J.H.F. Scott-Thomas, S.B. Field, M.A. Kastner, H.I. Smith, and D.A. Antoniadis.Conductance oscillations periodic in the density of an one-dimensional electron gas[J]. Phys.Rev. Lett.1989,62:583-586.
    [122] M. Büttiker. Quantized transmission of a saddle-point constriction[J]. Phys. Rev. B,1989,41:7906–7909.
    [123] A. G. Scherbakov, E. N. Bogachek, and U. Landman. Quantum electronic transport throughthree-dimensional microconstrictions with variable shapes[J]. Phys. Rev. B,1995,53:4054–4064.
    [124] D. Y. Sharvin and Y. V. Sharvrn. Magnetic-flux quantization in a cylindrical film of a normalmetal[J]. JETP Lett,1981,34:272-285
    [125] B. L. Altshuler, A. G. Aronov, and B. Z. Spivak. The Aaronov-Bohm effect in disorderedconductors[J]. JETP Lett,1981,33:94-97.
    [126] B. L. Altshuler,A. G. Aronov, B. Z. Spivak, D. Y. Sharvin, and Y. V. Sharvin.Aaronov-Bohm oscillations with normal and superconducting flux quanta in hoppingconductivity[J]. JETP Lett,1982,35:588-591.
    [127] A. G. Aronov and Y. V. Sharvin. Magnetic flux effects in disordered conductors[J]. Rev. Mod.Phys.,1987,59:755-779.
    [128] H. Vloeberghs, C. Van Haesendonck, Y. Bruynseraede, A.H. Verbruggen, P.A.M. Holweg, andS. Radelaar. Electron interference in mesoscopic Au loops[J]. Physica B: Condensed Matter,1991,175:217-220.
    [129] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz. Observation of h/eAharonov-Bohm oscillations in normal-metal rings[J]. Phys. Rev. Lett.,1985,54:2696-2699.
    [130] A. Pretre, H. Thomas, and M. Büttiker. Dynamic admittance of mesoscopic conductors:Discrete-potential model[J]. Phys. Rev. B,1996.54:8130-8143.
    [131] Y. Imry. Introduction to mesoscopic physics2nd ed.(Oxford University Press, Oxford,2002).
    [132] H. Bary-Soroker, O. Entin-Wohlman, and Y. Imry. Pair-breaking effect on mesoscopicpersistent currents[J]. Phys. Rev. B,2009,80:024509(1-12).
    [133] E. M. Q. Jariwala, P. Mohanty, M. B. Ketchen, and R. A. Webb. Diamagnetic persistentcurrent in diffusive normal-metal rings[J]. Phys. Rev. Lett.,2001,86:1594-1597.
    [134] R. Deblock, R. Bel, B. Reulet, H. Bouchiat, and D. Mailly. Diamagnetic orbital response ofmesoscopic silver rings[J]. Phys. Rev. Lett.,2002,89:206803-206807.
    [135] R. G. Chambers. Scattering of thermal energy ions in superfluid liquid He by phonons andHe3atoms[J]. Phys. Rev. Letts.,1960,5:1-4.
    [136] H. F. Cheung, E. K. Riedel, and Y. Gefen. Persistent currents in mesoscopic rings andcylinders[J]. Phys. Rev. Lett.,1989,62:587-590.
    [137] E. K. Riedel and F. von Oppen. Mesoscopic persistent current in small rings[J]. Phys. Rev. B,1993,47:15449-1545.
    [138] B. L. Altshuler, Y. Gefen, and Y. Imry. Persistent differences between canonical and grandcanonical averages in mesoscopic ensembles: Large paramagnetic orbital susceptibilities[J].Phys. Rev. Lett.,1991,66:88-91.
    [139] V. Ambegaokar and U. Eckern. Nonlinear diamagnetic response in mesoscopic rings ofsuperconductors above Tc[J]. Euro. Phys. Lett.,1990,13:733-740.
    [140] V. Ambegaokar and U. Eckern. Coherence and persistent currents in mesoscopic rings[J].Phys. Rev. Lett.,1990,65:381-384.
    [141] N. C. Koshnick, H. Bluhm, M. E. Huber, and K. A. Moler. Fluctuation superconductivity inmesoscopic aluminum rings [J]. Science,2007,318:1440-1444.
    [142] H. Bary-Soroker, O. Entin-Wohlman and Y. Imry. Effect of pair breaking on mesoscopicpersistent currents well above the superconducting transition temperature[J]. Phys. Rev. Lett.,2008,101:057001(1-4).
    [143] M. Buttiker, Superconducting quantum interference devices and their applications[M]. deGruyter, Berlin,1985,529.
    [144] Y. H. Su, S. Y. Cho, A. M. Chen, and T. Choi. Is the Fano antiresonance a necessaryrequirement for circulating currents in mesoscopic interferometers?[J]. J. Korean Phys. Soc.,2010,57:138-143.
    [145] A. Yahalom and R. Englman. Conductance phases in the quantum dots of an Aharonov-Bohmring[J]. Phys. Rev. B,2006,74:115328(1-8).
    [146] S. Y. Cho, R. H. McKenzie, C. K. Kim, and K. Kang. Magnetic polarization currents indouble quantum dot devices[J]. J. Phys.: Condens. Matter,2003,15:1147-1153.
    [147] S. Y. Cho and R. H.McKenzie. Thermal and electrical currents in nanoscale electronicinterferometers[J]. Phys. Rev. B,2005,71:045317-045323.
    [148] H. B.-Soroker, O. E.-Wohlman, and Y. Imry. Persistent currents of noninteracting electrons inone-, two-, and three-dimensional thin rings[J]. Phys. Rev. B,2010,82:144202(1-12).
    [149] R. Citro and F. Romeo. Persistent spin and charge currents and magnification eff-ectts inopen ring conductors subject to Rashba coupling[J]. Phys. Rev. B,2007,75:073306(1-5).
    [150] R. S. Rivlin. A note on the Onsager-Casimir relations[J]. Journal of Applied Mathematics andPhysics (ZAM P),1973,24-28.
    [151] H.-F. Cheung, Y. Gefen, E. K. Riedel, and W.-H. Shih. Persisten currents in smallone-dimensional metal rings[J]. Phys. Rev. B,1988,37:6050-6062.
    [152] H. C. Wu, Y. Guo, X. Y. Chen, and B. L. Gu. Giant persistent current in a quantum ring withmultiple arms[J]. Phys. Rev. B,2003,68:125330-125335.
    [153] V. E. Kravtsov and B. L. Altshuler. Relationship between the noise-induced persistent currentand the dephasing Rate[J]. Phys. Rev. Lett.,2000,84:3394–3397.
    [154] J. Yi, J. H. Wei, J. Hong and S-I. Lee. Giant persistent currents in the open Aharonov-Bohmrings[J]. Phys. Rev. B,2001,65:033305-033308.
    [155] Y.-T. Zhang, Y. Guo and Y.-C. Li. Persistent spin currents in a quantum ring with multiplearms in the presence of spin-orbit interaction[J]. Phys. Rev. B,2005,72:125334(1-7).
    [156]张裕恒著.超导物理[M].中国科技大学出版社,2009,12-18.王惠玲,汪京荣著.超导应用低温技术[M].国防工业出版社,2008,10-22.
    [157]时东陆,周午纵,梁维耀著.高温超导应用研究[M].上海科学技术出版社,2008,20-40.
    [158]朱宝鹤.介观超导环磁通涡旋态研究[T].中国石油大学,2006,1-8.
    [159]李红.超导隧道结的理论研究[T].中国石油大学,2007,1-12.
    [160] R. Baquero. Brief Introduction to Superconductivity[M]. Departamento de Física, Cinvestav(2005).
    [161] A. K.Gupta, L. Crétinon, N. Moussy. Anomalous density of states in a metallic film inproximity with a superconductor[J]. Phys. Rev. B,2004,69:1045141-1045144.
    [162] I. Zutic, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and applications[J]. Rev.Mod. Phys.,2004,76:323-410.
    [163] C. W. J. Beenakker. Why does a metal-superconductor junction have a resistance?[J].arXiv:cond-mat/9909293v2:1-12.
    [164] A. M. Jayannavar, P. Singha Deo, and T. P. Pareek. Current magnification and circulatingcurrents in mesoscopic rings[J]. Phys. B,1995,212:261-266.
    [165] C.-M. Ryu and S. Y. Cho. Phase evolution of the transmission coefficient in anAharonov-Bohm ring with Fano resonance[J]. Phys. Rev. B,1998,58:3572-3575.
    [166] A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coulomb-modified Fanoresonance in a one-lead quantum dot[J]. Phys. Rev. Lett.,2004,93:106803-106807.
    [167] K. K. Voo and C. S. Chu. Fano resonance in transport through a mesoscopic two-lead ring[J].Phys. Rev. B,2005,72:165307(1-9).
    [168] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye. Tuning of the Fano effect through aquantum dot in an Aharonov-Bohm interferometer[J]. Phys. Rev.Lett.,2002,88:256806-256809.
    [169] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye. Mesoscopic Fano effect in a quantum dotembedded in an Aharonov-Bohm ring[J]. Phys. Rev. B,2003,68:235304-235311.
    [170] Y. S. Joe, A. M. Satanin, and G. Klimeck. Interactions of Fano resonances in the transmissionof an Aharonov-Bohm ring with two embedded quantum dots in the presence of a magneticfield[J]. Phys. Rev. B,2005,72:115310-115315.
    [171] J. Gores, D. G.-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U.Meirav. Fano resonances in electronic transport through a single-electron transistor[J]. Phys.Rev. B,2000,62:2188-2194.
    [172] J. U. Nockel and A. D. Stone. Resonance line shapes in quasi-one-dimensional scattering[J].Phys. Rev. B,1994,50:17415-17432.
    [173] V. Vargiamidis and V. Fessatidis. Fano resonances in quantum wires with impurities and atransverse electric field[J]. Phys. Rev. B,2009,79:205309(1-10).
    [174] W. Porod, Z.-a. Shao, and C. S. Lent. Resonance-antiresonance line shape for transmission inquantum waveguides with resonantly coupled cavities[J]. Phys. Rev. B,1993,48:8495-8498.
    [175] R. Franco, M. S. Figueira, and E. V. Anda. Fano resonance in electronic transport through aquantum wire with a side-coupled quantum dot: X-boson treatment[J]. Phys. Rev. B,2003,67:155301-155306.
    [176] B. Babic and C. Schonenberger. Observation of Fano resonances in single-wall carbonnanotubes[J]. Phys. Rev. B,2004,70:195408-195414.
    [177] J. Kim, J. R. Kim, J.-O. Lee, J. W. Park, H. M. So, N. Kim, K. Kang, K. H. Yoo, and J. J.Kim. Fano resonance in crossed carbon nanotubes[J]. Phys. Rev. Lett.,2003,90:166403-166406.
    [178] W. Yi, L. Lu, H. Hu, Z.W. Pan, and S. S. Xie. Tunneling into multiwalled carbon nanotubes:coulomb blockade and the Fano resonance[J]. Phys. Rev. Lett.,2003,91:076801-076804.
    [179] I. M. Grace, S. W. Bailey, and C. J. Lambert. Electron transport in carbon nanotube shuttlesand telescopes[J]. Phys. Rev. B,2004,70:153405-153408.
    [180] J. Li, W. D. Schneider, R. Berndt, and B. Delley. Kondo scattering observed at a singlemagnetic impurity[J]. Phys. Rev. Lett.,1998,80:2893-2896.
    [181] A. Grigoriev, J. Skoldberg, G. Wendin, and Z. Crljen. Critical roles of metal-molecule contactsin electron transport through molecular-wire junctions[J]. Phys. Rev. B,2006,74:045401(1-5).
    [182] A. Nitzan and M. A. Ratner. Electron transport in molecular wire junctions[J]. Science,2003,300:1384-1389.
    [183] G. B. Lesovik and G. Blatter. Nonlinear transport through NS junctions due to imperfectAndreev reflection[J]. Pis’ma v ZhETF,1998,68:572-575.
    [184] E. Prada and F. Sols. Entangled electron current through finite size normal-superconductortunneling structures[J]. Euro. Phys. Jour. B,2004,40:379-396.
    [185] H. Takayanagi and T. Akazaki. Andreev reflection at the superconductor–two-dimensional-electron-gas interface by a quantum point contact[J]. Phys. Rev. B,1995,52: R8633–R8636.
    [186] G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers. Andreev reflections atmetal/superconductor point contacts: Measurement and analysis[J]. Phys. Rev. B,2001,63:104510-104517.
    [187] C. W. J. Beenakker. Quantum transport in semiconductor-superconductor microjunctions[J].Phys. Rev. B,1992,46:12841-12844.
    [188] J. A. Melsen and C. W. Beenakker. Nonlinearity in NS transport: scattering matrixapproach[J]. Phys. B,1994,203:219-225.
    [189] R. A. Riedel and P. F. Bagwell. Current-voltage relation of a normal-metal–superconductorjunction[J]. Phys. Rev. B,1993,48:15198-15208.
    [190] R. Seviour, C. J. Lambert, and A. F. Volkov. Conductance suppression in normal-metal–superconductor mesoscopic structures[J]. Phys. Rev. B,1998,58:12338-12343.
    [191] A. F. Volkov and H. Takayanagi. ac Long-range phase-coherent effects in mesoscopicsuperconductor-normal metal structures[J]. Phys. Rev. Lett.,1996,76:4026-4029.
    [192] X. Jehl, P. Payet-Burin, C. Baraduc, R. Calemczuk, and M. Sanquer. Andreev reflectionenhanced shot noise in mesoscopic SNS Junctions[J]. Phys. Rev. Lett.,1999,83:1660-1663.
    [193] F. K.Wilhelm, G. Sch rn, and A. D. Zaikin. Mesoscopic superconducting-normalmetal-superconducting transistor[J]. Phys. Rev. Lett.,1998,81:1682-1685.
    [194] M. Hurd and G. Wendin. Andreev level spectrum and Josephson current in a superconductingballistic point contact[J]. Phys. Rev. B,1994,49:15258-15262.
    [195] M. J. M. de Jong and C. W. J. Beenakker. Andreev reflection in ferromagnet-superconductorjunctions[J]. Phys. Rev. Lett.,1995,74:1657-1660;
    [196] Z. C. Dong, R. Shen, Z. M. Zheng, D. Y. Xing, and Z. D.Wang. Coherent quantum transportin ferromagnet/superconductor/ferromagnet structures[J]. Phys. Rev. B,2003,67:134515-134522.
    [197] A. Dimoulas. Barrier-induced enhancement of Andreev reflection for minority-spinquasiparticles in ferromagnetic metal/insulator/superconductor ballistic junctions[J]. Phys.Rev. B,1999,61:9729-9733.
    [198] C. W. J. Beenakker. Specular Andreev reflection in graphene[J]. Phys. Rev. Lett.,2006,97:067007(1-4).
    [199] S. Bhattacharjee and K. Sengupta. Tunneling conductance of graphene NIS junctions[J]. Phys.Rev. Lett.,2006,97:217001(1-4).
    [200] S. Mondal, D. Sen, K. Sengupta, and R. Shankar. Tuning the conductance of dirac fermionson the surface of a topological insulator[J]. Phys. Rev. Lett.,2010,104:046403(1-4).
    [201] J. Linder, Y. Tanaka, T. Yokoyama. A. Sudb and N. Nagaosa, Unconventionalsuperconductivity on a topological insulator[J]. Phys. Rev. Lett.,2010,104:067001(1-4).
    [202] A. Kormanyos, I. Grace, and C. J. Lambert. Andreev reflection through Fano resonances inmolecular wires[J]. Phys. Rev. B,2009,79:075119(1-5).
    [203] Y. Tanaka, N. Kawakami, and A. Oguri. Andreev transport through side-coupled doublequantum dots[J]. Phys. Rev. B,2008,78:035444(1-5).
    [204] F. W. J. Hekking and Y. V. Nazarov. Interference of two electrons entering a superconductor[J].Phys. Rev. Lett.,1993,71:1625-1628.
    [205] T. H. Stoof and Y. V. Nazarov. Flux effect in superconducting hybrid Aharonov-Bohm rings[J].Phys. Rev. B,1996,54: R772-775.
    [206] A. A. Golubov, F. K.Wilhelm, and A. D. Zaikin. Coherent charge transport in metallicproximity structures[J]. Phys. Rev. B,1997,55:1123-1137.
    [207] A. Dimoulas, J. P. Heida, B. J. v. Wees, T. M. Klapwijk, W. v. d. Graaf, and G. Borghs. Phase-dependent resistance in a superconductor-two-dimensional-electron-gas quasiparticleinterferometer[J]. Phys. Rev. Lett.,1995,74:602-605.
    [208] H. Courtois, P. Gandit, D. Mailly, and B. Pannetier. Long-range coherence in a mesoscopicmetal near a superconducting interface[J]. Phys. Rev. Lett.,1996,76:130-133.
    [209] H. Pothier, S. Gu′eron, D. Esteve, and M. H. Devoret. Flux-modulated Andreev currentcaused by electronic interference[J]. Phys. Rev. Lett.,1994,73:2488-2491.
    [210] S. Griffth. A free-electron theory of conjugated molecules[J]. Trans. Faraday Soc.,1953,49:345-351.
    [211] D. J. Griths. Introduction to Quantum mechanics[M]. Pearson Education, Inc. Press, UnitedStates of American,2005,44-46.
    [212] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. Theelectronic properties of grapheme[J]. Rev. Mod. Phys.,2009,81:109-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700