扰动对AM真菌群落影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根(arbuscular mycorrhiza, AM)真菌是一类非常重要的植物共生微生物,能与大部分陆生植物根系形成互惠共生体,是地上地下生态系统相互联系的重要节点,影响着生态系统的整个过程。AM真菌不仅是生态系统功能的敏感指示剂,而且它们的物种及功能多样性是维持农业和生态环境可持续发展的关键所在。人类活动如何影响AM真菌的群落结构及其功能,是生态学家关注的热点问题之一。青藏高原和黄土高原是特殊的生态系统,生态环境极其脆弱,该地区AM真菌研究非常薄弱,有些地方近乎空白,难以对该地区的生态系统管理和生态恢复提供理论指导和技术支撑。本文在青藏高原和黄土高原地区研究了几种人类扰动生态系统的AM真菌多样性及群落结构,阐明了地膜覆盖、植被破坏及施肥对AM真菌的影响规律。主要研究结果如下:
     (1)、在黄土高原半干旱区的春小麦样地中,地膜覆盖显著提高了AM侵染率和孢子密度;小麦根中共发现9个AM真菌分子种,但地膜覆盖处理对AM真菌的物种丰富度无显著影响(小麦根中的平均AM真菌丰富度,覆膜:5±0.7,未覆膜:4.6±0.5);地膜覆盖会特异性激活或抑制某些种类的AM真菌,进而造成AM真菌群落结构的显著变化;地膜覆盖导致的AM真菌变化主要由土壤速效磷、含水量等土壤性质的变化所引起。
     (2)、在青藏公路沿线的高海拔地区(海拔4,500-4,800m),从历史植被破坏斑块中生长的异叶青兰(Dracocephalum heterophyllum;先锋物种)和未破坏原生群落中生长的多枝黄耆(Astragalus polycladus;演替晚期物种)根际共检测出21个AM真菌分子种,包括8个新种和1个新科。异叶青兰(5.4±0.49)根系中AM真菌的平均物种丰富度要显著高于多枝黄耆(1.93±0.25);此外,多枝黄耆根系中无丛枝结构(营养交换结构),但异叶青兰根系的丛枝侵染率高达12.8%;上述结果表明该地区的先锋物种比演替晚期物种更偏好与AM真菌形成互惠共生体。植被覆盖度是影响该区域AM真菌群落组成的重要因子,植被退化严重的区域,AM真菌的物种丰富度较低。
     (3)、在青藏高原高寒草甸生态系统的长期氮磷施肥样地中(海拔3,500m),共检测出38个AM真菌分子种;随施肥浓度上升,植物群落平均物种丰富度从27.6下降至4.4,植物根系内平均AM真菌分子种丰富度从13下降至4.6,AM侵染率从41.2%下降至12.7%,根际土壤的AM真菌菌丝生物量也下降了约3倍;高浓度氮磷施肥对AM真菌有明显的抑制作用,导致AM真菌物种多样性及功能丧失;在群落水平上,长期氮磷施肥对植物根系内AM真菌群落的影响主要由植物群落结构的变化所引起。
     (4)、长期的进化和相互适应使得AM真菌与植物和土壤环境之间形成了一种稳定的互作关系,植物及土壤环境对AM真菌具有重要的影响;人类扰动如施肥、植被破坏、农艺措施等均会改变AM真菌的群落结构及物种多样性,进而影响生态系统的稳定性和可持续性。
Arbuscular mycorrhizal (AM) fungi can form mutualistic associations with the roots of most terrestrial plants. It is well established that the AM fungi play key roles in linking the aboveground and belowground ecosystems, and consequently, influence many terrestrial ecosystem processes. In addition, AM fungi can serve as an indicator of the ecosystem functioning, and the importances of AM fungal species and functional diversity are well appreciated in maintaining the sustainability of ecosystems. In recent decades, many ecologists have focused on the species compositions and functions of AM fungal communities in natural conditions, especially those anthropogenic disturbed ecosystems. Nonetheless, less is known about the AM fungal communities in the Loess Plateau and Qinghai-Tibet Plateau of China, where the ecosystems are unique and fragile, so that it is difficult to us to direct the sustainable management and restoration of disturbed ecoystems in this region. In this dissertation, I chose several anthropogenic disturbed ecosystems to investigate the effects of plastic film mulch, vegetation damage and fertilization on the species diversities and community compositions of AM fungi. The main results of this dissertation are listed below.
     (1) In the dry-land spring wheat field of Loess Plateau, AM colonization and spore density were increased significantly by the plastic film mulch (PFM). A total of nine AM fungal phylotypes was detected in wheat roots under PFM and no-PFM treatments, whereas the phylotype richness of AM fungi were similar between treatments (PFM:5±0.7; no-PFM:4.6±0.5). The PFM treatment could specifically activate or inhibit some AM fungal taxa to colonize wheat roots, resulting in distinct shifts of AM fungal community compositions. Changes of AM fungal variables under the PFM treatment were mainly attributed to the changes in soil properties such as available phosphorus and soil moisture.
     (2) In the regions with very high altitude (4,500-4,800m a.s.l.) along the Qinghai-Tibetan highway, a total of21AM fungal phylotypes were detected from the rhizospheres (based on roots and spores) of Dracocephalum heterophyllum (pioneer species) in sites disturbed30years ago and Astragalus polycladus (late-successional species) in undisturbed vegetation, including eight new AM fungal species and one new family-like clade. More AM fungal phylotypes colonized root samples of D. heterophyllum (5.4±0.49) than of A. polycladus (1.93±0.25); moreover, no arbuscules (nutrient exchange structure) were observed in the roots of A. polycladus, whereas the arbuscular colonization of D. heterophyllum was12.8%. These findings suggest that AM fungi would prefer to colonize pioneer species rather than late-successional species in this region. We also found that the vegetation coverage was an important factor in regulating AM fungal community, with a low AM fungal diversity detected in regions with serious vegetation degradation.
     (3) A total of38AM fungal phylotypes was identified from a long-term nitrogen and phosphorus fertilization site (3,500m a.s.1.) in the alpine meadow ecosystem of Qinghai-Tibet Plateau. With the increasing levels of fertilization, the plant species richness, phylotype richness of AM fungi in roots and AM colonization reduced from27.6to4.4, from13to4.4and from41.2%to12.7%, respectively. The highest level of fertilization caused the extraradical AM fungal hyphal biomass to decline by three-fold. High fertilizer inputs had strong negative effects on AM fungi, rusulting in dramatical loss of biodiversity and functions of AM fungal community. At the community-scale, response of AM fungal communities colonizing roots to long-term fertilization was strongly linked to the shifts of plant communities due to fertilization, suggesting the plant community composition is a key determinant in influencing the AM fungal assemblage.
     (4) The relationships among AM fungi, plants and soil environment are stabilied by long-term co-evolution and co-adaptation in a local scale, and consequently, any changes of plant and soil components will generate greatly effects on AM fungi. Anthropogenic disturbances such as fertilization, vegetation damage and agronomic practices will affect negatively the diversity and composition of AM fungal community, and influence the sustainability of ecosystems.
引文
Acosta-Martinez V, Dowd S, Sun Y & Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology & Biochemistry 40:2762-2770
    Akhtar MS & Siddiqui ZA (2007) Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Australasian Plant Pathology 36:175-180
    Alguacil MM, Lozano Z, Campoy MJ & Roldan A (2010) Phosphorus fertilisation management modifies the biodiversity of am fungi in a tropical savanna forage system. Soil Biology & Biochemistry 42:1114-1122
    Alguacil MM, Roldan A & Torres MP (2009) Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environmental Microbiology 11:2649-2659
    Alguacil MM, Torres MP, Torrecillas E & Roldan A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biology & Biochemistry 43:167-173
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research 25:3389-3402
    Amijee F, Tinker PB & Stribley DP (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytologist 111: 435-446
    Antoninka A, Reich PB & Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist 192:200-214
    Antoninka A, Wolf J, Bowker M, Classen AT & Johnson NC (2009) Linking above-and belowground responses to global change at community and ecosystem scales. Global Change Biology 15:914-929
    Antunes PM, Lehmann A, Hart MM, Baumecker M & Rillig MC (2012) Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Functional Ecology 26:532-540
    Appoloni S, Lekberg Y, Tercek MT, Zabinski CA & Redecker D (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microbial Ecology 56:649-659
    Aroca R, Porcel R & Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist 173:808-816
    Artursson V, Finlay RD & Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environmental Microbiology 7:1952-1966
    Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3-42.
    Avis PG, Dickie IA & Mueller GM (2006) A'dirty'business:testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Molecular Ecology 15:873-882
    Baath E & Spokes J (1989) The effects of added nitrogen and phosphorus on mycorrhizal growth response and infection in Allium schoenoprasum. Canadian Journal of Botany 67: 3227-3232
    Bedini S, Avio L, Argese E & Giovannetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agriculture, Ecosystems & Environment 120:463-466
    Bennett A & Bever J (2009) Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in plantago lanceolata. Oecologia 160:807-816
    Bever JD, Schultz PA, Pringle A & Morton JB (2001) Arbuscular mycorrhizal fungi:More diverse than meets the eye, and the ecological tale of why. Bioscience 51:923-931
    Blanke V, Renker C, Wagner M, Fullner K, Held M, Kuhn AJ & Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytologist 166:981-992
    Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants:an economic analogy. Annual Review of Ecology and Systematics 16:363-393
    Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134:189-207
    Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82: 3057-3068.
    Borstler B, Renker C, Kahmen A & Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differeing management types and levels of plant biodiversity. Biology and Fertility of Soils 42:286-298
    Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, et al. (2006) Application of a high-density ologonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied and Environmental Microbiology 72:6288-6298
    Brouwer R (1983) Functional equilibrium:sense or nonsense? Netherlands Journal of Agricultural Science 31:335-348
    Brundrett M, Melville L & Peterson L (1994) Practical Methods in Mycorrhiza Research. Mycologue Publication, University of Guelph, Canada
    Cahill JF, Elle E, Smith GR & Shore BH (2008) Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89:1791-1801
    Cano C & Bago A (2005) Competition and substrate colonization strategies of three polyxenically grown arbuscular mycorrhizal fungi. Mycologia 97:1201-1214
    Chagnon PL, Bradley RL & Klironomos JN (2012) Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytologist 194:307-312
    Chen PS, Toribara TY & Warner H (1956) Microdetermination of phosphorus. Analytical Chemistry 28:1756-1758
    Clapp JP, Young JPW, Merryweather JW & Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist 130:259-265
    Colwell RK (2006) EstimateS:statistical estimation of species richness and shared species from samples. Version 8. Persistent URL
    Daniell TJ, Husband R, Fitter AH & Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology 36:203-209
    De Deyn GB & van der Putten WH (2005) Linking aboveground and belowground diversity. TRENDS Ecology Evolution 20:625-633.
    De Deyn GB, Quirk H & Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biology Letters 7:75-78.
    Debellis T & Widden P (2006) Diversity of the small subunit ribosomal RNA gene of the arbuscular mycorrhizal fungi colonizing Clintonia borealis from a mixed-wood boreal forest. FEMS Microbiology Ecology 58:225-235
    DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM & Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology 53:371-383
    Dickson TL & Foster BL (2011) Fertilization decreases plant biodiversity even when light is not limiting. Ecology Letters 14:380-388
    Douhan GW, Petersen C, Bledsoe CS & Rizzo DM (2005) Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification:host specificity or no-specific amplification. Mycorrhiza 15:365-372
    Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH & Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist 190:794-804
    Dumbrell AJ, Nelson M, Helgason T, Dytham C & Fitter AH (2010a) Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi:is there a role for stochastic processes? Journal of Ecology 98:419-428
    Dumbrell AJ, Nelson M, Helgason T, Dytham C & Fitter AH (2010b) Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal 4:337-345
    Egerton-Warburton LM & Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10:484-496
    Egerton-Warburton LM, Johnson NC & Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization:A cross-site test in five grasslands. Ecological Monographs 77:527-544
    Eom A, Hartnett DC & Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435-444
    Falkowski PG, Fenchel T & DeLong EF (2008) The microbial engines that drive earth's biogeochemical cycles. Science 320:1034-1039
    Fitter AH (2005) Darkness visible:reflections on underground ecology. Journal of Ecology 93: 231-243
    Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW & The members of the NERC Soil Biodiversity Programme (2005) Biodiversity and ecosystem function in soil. Functional Ecology 19:369-377
    Gai JP, Cai XB, Feng G, Christie P & Li XL (2006) Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau. Mycorrhiza 16:151-157
    Gai JP, Christie P, Cai XB, Fan JQ, Zhang JL, Feng G & Li XL (2009) Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecological Research 24:1345-1350
    Gamper HA, Young JPW, Jones DL & Hodge A (2008) Real-time PCR and microscopy:Are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance. Fungal Genetics and Biology 45:581-596
    Gao Q & Yang ZL (2010) Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza 20:281-287
    Gao Y, Li Y, Zhang J, Liu W, Dang Z, Cao W & Qiang Q (2009) Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutrient Cycling in Agroecosystems 85:109-121
    Gardes M & Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra:an open question. New Phytologist 133:147-157
    Gerdemann JW & Trappe JM (1974) The Endogonaceae in the Pacific Northwest. Mycologia Memoir 5:1-76
    Grace JB.2006. Structural equation modeling and natural systems. New York, USA:Cambridge University Press.
    Hamel C & Plenchette C (2007) Mycorrhizae in Crop Production. Haworth Food and Agricultural Products Press, Binghamton, NY, USA
    Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau:a review of the evidence of its magnitude and causes. Journal of Arid Environments 74:1-12
    Hartnett DC & Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187-1195
    Hartnett DC, Hetrick BAD, Wilson GWT & Gibson DJ (1993) Mycorrhizal influence on intra-and interspecific neighbour interactions among co-occurring prairie grasses. Journal of Ecology 81:787-795
    Hausmann NT & Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytologist 183:1188-1200
    Hautier Y, Niklaus PA & Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636-638
    He XH & Nara K (2007) Element biofortification:can mycorrhizas potentially offer a more effective and sustainable way to curb human malnutrition? Trends in Plant Science 12: 331-333
    He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C & Zhou J (2007) Geochip:a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal 1:67-77
    Heinemeyer A & Fitter AH (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis:growth responses of the host plant and its AM fungal partner. Journal of Experimental Botany 55:525-534
    Heinemeyer A, Ridgway KP, Edwards EJ, Benhan DG, Young JPW & Fitter AH (2003) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Global Change Biology 10:52-64
    Helgason T & Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). Journal of Experimental Botany 60:2465-2480
    Helgason T, Daniell TJ, Husband R, Fitter AH & Young JPW (1998) Ploughing up the wood-wide web? Nature 384:431
    Helgason T, Fitter AH & Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology 8:659-666
    Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW & Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology 90:371-384
    Hepper CM, Azcon-Aguilar C, Rosendahl S & Sen R (1988) Competition between three species of glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (allium porrum L.). New Phytologist 110:207-215
    Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A & Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low diversity. Molecular Ecology 15:2277-2289
    Hijri M, Redecker D, Petetot JAM, Voigt K, Wostemeyer J & Sanders IR (2002) Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Applied and Environmental Microbiology 68:4567-4573
    Hodge A & Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America 107:13754-13759
    Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, et al. (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13:394-407
    Husband R, Herre EA, Turner SL, Gallery R & Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology 11:2669-2678
    Johansson JF, Paul LR & Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48:1-13
    Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW & Read DJ. (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist 161:503-515
    Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW & Read DJ (2003a) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New phytologist 161:503-515
    Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications 3:749-757
    Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185:631-647
    Johnson NC, Rowland DL, Corkidi L & Allen EB (2008) Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology 89: 2868-2878
    Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM & Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84: 1895-1908
    Joner EJ, Van Aarle IM & Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae:a review. Plant and Soil 226:199-210
    Kennedy AC & Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil 170:75-86
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A et al. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880-882
    Koide RT & Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14: 145-163
    Kruger M, Kruger C, Walker C, Stockinger H & Schuβler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist 193:970-984
    Kruger M, Stockinger H, Kruger C & Schuβler A (2009) DNA-based species level detection of Glomeromycota:one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist 183:212-223
    Kytoviita MM & Ruotsalainen AD (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. American Journal of Botany 94:1309-1315
    Lagrange A, Ducousso M, Jourand P, Majorel C & Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultrmafic soils in New Caledonia. Canadian Journal of Microbiology 57:21-28
    Landis FC, Gargas A & Givnish TJ (2004) Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist 164:493-504
    Lee J, Lee S & Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65:339-349
    Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L & Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology 95:95-105
    Li FM, Song QH, Jjemba PK & Shi YC (2004a) Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biology & Biochemistry 36:1893-1902
    Li FM, Wang J, Xu JZ & Xu HL (2004b) Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil & Tillage Research 78:9-20
    Li LF, Li T, Zhang Y & Zhao ZW (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiology Ecology 71:418-427
    Li LJ, Zeng DH, Yu ZY, Fan ZP, Yang D & Liu YX (2011) Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments 75:787-792
    Lilleskov EA & Parrent JL (2007) Can we develop general predictive models of mycorrhizal fungal community-environmental relationships? New Phytologist 174:250-256
    Liu CA, Jin SL, Zhou LM, Jia Y, Li FM, Xiong YC & Li XG (2009a) Effects of plastic film mulch and tillage on maize productivity and soil parameters. European Journal of Agronomy 31: 241-249
    Liu YJ, He L, An LZ, Helgason T & Feng HY (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiology Ecology 67:81-92
    Lovelock CE & Ewel JJ (2005) Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems. New Phytologist 167:219-228
    Lowell JL & Klein DA (2001) Comparative single-strand conformation polymorphism (SSCP) and microscopy-based analysis of nitrogen cultivation interactive effects on the fungal community of a semiarid steppe soil. FEMS Microbiology Ecology 36:85-92
    Lumini E, Orgiazzi A, Borriello R, Bonfante P & Bianciotto Ⅴ (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environmental Microbiology 12:2165-2179
    Mader P, Flie(3bach A, Dubois D, Gunst L, Fried P & Niggli U (2002) Soil fertility and biodiversity in organic farming. Nature 296:1694-1697
    Maherali H & Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746-1748
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380
    Marler MJ, Zabinski CA & Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology,80:1180-1186
    Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E & Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agriculture, Ecosystems & Environment 119:22-32
    McGonigle TP, Miller MH, Evans DG, Fairchild GL & Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115:495-501
    Mehlich A (1984) Mehlich 3 soil test extractant:a modification of mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15:1409-1416
    Miller RM & Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In:Koltai H & Kapulnik Y, eds. Arbuscular mycorrhizas:physiology and function. Dordrecht, The Netherlands:Kluwer Academic Publishers,3-18.
    Miller RM, Reinhardt DR & Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17-23
    Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A & Verdu M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytologist 194:536-547
    Mooney HA (1972) The carbon balance of plants. Annual Review of Ecology and Systematics 3: 315-346
    Morgan JA, Milchunas DG, LeCain DR, West M & Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proceedings of the National Academy of Sciences of the United States of America 104: 14724-14729
    Morton JB & Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes):a new order, Glomales, two new suborders, Glominae and Gigasporinae, and two families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycologia 80:520-524
    Mummey DL, Rillig MC & Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil 271:83-90
    Newsham KK, Upson R & Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecology 2:10-20
    O'Connor PJ, Smith SE & Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist 154:209-218
    Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, van der Heijden M & Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology & Biochemistry 42:724-738
    Oehl F, Sieverding E, Ineichen K, Mader P, Boller T & Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Applied and Environmental Microbiology 69:2816-2824
    Oksanen J (2011) Multivariate analysis of ecological communities in R:vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
    Olsson PA, Baath E, Jakobsen I & Soderstrom B (1995) The use of phospholipids and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycological Research 99: 623-625
    Opik M & Moora M (2012) Missing nodes and links in mycorrhizal networks. New Phytologist 194:304-306
    Opik M, Metsis M, Daniell TJ, Zobel M & Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist 184:424-437
    Opik M, Moora M, Liira J & Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology 94:778-790
    Opik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F & Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist 179: 867-876
    Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reiner U & Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188:223-241
    Parniske M (2008) Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nature Reviews Microbiology 6:763-775
    Pietikainen A, Kytoviita MM, Husband R & Young JPW (2007) Diversity and persistence of arbuscular mycorrhizas in a low-Arctic meadow habitat. New Phytologist 176:691-698
    Pringle A & Bever JD (2002) Divergent penologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. American Journal of Botany 89:1439-1446
    Prosser JI (2002) Molecular and functional diversity in soil micro-organisms. Plant and Soil 244: 9-17
    R Development Core Team (2010) R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
    Rajaniemi TK (2002) Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology 90:316-324
    Reddy SR, Pindi PK & Reddy SM (2005) Molecular methods for research on arbuscular mycorrhizal fungi in India:problems and prospects. Current Science 89:1699-1709
    Redecker D, Kodner R & Graham LE (2000) Glomalean fungi from the Ordovician. Science 289: 1920-1921
    Reich M, Kohler A, Martin F & Buee M (2009) Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities. BMC Microbiology 9:241
    Remy W, Taylor TN, Hagen H & Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America 91:11841-11843
    Reynolds HL, Packer A, Bever A & Clay K (2003) Grassroots ecology:plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281-2291
    Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7: 740-754
    Rillig MC, Wright SF & Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:comparing effects of five plant species. Plant and Soil 238:325-333
    Roberts DW (2010) LABDSV:ordination and multivariate analysis for ecology. URL http://cran.r-project.org/web/packages/labdsv/labdsv.pdf
    Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K & Aragno M (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology & Biochemistry 38:1111-1120
    Ronquist F & Huelsenbeck JP (2003) MRBAYES 3:bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574
    Sanders IR & Fitter AH (1992) The ecology and functioning of vesicular-arbuscular mycorrhizas in co-existing grassland species I. Seasonal patterns of mycorrhizal occurence and morphology. New Phytologist 120:517-524
    Santos JC, Finlay RD & Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonizing a semi-natural grassland along a fertilization gradient. New Phytologist 172: 159-168
    Santos JC, Finlay RD & Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a semi-natural grassland. Applied and Environmental Microbiology 73:5613-5623
    Schechter SP & Bruns TD (2008) Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecology 17: 3198-3210
    Scheublin TR, Ridgway KP, Young JPW & van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied and Envrionmental Microbiology 70:6240-6246
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al. (2009) Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75:7537-7541
    Schnoor TK, Lekberg Y, Rosendahl S & Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211-220
    SchuBler A & Walker (2012) Glomeromycota species list, http://www.lrz.de/-schuessler/amphylo/ (access date:March 22,2012)
    Schwab SM, Menge JA & Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytologist 117:387-398
    Schwarzott D & SchuBler A (2001) A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10:203-207
    Semchenko M, Lepik M, Gotzenberger L & Zobel K (2012) Positive effect of shade on plant growth:amelioration of stress or active regulation of growth rate? Journal of Ecology 100: 459-466.
    Siddiqui ZA, Akhtar MS, Futai K (2008) Mycorrhizae:sustainable agriculture and forestry. Springer Press, Germany.
    Simon L, Lalonde M & Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology 58:291-295
    Smith SE & Read DJ (1997) Mycorrhizal symbiosis (Second edition). Academic Press, London, UK
    Smith SE & Read DJ (2008) Mycorrhizal symbiosis (Third edition). Academic Press, London, UK
    Smith SE & Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227-250
    Smith SE, Smith FA & Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133:16-20
    Sterner RW & Elser JJ (2002) Ecological stoichiometry:the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, USA.
    Stockinger H, Kruger M & Schuβler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytologist 187:461-474
    Sturmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza DOI:10.1007/s00572-012-0432-4
    Su YY & Guo LD (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17:689-693
    Sutherland W (1996) Ecological Census Techniques:A handbook. Cambridge University Press, Cambridge, UK
    Sylvia DM & Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytologist 115:303-310
    Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) The CLUSTAL_X Windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876-4882
    Tian H, Gai JP, Zhang JL, Christie P & Li XL (2009) Arbuscular mycorrhizal fungi in degraded typical steppe of Inner Mongolia. Land Degradation & Development 20:41-54
    Tilman D & Lehman C (2001) Human-caused environmental change:impacts on plant diversity and evolution. Proceedings of the National Academy of Science of the United States of America 98:5433-5440
    Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton, USA:Princeton University Press.
    Toljander JF, Santos-Gonzalez JC, Tehler A & Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiology Ecology 65:323-338
    Treseder KK & Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi:a model and field test. New Phytologist 155:507-515
    van der Heijden MGA (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163-1171
    van der Heijden MGA, Bakker R, Verwaal J, et al. (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiology Ecology 56:178-187
    van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A & Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72
    van Diepen LTA, Lilleskov EA & Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Molecular Ecology 20:799-811
    van Diepen LTA, Lilleskov EA, Pregitzer KS & Miller RM (2007) Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytologist 176:175-183
    van Diepen LTA, Lilleskov EA, Pregitzer KS & Miller RM (2010) Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems 13: 683-695
    Vandenkoornhuyse P, Husband R, Daniel] TJ, Watson IJ, Duck JM, Fitter AH & Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology 11:1555-1564
    Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH & Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology 12: 3085-3095
    Violi HA, Barrientos-Priego AF, Wright SF, Escamilla-Prado EE, Morton JB, Menge JA & Lovatt CJ (2008) Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. Forest Ecology and Management 254:276-290
    Vitousek PM, Mooney HA, Lubchenco J & Melillo JM (1997) Human domination of Earth's ecosystems. Science 277:494-499
    Walker C & Schuβler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycological Research 108:979-982
    Walker C, Blaszkowski J, Schwarzott D & Schuβler A (2004) Gerdemannia gen. nov., a genus separated from Glomus, and Gerdemanniaceae fam. nov., a new family in the Glomeromycota. Mycological Research 108:707-718
    Walker C, Vestberg M, Demircik F, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I & Schuβler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota):Ambispora fennica gen. sp. nov., Ambisporaceae fam. Nov., and emendation of Archaeospora and Archaeosporaceae. Mycological Research 111:137-153
    Wang B & Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299-363
    Wang G, Li Y, Wu Q & Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Science in China Series D 49:1156-1169
    Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH & Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 309:1629-1633
    Wearn JA & Gange AC (2007) Above-ground herbivory causes rapid and sustained changes in mycorrhizal colonization of grasses. Oecologia 153:959-971
    Wedin D (1995) Species, nitrogen, and grassland dynamics:the constraints of stuff. In:Jones CG & Lawton JH, eds. Linking species & ecosystems. New York:Chapman and Hall,253-262
    Wilson GWT, Rice CW, Rillig MC, Springer A & Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters 12:452-461
    Wolfe BE, Husband BC & Klironomos JN (2005) Effects of a belowground mutualism on an aboveground mutualisms. Ecology Letters 8:8-223
    Wright SF & Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198: 97-107
    Wu B, Hogetsu T, Isobe K & Ishii R (2007) Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza 17:495-506
    Wu F, Dong M, Liu Y, Ma X, An L, Young JPW & Feng H (2011) Effects of long-term fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China. Plant and Soil 342:233-247
    Wubet T, Kottke I, Teketay D & Oberwinkler F (2009) Arbuscular mycorrhizal fungal community structure differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation. Mycological Progress 4:317-328
    Yang C, Hamel C, Schellenberg MP, Perez JC & Berbara RL (2010) Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in Semiarid Grasslands National Park, Canada. Microbial Ecology 59:724-733
    Zhang H, Tang M, Chen H, Tian Z, Xue Y & Feng Y (2010) Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinskii and Hippophae rhamnoides in Zhifanggou watershed. Plant and Soil 326:415-424
    Zhang Y, Guo LD & Liu RJ (2004) Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant and Soil 261:257-263
    Zhou LM, Li FM, Jin SL & Song Y (2009) How two ridges and furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Research 113:41-47
    关松荫(1986)土壤酶及其研究法.农业出版社,北京
    郭正刚,牛富俊,湛虎&吴青柏(2007)青藏高原北部多年冻土退化过程中生态系统的变化特征.生态学报,27(8):3294-3301
    侯晓杰,汪景宽&李世朋(2007)不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响.生态学报,27(2):655-661
    刘小兰,李世清,王俊&宋秋华(2001)半干旱黄土高原地区春小麦地膜覆盖研究概述.西北植物学报,21(2):198-206
    刘永俊&冯虎元(2010)丛枝菌根真菌系统分类及群落研究技术进展.应用生态学报,21(6):1573-1580
    鲁如坤 (1999)土壤农业化学分析方法.中国农业科技出版社,北京
    于树,汪景宽&李双异(2008)地膜覆盖对土壤微生物群落结构的影响.土壤通报,39(4):904-907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700