应用于压缩式环卫车的单轴并联式混合动力总成匹配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力总成匹配技术是混合动力汽车研发过程中最为核心的技术之一,本文依托国家科技支撑计划项目“通用的商用车与工程机械模块化混合动力总成”,对压缩式环卫车的混合动力总成从方案制定到样车试验的整个匹配过程进行了以下研究工作:
     1.压缩式环卫车典型工作工况的构建
     不同类型车辆在不同城市中的工作工况有其特有的特点,通过构建西安市压缩式环卫车典型工作工况,统计得到车辆实际工作过程中动力系统常用工作区域,为动力总成系统匹配设计、控制策略的化以及整车经济性评价提供依据。
     为完成对环卫车工况数据的采集,本文开发了车载远程监控系统,实现对车辆工况数据的远程采集;结合西安市道路特点和环卫车工作特点,优化选择测量道路和测量时间;在基于测试数据进行典型工作工况构建的过程中,针对现有的研究集中于运动学片段分类而对片段抽取鲜有研究的事实,本文提出一种两阶段聚类法用于完善运动学片段的抽取过程。为验证本文所提方法的有效性,基于同样的测试数据,分别利用本文所提方法和传统方法构建典型工作工况,分别利用散点分布、概率密度分布、联合概率密度分布和建模仿真的方法对两工况进行对比。对比结果表明,利用两阶段聚类法构建的典型工作工况,在速度和加速度的概率密度分布上有56.2%和80.1%的改进,在速度-加速度联合概率密度分布上有29.9%的改进,在装载、加速、匀速及减速阶段油耗百分比上分别有0.71%、0.53%、0.77%和0.47%的提高,各阶段油耗与实测油耗差异百分比上分别有2.15%、1.24%、1.59%、12.86%和15.72%的提高。
     2.压缩式环卫车混合动力技术仿真研究
     结合典型工作工况,通过常规动力环卫车结构及工作过程的分析,找出常规动力环卫车燃油消耗率高的根本原因在于:行驶工况和装载工况对动力总成的动力性需求存在巨大的差异。结合环卫车结构和混合动力系统特点,参照混合动力技术的结构分类,设计四种应用于压缩式环卫车的混合动力总成方案。结合环卫车行驶工况和装载工况对动力总成动力性的需求,对四种方案在压缩式环卫车上的适用性进行对比和分析,最终确定一种电机前置的单轴并联式混合动力方案。
     结合单轴并联式混合动力总成结构和环卫车实际工况,定性地论证了混合动力技术可以提高环卫车的经济性。通过Cruise和Matlab/Simulink联合仿真技术来定量的验证混合动力技术对整车经济性的改善情况。在Cruise中建立环卫车行驶工况模型,在Matlab/Simulink中建立装载工况模型,通过Cruise和Matlab/Simulink联合仿真模拟环卫车的整个工作工况。利用上述方法,建立环卫车的常规动力模型并进行仿真,通过对各阶段仿真油耗和实测油耗的对比,验证模型的准确性,对比结果表明:行驶工况油耗偏差8.09%,装载工况油耗偏差3.97%,总油耗偏差6.35%,所建立模型具有较高的准确性。在环卫车常规动力模型的基础上,保持除动力总成外的其他结构不变,仅对动力总成按照混合动力总成结构进行更改,完成环卫车混合动力模型的建立。以本文构建的典型工况为目标工况,对环卫车的常规动力模型和混合动力模型进行仿真,对比仿真结果中发动机工作点的分布和各阶段油耗,定量地确定混合动力技术对经济性的改善效果:在行驶工况中,混合动力系统中发动机46%的工作点燃油消耗率低于210g/kw·h,常规动力系统中发动机仅有25%的工作点燃油消耗率低于210g/kw·h,发动机整体工作效率显著提高:在装载工况中,常规动力系统耗油1.87kg,而混合动力系统耗油0.96kg,发动机油耗量显著降低;综合整个工况,混合动力系统使整车燃油经济性提高25.8%。
     3.压缩式环卫车混合动力总成控制策略研究
     结合混合动力总成结构及实际工况需求,分析混合动力总成的驱动模式及能量流动路径,获得该总成的全过程能量传递路径。在此基础上参照发动机燃油消耗率的定义,引入系统燃油消耗率的概念用以描述混合动力系统的燃油经济性,结合系统全过程能量传递路径,建立单轴并联式混合动力系统在不同工作模式下系统燃油消耗率的数学模型。基于以上工作,在Matlab/Simulink中实现基于系统燃油消耗率最低的瞬时优化策略,并将该策略与第三章中建立的环卫车混合动力模型集成。最后通过仿真对本文所提控制策略进行有效性验证,验证结果表明:在环卫车典型工作工况下,与采用基于规则的逻辑门限控制策略相比,采用基于系统燃油消耗率最低的瞬时优化控制策略能够使整车燃油经济性提高2.97%。
     4.混合动力总成系统开发试验台的设计与开发
     本文在对混合动力总成结构及混合动力总成控制流程分析的基础上,将试验台划分为四个模块:驾驶室模拟模块、动力系统模块、阻力系统模块和采集控制模块。驾驶室模拟模块的功能是:获取当前时刻的目标车速并将其和当前车速作比较,根据比较结果控制动力系统模块,实现目标车速;动力系统模块的功能是:接受驾驶室模拟模块的信号并输出相应的动力;阻力模拟模块的功能是:根据当前的车速、道路坡度等模拟车辆的行驶阻力;采集控制模块的功能是:对整个台架运行信息进行采集,并对整个台架进行必要控制。模块功能确定以后,根据每个模块的功能分别进行硬件和软件设计。特别值得一提的是,为获得动力总成所有的控制权限,本文自主设计与开发了台架上的整车控制器,其主控单元采用STM32F103处理器,其软件基于嵌入式操作系统uC/OS-Ⅱ开发,通过该整车控制器实现了对台架主要设备的集中控制。试验台完成后,通过标准工况试验对台架的设计功能进行验证。最后,在不改变试验台硬件的前提下,通过对试验台软件的更改,为试验台扩展了硬件在环测试和瞬态工况测试功能。
     最后,对本文所匹配开发的混合动力压缩式环卫车进行实车道路试验,试验结果表明:采用混合动力总成后车辆的主要动力性指标,最高车速、0-50km/h加速时间、4%坡度持续速度、最大爬坡度,均达到设计指标且不低于采用常规动力系统的原车;采用混合动力总成后车辆的经济性提高了33.78%,达到了经济性提高20%的设计目标。
Hybrid powertrain matching technology is one of the most important technologies during the hybrid electric vehicle development process. This paper was financially supported by the National Key Technology R&D Program," Universal Modular Hybrid Powertrain of Commercial Vehicles and Construction Machinery ", expounding the entire matching process from scheme establishing to prototype testing. The main works of this paper are as follows:
     1. Working Cycle Construction Based on Experimental Measurement
     Working cycle, known as the reference of developing new vehicles and new technologies, is mainly used for fuel consumption testing and emission testing of vehicles. In theory, working conditions vary with vehicles in different regions during different time periods. Namely, it means that there isn't exist a standard working condition that can describe the work cycle of all kinds of vehicles in any regions during any time perfectly.
     In addition, working cycles of common road vehicles only contain driving cycles. Besides the driving cycle, the working cycle of the compressing sanitation truck studied in this paper also contains the loading cycle during which the compressing sanitation truck completes collecting and compressing sanitation. Up to now, almost all the researches about construction of working cycles are aiming at driving cycle construction, and there is no public research work on the construction of compressing sanitation trucks'work cycle.
     In view of the two reasons we talked about, the typical working cycle of the compressing sanitation truck was constructed. To collect the working condition data of compressing sanitation trucks, the paper developed an on-board remote monitoring system, which used the CAN bus and other sensors to collect the vehicle's working state data transmitted to monitoring center through GPRS. The measuring area,the measuring road and the measuring time were programmed reasonably based on the features of Xi'an city's roads and the compressing sanitation truck's characteristics. Specifically, the measuring area covered the typical urban areas, including commercial districts, residential quarters and industrial zones. The measuring road went through urban main road, urban secondary road and outer ring road. The measuring time selected both traffic peak time and slack time. In this case,12,000groups of data were gained in total, in the tests extending792.3km during7days.
     So far, the existing researches have focused on Fragment Classification in kinematics, while few studies are taken up with Fragment Extraction. Therefore, this paper presents a two-stage clustering method in the process of generating the typical working condition on the basis of the test data, used to perfect the extraction process of kinematics fragments. To verify the effectiveness of the proposed method, this paper sorted the same test data using the proposed method and traditional method to build a typical working condition respectively. Then the two typical working conditions were compared with each other via methods of the scatter distribution, the probability density distribution, the joint probability density distribution, the modeling and simulation in turn. The comparison showed that the typical working condition applying two-stage clustering method had56.2%and80.1%improvements in the probability density distribution of the velocity and acceleration,29.9%improvements in the joint probability density distribution of the velocity-acceleration. Moreover, the fuel consumption of loading, accelerating, constant speed and decelerating phase increased respectively by0.71%,0.53%,0.77%,0.47%on the percentage, the differences between fuel consumptions of each stage and the measured fuel consumption improved by2.15%,1.24%,1.59%,12.86%,15.72%on the percentage.
     2. The Simulation Study of Hybrid Compression Sanitation Trucks
     Combined with the typical working conditions, the paper analyzed the structure and working process of traditional dynamic sanitation trucks to find out the basic cause of traditional dynamic sanitation trucks with high fuel consumption. There were two reasons why traditional dynamic sanitation trucks had high fuel consumption. First, the demands for power performance of driving condition and loading condition varied greatly. Second, the engine acted as the only power source for whole vehicle. In order to guarantee the normal work of the whole working conditions, the engine was demanded to meet the higher requirement for power performance, the one of driving condition. Consequently, the engine worked at a low load under high fuel consumption for a long time in loading condition, which led to the inefficiency of the whole working conditions. Hybrid technology had the native advantage of facing such problems:an integration of several power sources in essence, complementing every power source to achieve an efficient overall characteristic. Owing to multiple power sources in the hybrid powertrain, composition structure of powertrain had more schemes for supply. How to choose the optimal hybrid structure is the first problem faced in hybrid powertrain matching process.
     Referring to the actual structure of sanitation trucks and the structure classification of hybrid technology, four hybrid powertrain solutions applied to compression sanitation trucks were designed in this paper. Based on the demand for power assembly of sanitation trucks under driving conditions and loading conditions, the paper compared and analyzed the applicability of four solutions for compression sanitation trucks, and ultimately determined a prepositional motor single-axle parallel hybrid solution.
     It was demonstrated qualitatively that hybrid technology can improve the economy of sanitation trucks, combined with the structure of the single-axle parallel hybrid power assembly and the actual working conditions of sanitation trucks. In the absence of real vehicles, how to describe quantitatively the economy improved by hybrid technology became the second problem in the matching process of hybrid power assembly.
     The behavior of the static vehicle could not be simulated in Cruise. It meant that the loading conditions of sanitation trucks could not simulated in Cruise either. The second problem mentioned before had been solved through Cruise and Matlab/Simulink co-simulation technology, by which the whole working conditions could be simulated. Among them, the driving condition model was established in Cruise, the loading condition was established in Matlab/Simulink. Then traditional model of sanitation trucks was established and simulated. Finally the accuracy of the model was verified through the comparison between the simulated fuel consumption and the measured fuel consumption, results of the comparison showed that fuel consumption under driving condition deviated with a rate of8.09%, fuel consumption under loading condition deviated with a rate of3.97%, the total fuel consumption deviated with a rate of6.35%. The model had high accuracy. On the basis of traditional model of sanitation trucks, the power assembly was altered according to hybrid dynamic vehicles, while other parts were left unchanged, thereby, the hybrid dynamic model was established. As the typical working conditions acted as the target conditions, the traditional model and the hybrid dynamic model were simulated. The effect on the economy of hybrid technology was described quantitatively comparisons of the distribution of engine working points and fuel consumptions of the various stages. In driving conditions, the overall efficiency of the engine improved significantly:it was46%of engine working points less than210g/kw·h in hybrid dynamic system, while there was25%in traditional dynamic system. In loading conditions, fuel consumption of the engine reduced significantly: fuel consumption of traditional sanitation truck was1.87kg, yet0.96kg of hybrid scheme. Integrated the whole working conditions, hybrid dynamic system improved fuel consumption by25.8%.
     3. Study on Power Management of Single-axle Parallel Hybrid CST
     After the structure and parameters of the hybrid system were determined, the efficiency of the hybrid system was directly influenced by the power management strategy, so, the matching of power management strategy is one of the most important processes during developing new HEV. Based on the fact that logic threshold control strategy can't fit the change of all work conditions, global optimization control strategy unable to practical application and fuzzy logic control strategy hard to realize in embedded real time systems, this paper paid attention on instantaneous optimization control strategy based on minimum system fuel consumption rate.
     Combined with structure analysis of the hybrid powertrain and real work condition requirements, this paper analyzed the drive mode and energy flow of hybrid power train and acquired the energy transfer path of the powertrain. Referred to the definition of engine fuel consumption rate, this paper imported the definition of system fuel consumption rate and used this definition to explain the hybrid system's fuel economy. Based on the works mentioned above, established the mathematical model of different drive mode's fuel consumption rate and realized instantaneous optimization control strategy based on minimum system fuel consumption rate in Matlab/Simulink. Finally, verified the effectiveness of the strategy. The results indicate that, compared with the logic threshold control strategy, by using the strategy that this paper established, the fuel economy improves2.97%.
     4. Design of Single-axle Parallel Hybrid Powertrain Test Platform
     During the development of hybrid electric vehicle, bench test is of great significant to shorten the period of vehicle calibration and help the developer to reduce the costs and risks of the development of HEV In this paper, based on the characteristics analysis of single-axel parallel hybrid powertrain, the single-axle parallel hybrid powertrain test platform was designed and constructed by using modular design method.
     Based on the structure analysis of the hybrid compression sanitation truck, designed a single-axle parallel hybrid powertrain test platform. Modular design method was used to realize this platform and this platform was divided into four modules:driver simulation module, powertrain module, vehicle resistance simulation module, data acquisition and control module. This paper developed a vehicle control unit that used in the test platform. This HCU used STM32F103MCU as its processer and uC/OS-Ⅱ as its operating system. The Function design, software design and realization of the four modules are respectively discussed. Finally, by changing the software of the test platform, realized function expansion of the test platform.
     Finally, this paper verified the hybrid power train's effectiveness by taking road tests of real hybrid compression prototype vehicle. The results of the road tests indicates that the hybrid vehicle's power performances, such as maximum speed,0-50km/h acceleration performance, maximum gradeability and so on, all meet the design target; the hybrid vehicle's fuel economy improves33.78%, exceeds25%which is the design target.
引文
[1]Minato A. Tanaka T. Nishimura T. Investigation of premixed lean diesel combustion with ultra-high-pressure injection [J], SAE paper.2005:01-0914.
    [2]Johnson S E. Nesbitt J E. Naber J D. Mass and Momentum Flux Measurements With a High Pressure Common Rail Diesel Fuel Injector[C]//ASME 2010 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers.2010:469-477.
    [3]Nevin R M. Sun Y. Gonzalez M A. et al. PCCI investigation using variable intake valve closing in a heavy duty diesel engine [D]. University of Wisconsin-Madison.2006.
    [4]Zheng M. Reader G T. Hawley J G. Diesel engine exhaust gas recirculation-a review on advanced and novel concepts [J]. Energy conversion and management.2004.45(6):883-900.
    [5]He H. Yu Y. Selective catalytic reduction of NOx over Ag/Al2O3 catalyst:from reaction mechanism to diesel engine test [J]. Catalysis Today.2005.100(1):37-47.
    [6]董红义.帅石金.李儒龙,等.柴油机排气后处理技术最新进展与发展趋势[J].小型内燃机与摩托车.2007,36(3):87-92.
    [7]朱天乐,王建昕,傅立新.等.柴油机排气后处理技术[J].车用发动机.2002(6):1-5.
    [8]Ortuzar M. Moreno J. Dixon J. Ultracapacitor-based auxiliary energy system for an electric vehicle:Implementation and evaluation [J]. Industrial Electronics. IEEE Transactions on.2007. 54(4):2147-2156.
    [9]Lam L T. Louey R. Development of ultra-battery for hybrid-electric vehicle applications[J]. Journal of power sources.2006.158(2):1140-1148.
    [10]郑维.混合动力汽车动力总成参数匹配方法与控制策略的研究[D].哈尔滨:哈尔滨工业大学.2010.
    [11]叶开志.串联式混合动力大客车动力匹配及控制策略的研究[D]武汉:武汉理工大学,2008
    [12]保华.混合动力城市客车控制策略与试验研究[D].上海:上海交通大学.2008.
    [13]吴剑.并联式混合动力汽车能量管理策略优化研究[D].济南:山东大学.2008.
    [14]Nagasaka A. Nada M. Hamada H. et al. Development of the hybrid/battery ECU for the Toyota hybrid system[J]. Fuel Cells,1998,2012:05-23.
    [15]张军.基于CVT的混合动力汽车关键技术研究[D].长沙:湖南大学,2012.
    [16]Barnitt R A, In-use performance comparison of hybrid electric, CNG, and diesel buses at New York city transit[C], In:2008 SAE International Powertrains, Fuels& Lubricants Conference, June,2008, Shanghai, China, SAE Paper No.2008-01-1556.
    [17]广濑久士,丹下昭二,金东瀛.电动车及混合动力车的现状与展望[J][J].汽车工程,2003,25(2):204-209.
    [18]杨阳.CVT混合动力系统再生制动综合控制研究[D].重庆:重庆大学博士学位论文,2008.
    [19]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D][D].上海:上海交通大学,2007.
    [20]王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学,2008.
    [21]陈龙安.混合汽车动力传动控制系统的研究与开发[D].上海:同济大学,2007.
    [22]邹乃威.无级变速器混合动力汽车动力耦合及速比控制研究[D].长春:吉林大学,2009.
    [23]童毅.并联式混合动力系统动态协调控制问题的研究[D].北京:清华大学,2004.
    [24]张彦延.基于混合动力与能量回收的液压挖掘机节能研究[D].杭州:浙江大学,2006.
    [25]岳东鹏.轻度混合动力系统轴系机电耦合动力学特性研究[D].天津:天津大学,2005.
    [26]王喆.混合驱动器的跟踪和原理性实验研究[D].天津:天津大学,2006.
    [27]于镒隆.发动机管理系统开发的测试技术与平台研究[D].天津:天津大学,2008.
    [28]徐立.应用超级电容的工程机械混合动力系统仿真[D].武汉:武汉理工大学,2008.
    [29]于水.混合动力汽车汽油机启动工况瞬态燃烧和排放特性研究[D].长春:吉林大学,2009.
    [30]曹珊.基于CAN总线的混合动力汽车辅助动力单元系统与控制策略研究[D]. 长春:吉林大学,2007.
    [31]黄万友.纯电动汽车动力总成系统匹配技术研究[D].济南:山东大学,2012.
    [32]科技部.电动汽车科技发展“十二五”专项规划[Z].2012.
    [33]Malikopoulos A A. Stochastic optimal control for series hybrid electric vehicles[C]//American Control Conference (ACC),2013. IEEE,2013:1189-1194.
    [34]Lot R, Evangelou S A. Lap Time Optimization of a Sports Series Hybrid Electric Vehicle[C]//Proceedings of the World Congress on Engineering.2013,3.
    [35]Hayeri R, Taghavi A, Durali M. Preliminary design of a series Hybrid Pneumatic powertrain for a city car[C]//Vehicle Power and Propulsion Conference (VPPC),2010 IEEE. IEEE,2010:1-6.
    [36]Chen Z Y. Yang Y. Zhao G Y. et al. Acceleration Control for a Plug-in Series Hybrid Electric Vehicle[J]. Applied Mechanics and Materials.2013.380:499-503.
    [37]Di Cairano S. Liang W. Kolmanovsky I V. et al. Power smoothing energy management and its application to a series hybrid powertrain[J]. Control Systems Technology. IEEE Transactions on. 2013.21(6):2091-2103.
    [38]Ali S H. Akhtar H. Abdullah M. et al. Utilization of a DC Brushless Hub Motor as an Alternator in Drive Train of Fuel Efficient Series Hybrid Urban Class Vehicle[J]. Applied Mechanics and Materials.2013.325:456-460.
    [39]Kim Y. Lee T K. Filipi Z. Frequency Domain Power Distribution Strategy for Series Hybrid Electric Vehicles[J]. SAE International Journal of Alternative Powertrains.2012.1(1):208-218.
    [40]Zhang B D. Zhang X. Xi L H. Development of Simulation Model for Series Hybrid Electric Crawler Bulldozer (SHECB) Based on ADVISOR[J]. Advanced Materials Research.2013.732: 337-343.
    [41]Kum D. Peng H. Bucknor N K. Control of Engine-Starts for Optimal Drivability of Parallel Hybrid Electric Vehicles[J]. Journal of Dynamic Systems. Measurement, and Control.2013. 135(2):021020.
    [42]Grammatico S. Balluchi A. Cosoli E. A series-parallel hybrid electric powertrain for industrial vehicles[C]//Vehicle Powerand Propulsion Conference (VPPC).2010 IEEE. IEEE.2010:1-6.
    [43]申彩英.串联混合动力汽车能量优化管理策略研究[D].天津:天津大学.2010.
    [44]刘乐.串联混合动力汽乍建模与能源管理系统控制策略研究[D].长春:吉林大学.2011.
    [451曹珊.基于CAN总线的混合动力汽车辅助动力单元系统与控制策略研究[D].长春:吉林大学,2007
    [46]Cao Z. Wu S. Li M. et al. Series and Parallel Hybrid System Performance Comparison Based on the City bus Cycle[C]//Power and Energy Engineering Conference.2009. APPEEC 2009. Asia-Pacific. IEEE.2009:1-5.
    [47]Song M. Oh J. Kim H. Engine clutch control algorithm during mode change for parallel hybrid electric vehicle[C]//Vehicle Power and Propulsion Conference (VPPC).2012 IEEE. IEEE.2012: 1118-1121.
    [48]Yan Y B. Yan F W. Du C Q. Research on Dynamic Torque Control Strategy for Parallel Hybrid Electric Vehicle[J]. Advanced Materials Research.2011.228:951-956.
    [49]Dincmen E, Giivenc B A. A control strategy for parallel hybrid electric vehicles based on extremum seeking[J]. Vehicle System Dynamics,2012,50(2):199-227.
    [50]Ahmed A, Cui S. Different architectures and modes of operation of HEV based on permanent magnet-electric variable transmission with rule-based and fuzzy logic global control strategy [J]. International Journal of Electric and Hybrid Vehicles,2012,4(1):69-92.
    [51]Chen L, Xi G, Sun J. Torque Coordination Control During Mode Transition for a Series-Parallel Hybrid Electric Vehicle[J]. Vehicular Technology, IEEE Transactions on,2012,61(7): 2936-2949.
    [52]黄援军.前后双离合器式并联混合动力城市公交车控制策略研究[D].上海交通大学,2009.
    [53]曹正策.基于电驱动自动变速器(EMT)的Plug_in并联混合动力系统研究[D].武汉理工大学,2011.
    [54]Lim D, Windarko N A, Choi J. PSIM based dynamic simulator for analysis of SPHEV operation[C]//Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on. IEEE,2011:1-11.
    [55]Sun X X, Wang Y C, Shao C M, et al. Study of Thermal Management System for a Series-Parallel Hybrid Electric Vehicle Using Numerical Simulation[J]. Applied Mechanics and Materials,2013,300:932-937.
    [56]林歆悠.混联式混合动力客车功率均衡能量管理控制策略研究[D].重庆:重庆大学,2011.
    [57]Ericsson E. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[J]. Transportation Research Part D:Transport and Environment,2001,6(5): 325-345.
    [58]李世武,蒋彬,初秀民,等.驾驶行为对车辆燃料消耗和污染物排放的影响研究综述[J].公路交通科技,2003,20(1):155-158.
    [59]Eisinger D S, Niemeier D A, Stoechenius T, et al. Collecting driving data to support mobilesource emissions estimation[J]. Journal of Transportation Engineering,2006,132(11): 845-854.
    [60]Lin J, Niemeier D A. An exploratory analysis comparing a stochastic driving cycle toCalifornia's regulatory cycle[J]. Atmospheric Environment,2002,36(38):5759-5770.
    [61]Ball K, Owsley C, Stalvey B, et al. Driving avoidance and functional impairment in olderdrivers[J]. Accident Analysis and Prevention,1998,30(3):313-322.
    [62]Hung W T, Tam K M, Lee C P, et al. Comparison of driving characteristics in cities of PearlRiver Delta[J]. Atmospheric Environment,2005,39(4):615-625.
    [63]Charlton J L, Oxley J, Fildes B, et al. Characteristics of older drivers who adopt self-regulatory driving behaviours [J]. Transportation Research Part F,2006,9(5):363-373.
    [64]Lin J. A Markov process approach to driving cycle development[D]. Davis:University ofCalifornia,2002.
    [65]Lee T C, Judge G G.Zellner A. Estimating the parameters of the Markov probability modelfrom aggregate time series data[M], North-Holland Publishing Company, Amsterdam, London.1970.
    [66]Lin J, Niemeier D A. Estimating regional air quality vehicle emission inventories: constructingrobust driving cycles[J]. Transportation Science,2003,37(3):330-346.
    [67]Pang W K, Yang Z H, Hou S H, et al. Non-uniform random variate generation by the verticalstrip method with given density [J]. European Journal of Operation Research,2002(35): 463-477.
    [68]Ergeneman M, Sorusbay C, Goktan A. Development of a driving cycle for theprediction of pollutant emissions and fuel consumption[J]. International Journal ofVehicle Design,1997, 18(3/4):391-399.
    [69]Dembski N, Guezenncc Y. Analysis and experimental refinement of real-world drivingcv cles[C]. SAE Paper 2005-01-0069,2005.
    [70]Samuel S, Austin L, Morrey. D. Automotive test drive cycles for emission measurement andreal-w orld emission levels-a review [J]. Proceedings of the Institution of Mechanical EngineersPart D:Journal of Automobile Engineering,2002,216(7):555-564.
    [71]Karavalakis G, Stournas S, Bakeas E. Effects of diesel/biodiesel blends on regulated andunregulated pollutants from a passenger vehicle operated over the European and the Athensdriving cycles[J]. Atmospheric Environment,2009,43(10):1745-1752.
    [72]Noland R B, Quddus M A. Flow improvements and vehicle emissions:effects of trip generationand emission control technology[J]. Transportation Research Part D,2006,11(1):1-14.
    [73]Tsai J H, Chiang H L, Hsu Y C, et al. Development of a local real world driving cycle formotorcycles for emission factor measurements[J]. Atmospheric Environment,2005(39): 6631-6641.
    [74]Chen K S, Wang W C, Chen H M. Motorcycle emissions and fuel consumption in urban andrural driving conditions[J]. The Science of the Total Environment,2003(312):113-122.
    [75]Tzirakis E, Pitsas K, Zannikos F, et al. Vehicle emissions and driving cycles:comparison of theAthens Driving Cycle (ADC) with ECE-15 and Eropean Driving Cycle (EDC)[J]. Global NESTJournal,2006,8(3):282-290.
    [76]Andre M, Hammarstrom U. Driving speeds in Europe for pollutant emissions estimation[J] Transportation Research Part D,2000(5):321-325.
    [77]Tong H Y, Hung W T, Cheung C S. On-road motor vehicle emissions and fuel consumption inurban driving conditions[J]. Journal of Air and Waste Management Association,2001(50): 543-554.
    [78]王岐东,贺克斌,姚志良,等.中国城市机动车行驶工况研究[J].环境污染与防治,2010,29(10):745-748.
    [79]李东军,郁增德,李理光.中国典型城市车辆行驶状况的测试统计[J].汽车技术,1998(3):13-15.
    [80]蔡晓林.天津市道路行驶工况和道路排放因子的研究[D].天津:天津大学,2002.
    [81]杨延相,蔡晓林.天津市道路汽车行驶工况的研究fJl.汽车工程,2002,24(3):200-204.
    [82]Du Qing, YANG Yan-xiang, Zhu Di, et al. Investigation of automobile drivingpattern on real-road condition in Tianjin[J]. Transactions of Tianjin University,2002,8(4):276-281.
    [83]王海鲲,陈长虹,黄成.上海市城区典型道路行驶特征研究[J].交通环保,2005,26(3):35-39.
    [84]杜爱民,步曦,陈礼璠.上海市车辆实际运行工况的调查与分析[J].同济大学学报(自然科学版),2005,33(1):55-58.
    [85]吕林,锁国涛.不同路况下汽车行驶工况的测试与分析[J].武汉理工大学学报(交通科学与工程版),2006,30(5):781-784.
    [86]张俊智,卢青春.AT汽车动力传动系动态工况模拟[J].汽车工程,2000,22(1):10-12.
    [87]黄永青.宁波市区道路汽车行驶工况调查研究[J].武汉理工大学(交通科学与工程版),2008,30(4):720-723.
    [88]锁国涛.武汉市公交车行驶工况及发动机循环工况研究[D].武汉:武汉理工大学,2006.
    [89]刘跃明,高谋荣,李占玉.深圳市城市道路汽车行驶工况调查分析[J].深圳职业技术学院 学报,2010(1):40-43.
    190]吴宇光.厦门市机动车道路行驶工况研究[J].中国西部科技,2006(10):5-5.
    [91]张小琴.混合动力电动汽车多能源动力总成仿真分析与优化[D].广州:华南理工大学.2003.
    [92]邹渊,孙逢春.王军.等.电动汽乍用仿真软件技术发展研究[J].机械科学与技术.2004.23(7):761-764.
    [93]Gao D W. Mi C. Emadi A. Modeling and Simulation of Electric and Hybrid Vehicles[J]. Proceedings of the IEEE.2007.95(4):729-745.
    [94]Sciarretta A, Back M. Guzzella L. Optimal control of parallel hybrid electric vehicles[J]. Control Systems Technology. IEEE Transactions on.2004.12(3):352-363.
    [95]Schiffer J, Bohlen O. De Doncker. ect. Optimized energy management for fuelcell-supercap hybrid electric vehicles[C]. Vehicle Power and Propulsion.2005 IEEE Conference. 2005:341-348.
    [96]吴剑.并联式混合动力汽车能量管理策略优化研究[D].济南:山东大学.2008
    [97]王庆年.于永涛.曾小华.等.基JCRUISE软件的混合动力汽车正向仿真平台的开发[J].吉林大学学报:工学版.2009(6):1413-1419.
    [98]曾小华.于永涛.王加雪,等.基于CRUISE软件的混合动力客车主动同步换档的建模与仿真[J].吉林大学学报:工学版,2008.38(5):1015-1019.
    [99]Ravey A. Blunier B. Lukic S. et al. Control strategy of fuel cell hybrid electric vehicle based on driving cycle recognition[C]//Transportation Electrification Conference and Expo (ITEC).2012 IEEE. IEEE.2012:1-5.
    [100]King J C. Model-Based Design of a Plug-In Hybrid Electric Vehicle Control Strategy [D]. Virginia Polytechnic Institute and State University.2012.
    [101]Rousseau A, Pagerit S. Gao D. Plug-in hybrid electric veuicle control strategy parameter optimization[J]. Argonne National Laboratory.2007.
    [102]CUDDY M R, WIPKE K B. Analysis of the fuel economy benefit of drive train hybridization[C]. SAE Paper970289,1997:101-103.
    [103]Anderson C. Pettit E. The effects of APU characteristics on the design of hybrid control strategies for hybrid electric veuicles[J]. Training.1997.2010:10-29.
    [104]Gu S. Wang S. Yang Q. et al. Start up partial nitrification at low temperature with a real-time control strategy based on blower frequency and pH[J]. Bioresource technology,2012,112:34-41.
    [105]Hong-xing W, Bao-quan K, Li-yi L. The research for power matching strategy of parallel hybrid vehicle[C]//Vehicle Power and Propulsion Conference,2008. VPPC'08. IEEE. IEEE,2008: 1-5.
    [106]Xu Y, Li C. A New Hybrid Power Configuration In HEV and Its Driving BLDC Development[J]. Telkomnika,2013,11(2).
    [107]Park J, Park J H. Development of equivalent fuel consumption minimization strategy for hybrid electric vehicles[J]. International Journal of Automotive Technology,2012,13(5): 835-843.
    [108]Wang R, Lukic S M. Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[C]/Vehicle Power and Propulsion Conference (VPPC),2011 IEEE. IEEE,2011:1-7.
    [109]Reinbold V, Vinot E, Gerbaud L. Global optimization of a parallel hybrid vehicle using optimal energy management[J]. International Journal of Applied Electromagnetics and Mechanics,2013,43(1):115-126.
    [110]Abdelsalam A A, Cui S. Fuzzy logic global power management strategy for HEV based on permanent magnet-dual mechanical port machine [C]//Power Electronics and Motion Control Conference (IPEMC),2012 7th International. IEEE,2012,2:859-866.
    [111]Wahsh S, Hamed H G, Nashed M N F, et al. Fuzzy logic based control strategy for parallel hybrid electric vehicle[C]//Power Systems Conference,2006. MEPCON 2006. Eleventh International Middle East. IEEE,2006,1:30-34.
    [112]Ghorbani R, Bibeau E, Zanetel P, et al. Modeling and simulation of a series parallel hybrid electric vehicle using REVS[C]//American Control Conference,2007. ACC'07. IEEE,2007: 4413-4418.
    [113]Lungoci C, Bouquain D, Miraoui A, et al. Modular test bench for a hybrid electric vehicle with multiples energy sources[C]//Optimization of Electrical and Electronic Equipment,2008. OPTIM 2008.11th International Conference on. IEEE,2008:299-306.
    [114]陈燕平.基于CAN总线的混合动力大客车动力系统台架试验研究[D].上海:上海交通大学,2011.
    [115]陈燕平,殷承良.张勇.混合动力大客车动力总成试验台架的构建及试验研究[J].汽车工程.2011(6):468-471.
    [116]阚卫峰,陈燕平.混合动力客车用发动机ISG电机总成的台架测试系统[J].客车技术与研究,2008(3):14-16.
    [117]叶晓.金振华,刘彪,等.并联混合动力台架测试系统设计与应用[J].仪器仪表学报,2010,31(8):1802-1807.
    [118]张炳力,徐小东.混合动力汽车动力系统测试平台的研究[J].农业装备与车辆工程.2008(11):24-27.
    [119]周健豪.袁银男,陈笃红.等.混合动力汽车动力总成试验台测控系统[J].农业机械学报,2011.42(7):36-40.
    [120]王伟华.金启前.曾小华.等.混合动力汽车动力总成试验台研究[J].中国公路学报.2005.18(2):103-106.
    [121]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].长春:吉林大学.2005.
    [122]李战龙.混合动力汽车试验台架的研究与开发[D].长春:吉林大学.2004.
    [123]郝培.基于PUMA Open动态测试系统给的混合动力试验技术研究[D].武汉:武汉理工大学.2008.
    [124]江永泉.混合动力HEV实验台制动系统的研制和制动性能的实验研究[D].重庆:重庆大学,2005.
    [125]姜平,石琴.陈无畏.基于马尔科夫的城市道路行驶工况构建方法[J].农业机械学报,2009.11,vol.40,no.11.P26-30
    [126]姜平.城市混合道路行驶工况的构建研究[D].合肥:合肥工业大学.2011.
    [127]Dembski N, Guezennec Y, Soliman A. Analysis andexperimental refinement of real-world driving cycles[C]//SAE Paper. Detroit,2002,2002-01-0069.
    [128]朱西产,李孟良,马志雄,等.车辆行驶工况开发方法[J].江苏大学学报。2005,26(2):110-113.
    [129]马志雄,李孟良.张富兴.等.主成分分析法在车辆实际行驶工况开发中的应用[J].武汉理工大学学报:信息与管理工程版.2004.26(4):32-35.
    [130]朱永兴.试验数据多元统计分析[M].北京:科学出版社,2009.
    [131]杜爱民.步曦,陈礼瑶.等.上海市公交车行驶工况的调查和研究[J].同济大学学报:自 然科学版,2006,34(7):943-946.
    [132]朱俊虎,石琴,周洁瑜.城市公交车行驶工况的构建[J].交通科技与经济,2011,13(3):108-112.
    [133]张富兴.城市车辆行驶工况的研究[D].武汉:武汉理工大学汽车工程学院,2005.
    [134]姜平.城市混合道路行驶工况的构建研究[D].合肥:合肥工业大学交通运输工程学院,2011.
    [135]马志雄,李孟良,张富兴,等.主成分分析法在车辆实际行驶工况开发中的应用[J].武汉理工大学学报:信息与管理工程版,2004,26(4):32-35.
    [136]石琴,仇多洋,吴靖.基于主成分分析和FCM聚类的行驶工况研究[J].环境科学研究,2012,25(1):70-76.
    [137]庄继晖,谢辉,严英.基于GPRS的电动汽车道路行驶工况自学习[J].天津大学学报,2010,43(4):283-286.
    [138]马志雄,李孟良,张富兴,等.主成分分析法在车辆实际行驶工况开发中的应用[J].武汉理工大学学报(信息与管理工程版),2004,26(4):32-35.
    [139]汪冬华.多元统计分析与SPSS应用[M].华东理工大学出版社,2010.
    [140]张富兴.城市车辆行驶工况的研究[D].武汉:武汉理工大学汽车工程学院,2005.
    [141]李孟良,李洧,方茂东,等.道路车辆实际行驶工况解析方法研究[J].武汉理工大学学报(交通科学与工程版),2003,27(1):69-72.
    [142]王光平.双轴并联混合动力客车电机主动同步换档技术研究[D][D].长春:吉林大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700