金属带式无级变速器数控液压系统技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属带式无级变速器(Metal V-Belt CVT)是集机械、液压、电子及计算机控制技术于一体的一种理想的车辆自动变速器,而电子液压控制系统更是实现其理想传动性能的核心技术之一,提高其自主研发能力和加快其产品化进程对实现缩短与发达国家的技术差距具有重要的现实意义。本文结合课题“轿车无级变速器液压系统关键技术研究”,针对金属带式无级变速器的数控液压系统关键技术进行了理论与试验研究,并取得了阶段性的成果。
     利用数字控制技术和液阻网络系统学理论,对无级变速器数控液压系统的核心控制元件即数字式夹紧力控制阀和数字式速比控制阀进行了设计与研制。在此基础上,应用数字仿真技术,建立了面向无级变速器数控液压系统的联合仿真平台,并设计了混合型速比跟踪控制器,设计开发了无级变速器电子控制单元。通过对数控液压系统的仿真分析与台架试验,结果表明:该数控液压系统设计合理,所开发的数字化液压控制元件重复精度高、可靠性好,完全满足无级变速传动系统对夹紧力和速比的控制要求以及整车在各工况下的行驶要求,较好的解决了使用电液比例阀所带来的重复精度低、尺寸大、响应速度慢的问题,为进一步研发具有独立知识产权的无级变速器电液控制系统和液压集成块产品积累了宝贵的经验。
Continuously Variable Transmission is a type of ideal automatic transmission technology, has become one of the main research of 21st century automotive technology. Metal V-Belt CVT, as the outstanding representative of CVT, compared with other automatic transmissions, has many advantages such as simple in structure, easy to operate, low cost, high performance and efficiency, low noise, energy-saving, and so on. As the world's most potential developing automotive market, China has increasing emphasis and demand on continuously variable transmission technology, and continuously variable transmission has a bright market prospects in our country. More importantly, R&D of CVT with our own intellectual property rights has important economic and social significance to our automotive industry.
     Metal V-Belt CVT is a high-tech product with mechanical, hydraulic, electronic and computer control technology, which is an ideal transmission method for vehicles. The integrated hydraulic control system one of the core technologies to achieve the ideal CVT performance, whose R&D level and product realization is one of the keys to improve capacity of automatic transmission independent development for China-made passenger cars, and is of great realistic significance to achieve shorten the technological gap with the developed countries.
     In view of the existence of unresolved key technical issues of CVT, research of this article is as follows:
     1. On the basis of referring to a large number of domestic and foreign professional literature, this dissertation systemic introduced CVT’s develop history and status of domestic and foreign R&D and it’s application. The CVT’s structure characteristic and working principle are also introduced in detail, and transmission characteristic of steady state, transient state and power loss are analyzed in-depth, which provided the theoretical basis for development of high-performance electro-hydraulic control system.
     2. The digital control hydraulic system model for dual-state CVT was established based on AMESim software, and the controller models aiming at special requirements of electro-hydraulic control system was also constructed based on Simulink software. After data exchange was realized by AMESim and MATLAB/Simulink S-function interface module, the co-simulation platform was constructed. Through typical working conditions simulation, it was validated that the co-simulation platform could simulate kinetics characteristic of whole vehicle with dual-state CVT and dynamic characteristic of electro-hydraulic, and was effective and practicable for R&D of dual state CVT. The simulation results also showed that: the co-simulation platform could improve the efficiency of modeling and control system can be directed to the special requirements of different control algorithms designed to meet different requirements of the accuracy of the model controller.
     3. Considering the non-linear time-varying characteristic and the coupling features between input and output, aiming at the special requirements of CVT ratio control and based on the comparison of control effects of PID control and fuzzy control, mixed-type self-adapting ratio tracking controller was designed combining the advantages of both PID and fuzzy control. The simulation results showed that the real ratio could track the target ratio effectively, and the controller has strong capacity of robust and decoupling and good dynamic response and high accuracy control of steady state, and good dynamic stability under the resistance of outside environment.
     4. Utilizing hydraulic resistance networks theory, digital design and control technology research was carried out on CVT digital control hydraulic system. Aiming at the dynamic design requirement of electro-hydraulic valve-control system, the key components of the system were dynamic analyzed and designed, and model of pressure relief valve of pilot-operated type based on stepper motor control, digital pressure reducing valve of pilot-operated type based on high-speed on-off valve control, were constructed. Static and dynamic characteristic analysis of the control valve mentioned above was carried out. According to the dynamic response demand of hydraulic actuating system, optimization design based on genetic algorithm (GA) was processed on the key system parameters.
     5. Aiming at the control demand of integrated hydraulic control system, the electronic control unit for CVT was independent designed based on micro-controller of Infineon XC164CS, which could provide high performance digital electronic control circuit and power amplifier for digital electro-hydraulic valve-control system;
     6. The dissertation designed digital pressure relief valve of pilot-operated type based on stepper motor control, digital pressure reducing valve control valve of pilot-operated type based on high-speed on-off valve control, and carried out the characteristic test of electro-hydraulic system on hydraulic test rig, studyed the regulations of the influence of the key parameters and static and dynamic features of electro-hydraulic digital control valve on system control pressure, flow rate and control performance. Test results show that the performance of the electro-hydraulic digital valve-control system could meet the requirements of the vehicle working conditions, and improved the performance of driving comfort and shift smooth, and also driving and economy performance, which had laid a solid foundation for further independent development of high-performance product of hydraulic control unit and CVT.
     The innovations in this article are as follows:
     (1) It’s the first time to establish of a simulink-AMESim co-simulation platform for digital control hydraulic system of dual-state CVT, and design mixed-type ratio tracking controller. The simulation results under typical working conditions showed that co-simulation platform has good practibility for analyzing CVT transmission characteristic and controller development.
     (2) Through the application of digital control technology, the dissertation carried out the digital design and control technology research on digital control hydraulic system, and optimization design based on genetic algorithm on the key parameters, which improved the dynamic response performance and reliability, and reduced product development costs. At the same time, the application of digital technology made development of control software easier.
     (3) The dissertation designed and developed the key components of digital control hydraulic system, namely pressure relief valve of pilot-operated type based on stepper motor control, digital pressure reducing valve control valve of pilot-operated type based on high-speed on-off valve control. The bench test results showed that the system had reasonable design, the integrated digital hydraulic control system has high repeat accuracy and good reliability, which fully met the CVT performance requirements in clamping force, Ratio Control, as well as control of the torque converter, and provided a better solution to low repeat accuracy, large size, slow response caused by the use of electro-hydraulic proportional control valve.
引文
[1]松隆治.自動車用燃料の長期的選擇とその評價手法[J].自動車技術,2002,56(7):32-38
    [2]河村泰孝,菊地曉.マニュアムモド8段付きトロイダルCVTの紹介[J].自動車技術,2002,56(9)
    [3]吉林工业大学汽车系无级变速传动课题组.轿车金属带式无级自动变速传动的发展现状与趋势[R],1997
    [4]Sadayuki Hirano, Alan L.Miller, Karl F.Schneider. SCVT - A State of the Art Electronically Controlled Continuously Variable Transmission[C]. SAE910410.
    [5]Koichi Funatsu, Hideo Koyama, Takashi Aoki. Electronic Control System of Honda for CVT[C]. JSAE9636312
    [6]黑澤實,騰川匡,吉田賢二,等.トルクコンバ—タ付き大容量型ベルトCVTの開發[J].自動車技術,1997,51(9)
    [7]Manfred Boos, Herbert Mozer. Ecotronic-The Continuously Variable ZF Transmission (Cvt)[C]. SAE970685
    [8]蒋凌山.奥迪无级变速器Multitronic简介[J].汽车技术,2002(7)
    [9]吴光强,贺林,范大鹏,等.车用无级变速器性能研究[J].传动技术,2007,21(2):16-19
    [10]Gerhard Wagner. 6挡自动变速器和CVT对燃油经济性的贡献[J].传动技术,2004(1):1-10
    [11]裘熙定,王红岩,周云山.轿车金属带式无级变速传动的发展现状与趋势[J].汽车技术,1998(4):1-5
    [12]吉林工业大学汽车系无级变速传动课题组.金属带式无级变速器概况[R]. 1997
    [13]M.A.Kluger, D.R.Fussner. An Overview of Current CVT Mechanisms, Forces and Efficiencies[C]. SAE 970688
    [14]程乃士,张伟华,杨会林,等.汽车金属带式无级变速器—CVT原理和设计[M].北京:机械工业出版社,2008
    [15]周云山,钟勇.汽车电子控制技术[M].北京:机械工业出版社,2004
    [16]姚文俊.汽车无级变速器(CVT)液压控制系统综述[J].液压与气动,2006(10):1-3
    [17]张伯英.金属带式无级变速器传动机理与控制的研究[D].长春:吉林大学汽车工程学院,2002
    [18]付铁军.金属带式无级变速传动器智能控制技术研究[D].长春:吉林大学汽车工程学院,2004
    [19]王红岩.金属带式无级变速传动系统分析、匹配与综合控制的研究[D].长春:吉林工业大学汽车工程学院,1998
    [20]Van Doorn’s Transmissie B.V.推块式V型金属带无级变速器的性能分析[J].传动技术,1997,4:31-43
    [21]薛殿伦.基于最优理论的离合器控制策略及CVT电液系统的试验研究[D].长春:吉林大学汽车工程学院,2003
    [22]B.Bonsen, C.deMetsenaere, T.W.G.L.Klaassen, et al. Simulation and control of slip in a continuously variable transmission[J]. In Advanced Vehicle Control(AVEC), 2004
    [23]B.Bonsen, T.W.G.L.Klaassen, R.J.Pulles, et al. Performance optimization of the push-belt CVT by variator slip control[J]. Int. J. of Vehicle Design, 2005, 39(3):232-256
    [24]B.Bonsen, T.W.G.L.Klaassen, K.G.O. van de Meerakker, et al. Analysis of slip in a continuously variable transmission[C]. IMECE Congress and RD&D Expo, 2003
    [25]B.Bonsen, T.W.G.L.Klaassen, K.G.O. van de Meerakker, et al. Measurement and control of slip in a continuously variable transmission[C]. IFAC Mechatronics, 2004
    [26]B.Bonsen, R.J.Pulles, S.W.H.Simons, et al. CVT slip control implementation in a production vehicle[C]. IEEE Conference on Control Applications, 2005
    [27]Hiroki Asayama, Junji Kawai, Atsushi Tonohata, et al. Mechanism of Metal Pushing Belt[C]. JSAE Review, 1995, 16:137-143.
    [28]IDE Tohru, TANAKA Hirohisa. Speed Ratio Control Characteristics of a Metal V-Belt Continously Variable Trasmission(1st Report. Effect of Belt Clamp Force on the Dynamics of the CVT without Load)[C]. JASME(C), 20000425, Vol.66, No.644:1310-1316
    [29]井手徹.金属ベルトCVT關して[J].自動車技術,2000,54(4)
    [30]小林大介,馬淵豐,加藤芳章.金属CVTベルトのトルク传逹メカニズム[C]. JSAE9937624,1999,30(3)
    [31]Shinya Kuwabara, Toru Fujii, Shigeru Kanehara, Power Transmitting Mehanisms of CVT Using a Metal V-belt and Load Distribution in the Steel Ring, SAE 980824.
    [32]Heera Lee, Hyunsoo Kim. Analysis of Primary and Secondary Thrust for a Metal Belt CVT Part 1: New Formula for Speed Ratio-Torque-Thrust Relationship Considering Band Tension and Block Compression[C]. SAE2000-01-0841.
    [33]内山博一,米田毅,井手徹.金属ベルトの變速メカニズムについて[C].自動車技術会学術講演会前刷集,No.9932232.
    [34]井手徹,内山博一,米田毅,等.金属VベルトCVTの變速メカニズムについて[C]. JSAE20014044,2001,32(1)
    [35]Tohru IDE, Hirokazu UCHIYAMA, Ryuji KATAOKA. Experimental Investigation on Shift Speed Characteristics of a Metal V-Belt CVT[C]// Proceedings.of International conference on Continuously Variable Transmission, Yokohama, 9636330:59-64
    [36]藤村他.自金属VベルトCVTの變速メカニズムに関する研究-變速速度の取り忣いと平均摩擦係数[C]//自動車技術会学術講演会前刷集,No.9838363
    [37]Osamu Fujimura, Kazuya Okubo, Toru Fujii. Shifting Mechanisms and Variation of Frictional Coefficients for CVT using Metal Pushing V-Belts[C]. SAE2000-01-0840
    [38]S Akenurst, N D Vaughan, D A Parker, et al.金属推型V-带无级变速箱损耗机理仿真部分2:带轮变形损失和总转矩损失的论证[J].传动技术,2006(1):33-42
    [39]S Akenurst, N D Vaughan, D A Parker, et al.金属推型V-带无级变速箱损耗机理仿真部分1:带组摩擦造成的转矩损失[J].传动技术,2005(4):40-48
    [40]Shigeru Kanehara, Toru Fujii, Takashi Kitagawa. A Study on a Metal Pushing V-Belt Type Cvt[C]. SAE940735
    [41]S Akenurst, N D Vaughan, D A Parker, et al.金属推型V-带无级变速箱损耗机理仿真部分3:带的滑动损失[J].传动技术,2006(2):33-43
    [42]张利平.液压控制系统及设计[M].北京:化学工业出版社,2006
    [43]张利平.液压阀原理、使用与维护[M].北京:化学工业出版社,2007
    [44]骆涵秀,徐立.数字式电液控制系统的设计原理[J].液压气动与密封,1987(2):17-22
    [45]许梁,杨前明.电液元件数字化技术进展[J].现代制造技术与装备,2007(2):65-67
    [46]陈忠强.国外液压技术现状及发展趋势[J].现代零部件,2004(5):54-56
    [47]吴文静,刘广瑞.数字化液压技术的发展趋势[J].矿山机械,2007(8):116-119
    [48]吴文静,刘广瑞.数字化液压技术的控制方法研究[J].液压气动与密封,2007(6):16-20
    [49]陈彬,易孟林.数字技术在液压系统中的应用[J].液压气动与密封,2005(4):1-3
    [50]孙峰,钱荣芳,马群力.数字式液压缸和数字式液压系统[J].液压与气动,2002(8):42-44
    [51]许仰曾,郭东京,沈志远,等.液压阀进入数字时代[J].现代制造,2006(31)
    [52]黄人豪,濮凤根.液压控制技术与展望[J].液压气动与密封,2002(6):1-9
    [53]黄人豪.基于“液阻理论”和“产品设计方法学”的座阀控制结构特征和分析[J].流体传动与控制,2004(3):27-31
    [54]黄人豪,濮凤根.液压控制元件产品结构创新和发展趋势[J].流体传动与控制,
    [55]胡燕平,彭佑多,吴根茂.液阻网络系统学[M].北京:机械工业出版社,2003
    [56]W.巴克.液压阻力回路系统学[M].北京:机械工业出版社,1980
    [57]拉塞尔. W.亨克.流体动力回路及系统导论[M].北京:机械工业出版社,1985
    [58]赵晓燕,张胜昌,许仰曾,等.数字阀的优化设计研究[J].机床与液压,2004(10):66-67
    [59]陈理壁.步进电动机及其应用[M].上海:上海科技出版社,1985
    [60]李忠杰,宁守信.步进电动机应用技术[M].北京:机械工业出版社,1988
    [61]宁守信.步进电动机开环与闭环控制的比较[J].微特电机,1990(4)
    [62]刘宝延,程树康.步进电机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997
    [63]陈洁,丁立言.小功率电机选型手册[M].北京:机械工业出版社,1998
    [64]雷天觉.新编液压工程手册[M].北京:北京理工大学出版社,1998
    [65]黎啟柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997:481-506
    [66]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社,1988
    [67]殷孝龙.自动变速器数字比例调压阀设计与研究[D].长春:吉林大学汽车工程学院,2007
    [68]王西永.基于数字技术的无级变速器电液控制系统研究[D].长春:吉林大学汽车工程学院,2005
    [69]袁明.基于数控技术的CVT电液控制系统研究[D].长春:吉林大学汽车工程学院,2004
    [70]黄维纲,王旭永,王显正,等.高速电磁开关阀开关特性的机理研究[J].上海交通大学学报,1998,32(12)
    [71]张忠祥,刘志珍.高速开关电磁阀的模型分析及控制方法[J].电力应用,2007,26(11)
    [72]张廷羽,张国贤.高速开关电磁阀的性能分析及优化研究[J].机床与液压,2006(9)
    [73]田静.高速开关阀PWM控制电路的开发[J].中国民航学院学报,2003,21(6)
    [74]孔晓武.高速开关阀动态性能试验装置及其应用研究[J].机电工程,2005,22(8)
    [75]杜巧连,龚永坚,倪兆荣,等.高速开关阀在汽车工程中的应用研究[J].汽车科技,2003(4)
    [76]周恩涛,陶磊,林君哲,等.基于健合图的高速开关阀建模与应用[J].机床与液压,2008,36(1)
    [77]汤展跃,刘少军,黄中华,等.以高速开关阀为先导阀的锥阀性能研究[J].机床与液压,2007,35(6)
    [78]朱建公,文代明.高速开关阀流量调节的计算机控制方法研究[J].液压与气动,2005(4)
    [79]张志义,孙蓓,黄元峰.高速开关阀位置控制方法[J].机床与液压,2005(5)
    [80]刘忠,龙国键,褚福磊,等.基于高速开关电磁阀技术的压力控制系统设计[J].液压与气动,2003(3)
    [81]明辉.汽车无级变速器数字式高速开关调压阀研究[D].长春:吉林大学汽车工程学院,2007
    [82]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005
    [83]成大先.机械设计手册:液压控制[M].北京:化学工业出版社,2004
    [84]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1982:
    [85]张利平.液压传动系统及设计[M].北京:化学工业出版社,2006
    [86]吴根茂,邱敏秀,王庆丰,等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006
    [87]付永领,祁晓野. AMESim系统建模和仿真—从入门到精通[M].北京:北京航空航天大学出版社,2006
    [88]谢飞,宋传学,刘明树,等.面向双状态无级变速器的AMESim-Simulink联合仿真平台研究,汽车技术,2008(8):9-12
    [89]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003
    [90]卢延辉.双状态无级变速器综合控制策略研究[D].长春:吉林大学汽车工程学院,2007
    [91]张树培.汽车无级变速器滑转率与夹紧力控制研究[D].长春:吉林大学汽车工程学院,2007
    [92]宋勇.电子控制自动变速器液压系统设计[D].长沙:湖南大学机械与汽车工程学院,2007
    [93]黄琥.无级变速器电液控制系统研究开发[D].长沙:湖南大学机械与汽车工程学院,2007
    [94]薛庆文,王力田.汽车无级变速器(CVT)结构原理与维修精华[M].北京:机械工业出版社,2006
    [95]栾琪文,于京诺.汽车无级变速器结构原理与维修[M].沈阳:辽宁科学技术出版社,2007
    [96]薛定宇.控制系统计算机辅助设计—MATLAB语言与应用[M]. 2版.北京:清华大学出版社,2006
    [97]吴晓莉,林哲辉. MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002:46~55
    [98]蒲小琼.模糊控制—21世纪的一项核心技术[J].计算机应用研究,1998(4)
    [99]王保华,陶键民. ABS模糊控制的研究[J].汽车科技,2000(2)
    [100]丁辉,张莉莉.国外模糊控制理论和技术的发展概况[J].家用电器科技,1997(4)
    [101]林小峰,廖志伟,方辉.隶属度函数对模糊控制性能的作用与影响[J].电机与控制学报,1998,2(4)
    [102]诸静.模糊控制原理与应用[M].一版,北京:机械工业出版社,1995
    [103]何平,王鸿绪.模糊控制器的设计与应用[M].一版,北京:科学出版社,1997
    [104]张晓华.控制系统数字仿真CAD[M].北京:机械工业出版社,1999
    [105]施阳. MATLAB语言精要及动态仿真工具SIMULINK[M].西安:西北工业大学出版社,1998
    [106]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997
    [107]杨高波,简清华.基于MATLAB SIMULINK的仿真方法研究[J].华东交通大学学报,2000(4)
    [108]高京魁,金属带式无级变速器电子控制单元的设计与研究[D].吉林大学汽车工程学院,2005
    [109]卢延辉,张友坤,郑联珠,等.基于Infineon C164CI的金属带式无级变速器电控系统设计[J].吉林大学学报(工学版),2006,36(S1):84-88
    [110]毕乾坤.金属带式无级变速器电控系统及控制策略研究[D].吉林大学汽车工程学院,2007
    [111]吴志红,朱元,王光宇.英飞凌16位单片机XC164CS的原理与基础应用[M].上海:同济大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700