中性纤维素内切酶的发掘、表征及其应用于生物石洗的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中性纤维素内切酶(中性EG)在牛仔布生物石洗中具有很高的应用价值,但国内中性EG不具有自主知识产权,因此,发掘全新中性EG,对于打破国外中性EG的垄断地位具有重要意义。完整中性EG和截短中性EG在牛仔布生物石洗上有不同表现,这与纤维素酶的纤维素结合区相关,但深层次原因还尚未发现。本文主要研究中性EG的生产菌株筛选、发掘、异源表达以及酶学性质表征,初步研究中性EG在牛仔布生物石洗上的应用,具体研究内容和结论如下。
     第一部分,Bacillus subtilis LH中性EG的基因发掘、异源高效表达、表征及其应用于生物石洗的基础研究。
     1)从鲁华生物技术研究所菌库中,筛选到产中性EG的菌株B. subtilis LH,获得B. subtilis LH的中性EG基因。Pichia pastoris GS115和Escherichia.coli Rosetta (DE3)分别表达了成熟中性EG(分别命名为MBSEG-1和MBSEG-2),结果表明MBSEG-2表达水平远高于MBSEG-1。采用最优产酶条件,未浓缩MBSEG-2的EG酶活可达25686U/mL,是目前所有报道的最高水平。
     2)MBSEG-1和MBSEG-2的酶学性质相似,最适温度均为65℃,最适pH值均为6.86,既有内切酶活性又有外切酶活性,N-糖基化的有无引起了酶在热稳定性、木瓜蛋白酶有限水解上的差异。
     3)基于截短MBSEG-2以及完整MBSEG-1和MBSEG-2水洗牛仔布实验,并结合蛋白3D模型分析,发现具有高比例的表面疏水氨基酸和芳香氨基酸的EG有助于提高牛仔布的除毛率和脱色率,而与EG(但必须有催化域)的完整性无关。
     第二部分,真菌Petriella setifera LH的鉴定,中性EG的表征及其应用于生物石洗的基础研究。
     从鲁华生物技术研究所的保存土壤中,筛选到一株产中性EG的真菌,基于延伸因子基因(EF-la)部分序列的系统发育树的分析,并结合真菌形态学特征,鉴定该真菌为Pe. Setifera,命名为Pe. setifera LH。Pe. setifera LH的中性EG于40℃时可保持80%以上的相对酶活,最适pH为6-7,水洗牛仔布的效果与商业化中性EG相当,揭示了它在牛仔布生物石洗上具有潜在的应用价值。
     第三部分,真菌Phaeosphaeria sp. LH21两个中性EG的基因发掘、序列分析及酶学性质表征。
     1)从极端环境的深海淤泥中,筛选到一株产中性EG的真菌,基于EF-1α部分序列和18S rDNA部分序列的比对分析,鉴定该真菌为Phaeosphaeria sp.,命名为Phaeosphaeria sp. LH21。
     2)采用基因组走读技术和RT-PCR方法,首次克隆了Phaeosphaeria sp. LH的两个全新EG(GH45EG-1和GH45EG-2)基因。GH45EG-1和GH45EG-2全长分别为235和233个氨基酸。通过NCBI BLAST对氨基酸序列进行比对分析,表明GH45EG-1和GH45EG-2属于糖苷水解酶第45家族,仅有催化域无纤维素结合区,其氨基酸序列和已知EG氨基酸序列分别拥有71%和63%的最大一致性。
     3)基于两个成熟EG (mGH45EG-1和mGH45EG-2)和Humicola insolens EG V氨基酸序列之间的比对分析,再根据蛋白3D结构模型的分析,推测nGH45EG-1其中个活性中心位点为Asp16,推测mGH45EG-2活性中心位点为Asp122和Asp11,推测它们催化机制为反转机制。
     4)mGH45EG-1和mGH45EG-2分别于P. pastohs GS115中表达。重组酶mGH45EG-1和mGH45EG-2的底物谱证实它们属于内切酶类型,对羧甲基纤维素钠具有最高降解活性,对结晶纤维素合滤纸降解的相对酶活仅为0.1-0.3%。10mM Ca2+和Mg2+提高了8-27%重组酶mGH45EG-1和nGH45EG-2的相对酶活,多数金属离子对它们有抑制作用。重组酶mGH45EG-1和mGH45EG-2最适pH值均为8,在pH5-10时相对酶活均在75%以上,于50℃及pH3-10保温1h历相对残余酶活均在90%以上,最适温度分别为65℃和60℃。
Neutral (3-1,4-endoglucanase (EG) has a high application value in biostoning of denim, but domestic neutral EG doesn't have independent intellectual property rights. As a result, it is significantly meaningful to dig new neutral EG in order to break the monopoly of foreign neutral EG. Complete neutral EGs and truncated neutral EGs have different performances in biostoning of denim, which is concerned with cellulose-binding domain of cellulase, but the deep-seated reason has not been found. The paper focuses on digging, heterologous expression and characterization of neutral EG, and fundamentally explores the application of denim in biostoning.
     In the first section, the study about gene digging, efficient heterologous expression and characterization of a neutral EG from Bacillus subtilis LH, and the fundamental study on application of it in biostoning of denim were carried out.
     1) B. subtilis LH producing the neutral EG was screened from the strain bank of Newworld Institute of Biotechnology, and the neutral EG gene from B. subtilis LH was amplified. The mature EG was expressed in Escherichia.coli Rosetta (DE3) and Pichia pastoris GS115(named as MBSEG-1and MBSEG-2, respectively), respectively, and the result showed that the expression level of MBSEG-2is much higher than that of MBSEG-1. By using the optimized condition, the EG activity of MBSEG-2without concentration is25686U/mL, which is the highest expression level having been reported at present.
     2) MBSEG-1and MBSEG-2have some similar properties such as the optimum temperature of65℃and the optimum pH of6.86, and possess β-1,4-endoglucanase and β-1,4-exoglucanase activities, but N-glycosylation produces the differences in thermal stability and the limited papain hydrolysis of the two enzymes.
     3) On the basis of the experiment about treating denim with the truncated MBSEG-2and the complete MBSEG-1and MBSEG-2, and according to the analysis of their3D models, it was found out that neutral EGs with the higher percentage of surface hydrophobic amino acids and aromatic amino acids regardless of whether neutral EGs (must have catalytic domain) help denim to enhance the indigo dye removal and the weight loss.
     In the second section, identification of Petriella setifera LH, characterization of neutral EG, and the fundamental study on application of neutral EG in biostoning of denim were carried out.
     The fungus producing the neutral EG was screened from the preserved soil of Newworld Institute of Biotechnology. The fungus was identified as Pe. Setifera and named as Pe. setifera LH on the basis of the analysis of the phylogenetic tree of the partial elongation factor-1a gene (EF-la) combined with its morphological characteristics. The EG from Pe. setifera LH has an above80%relative activity at40℃and the optimum pH of6-7. Compared with denim treatment by a commercial neutral cellulase, the EG exhibited a similar fabric weight loss and indigo dye removal, revealing that the enzyme has a potential application in denim biostoning.
     In the third section, gene digging, sequence analysis and characterization of two HGs from Phaeosphaeria sp LH21were carried out.
     1) The fungus was screened from the extreme environment deep-sea mud, identified as Phaeosphaeria sp. and named as Phueosphaeria sp. LH21on the basis of the alignment analysis of the partial sequences of EF-1a and18S rDNA.
     2) The two new EG (GH45EG-1and EG45EG-2) genes from Phaeosphaeria sp. LH21were first cloned by genome walking and RT-PCR. GH45EG-1and GH45EG-2consists of235and233amino acids, respectively. The alignment analysis of the amino acid sequences was performed by NCBI BLAST, indicating that GH45EG-1and GH45EG-2belong to glycoside hydrolase family45, possess catalytic domain without cellulose-binding domain and share the maximum amino acid sequence identities of71%and63%with the known EGs. respectively.
     3) On the basis of the amino acid sequences from the two mature EGs (mGH45EG-1and mGH45EG-2) and Humicola insolens EG V, and according to their3D models, it was speculated that one of the active central sites of mGH45EG-1could be Asp16, that the active central sites of mGH45EG-2could be Asp122and Aspl1and that their catalytic mechanisms could be the inversion mechanism.
     4) mGH45EG-1and mGH45EG-2were expressed in P. pastoris GS115, respectively. The substrate spectra of the recombinant enzymes mGH45EG-1and mGH45EG-2confirmed that they belong to endonuclease. They have the highest activities on CMC, and the relative activities on crystalline cellulose and filter paper are0.1-0.3%.10mM Ca2+and Mg2+increase8-27%of relative activities of the recombinant enzymes mGH45EG-1and mGH45EG-2, and most metal ions inactivate them. The recombinant enzymes mGH45EG-1and mGH45EG-2have the optimum pH of8, above75%relative activities at pH (?)10, above90%relative residual activities after incubating at50℃and pH3-10for1h, and the optimum temperatures of65℃and60℃, respectively.
引文
[1]Beguin P. Molecular biology of cellulose degradation. Annual Reviews in Microbiology.1990,44(1):219-248.
    [2]Klemm D, Heublein B, Fink H P, et al. Cellulose:fascinating biopolymer and sustainable raw material. Angewandtc Chemie International Edition.2005,44(22):3358-3393.
    [3]Bisaria V S, Ghose T K. Biodegradation of cellulosic materials:substrates. microorganisms, enzymes and products. Enzyme and Microbial Technology.1981,3(2): 90-104.
    [4]Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Progress in polymer science.2001,26(9):1341-1417.
    [5]Atalla R H, Vanderhart D L. Native cellulose:a composite of two distinct crystalline forms. Science (New York. NY).1984,223(4633):283-285.
    [6]Yang M S. The analysis of dynamic viscoelastic properties of regenerated cellulose at different temperature and humidity. Advanced Materials Research.2011,335:869-872.
    [7]刘纯强,王祖农.纤维素酶基因克隆及应用前景:生物工程进展.1991,11(3):8-15.
    [8]Liu Y, Yu P, Song X, et al. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobaterium thermosuccharolylicum GD17. International journal of hydrogen energy.2008,33(12):2927-2933.
    [9]Saha B C. Hemicellulose byconversion. Journal of industrial microbiology & biotechnology.2003,30(5):279-291.
    [10]Alvira P, Tomas-Pejo E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review. Bioresource Technology.2010,101(13):4851-4861.
    [11]Kumar P, Barrett D M, Delwiche M J. et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research.2009,48(8):3713-3729.
    [12]齐云,袁月祥,陈飞,等.一组纤维素分解菌的分离、筛选及其酶条件的研究,天然产物研究与开发.2003,(6):510-512.
    [13]Himmel M E, Ruth M F, Wyman C E. Cellulase for commodity products from cellulosic biomass. Current Opinion in Biotechnology.1999,10(4):358-364.
    [14]李燕红,赵辅昆.纤维素酶的研究进展.生命科学.2005,17(5):392-397.
    [15]Holden M, Tracey M V. A study of enzymes that can break down tobacco-leaf components.2. Digestive juice of Helix on defined substrates. Biochemical Journal.1950, 47(4):407.
    [16]Miller G L, Blum R, Glennon W E,et al. Measurement of carboxymethyl cellulase activity. Analytical Biochemistry.1960,1(2):127-132.
    [17]阎伯旭,齐飞.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展.1999,26(3):233-237.
    [18]张颖.纤维索酶铀碱性纤维素酶的研究进展.中山大学研究生学刊(自然科学,医学版).2005,26(2):13-19.
    [19]Beguin P, Aubert J P. The biological degradation of cellulose. FEMS microbiology reviews.1994,13(1):25-58.
    [20]Baldrian P, Valaskova V. Degradation of cellulose by basidiomycetous fungi. FEMS microbiology reviews.2008,32(3):501-521.
    [21]Bayer E A, Chanzy H, Lamed R, et al. Cellulose, cellulases and cellulosomes. Current opinion in structural biology.1998,8(5):548-557.
    [22]Gilbert H J, Hazlewood G P. Bacterial cellulases and xylanases. Journal of General Microbiology.1993,139(2):187-194.
    [23]Saul D J, Williams L C, Grayling R A, et al. celB, a gene coding for a bifunctional cellulase from the extreme thermophile "Caldocellum saccharolyticum". Applied and environmental microbiology.1990,56(10):3117-3124.
    [24]Linger J G, Adney W S, Darzins A. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Applied and environmental microbiology. 2010,76(19):6360-6369.
    [25]Datta S, Holmes B, Park J I, et al. Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chemistry.2010,12(2):338-345.
    [26]Kim J Y, Hur S H, Hong J H. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnology letters.2005,27(5): 313-316.
    [27]McCarthy A J. Lignocellulose-degrading actinomycetes. FEMS microbiology letters. 1987,46(2):145-163.
    [28]Sasaguri S, Maruyama J, Moriya S, et al. Codon optimization prevents premature polyadenylation of heterologously-expressed cellulases from termite-gut symbionts in Aspergillus oryzae. The Journal of general and applied microbiology.2008,54(6):343-351.
    [29]Shibuya H, Kikuchi T. Purification and characterization of recombinant endoglucanases from the pine wood nematode Bursaphelenchus xylophilus. Bioscience, biotechnology, and biochemistry.2008,72(5):1325-1332.
    [30]Guo R, Ding M, Zhang S L, et al. Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology.2008,178(2):209-215.
    [31]Calderon-Cortes N, Watanabe H, Cano-Camacho H, et al. cDNA cloning, homology modelling and evolutionary insights into novel endogenous cellulases of the borer beetle Oncideres albomarginata chamela (Cerambycidae). Insect Molecular Biology.2010,19(3): 323-336.
    [32]Baba Y, Shimonaka A. Koga J. et al. Purification and characterization of a new endo-1,4-β-D-glucanase from Beltraniella portoricensis. Bioscience Biotechnology Biochemistry.2005,69:1198-1201.
    [33]Lewis L N. Varner J E. Synthesis of cellulase during abscission of Phaseolus vulgaris leaf explants. Plant physiology.1970,46(2):194-199.
    [34]Percival Zhang Y H, Himmel M E, Mielenz J R. Outlook for cellulase improvement: screening and selection strategies. Biotechnology advances.2006,24(5):452-481.
    [35]Sakon J, Irwin D, Wilson D B, et al. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nature Structural & Molecular Biology.1997,4(10):810-818.
    [36]Zhao X H, Wang W, Wang F Q, et al. A comparative study of β-1,4-endoglucanase (possessing (3-1,4-exoglucanase activity) from Bacillus suhlilis LH expressed in Pichia pastoris GS115 and Escherichia coli Rosetta (DH3). Bioresource Technology.2012, 110:539-545.
    [37]Van Tilbeurgh H, Tomme P, Claeyssens M, et al. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei:Separation of functional domains. FEBS letters. 1986,204(2):223-227.
    [381 Spezio M, Wilson D B, Karplus P A. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry.1993.32(38):9906-9916.
    [39]Hirvonen M, Papageorgiou A C. Crystal Structure of a Family 45 Rndoglucanase from Mehmocarpus albomyces:Mechanistic Implications Based on the Free and Cellobiose-bound Forms. Journal of molecular biology.2003.329(3):403-410.
    [40]Bhat M K, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnology advances.1997,15(3):583-620.
    [41]Divne C, Stahlberg J, Teeri I T, et al. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. Journal of molecular biology.1998,275(2):309-325.
    [42]Rouvinen J, Bergfors T, Teeri T, et al. Three-dimensional structure of cellobiohydrolase Ⅱ from Trichoderma reesei. Science (New York, NY).1990,249(4967):380.
    [43]Meinke A, Damude H G, Tomme P. et al. Enhancement of the endo-β-1,4-glueanase activity of an exocellobiohydrolase by deletion of a surface loop. Journal of Biological Chemistry.1995,270(9):4383-4386.
    [44]Divne C, Stahlberg J. Reinikainen T, et al. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase Ⅰ from Trichoderma reesei. Science (New York. NY). 1994,265(5171):524.
    [45]Santos C R, Paiva J H, Sforca M L. et al. Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus suhlilis 168. Biochemical Journal.2012,441(1):95-104.
    [46]汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能.生物工程进展.2000,20(2):37-40.
    [47]Teeri T T, Reinikainen T, Ruohonen L, et al. Domain function in Trichoderma reesei cellobiohydrolases. Journal of biotechnology.1992,24(2):169-176.
    [48]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展.2003,13(1):21-29.
    [49]Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal.1993,293(Pt 3):781-788.
    [50]Kitago Y, Karita S, Watanabe N, et al. Crystal structure of Ce144A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. Journal of biological chemistry.2007,282(49):35703-35711.
    [51]Sandgren M, Stahlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases:improved thermal stability, and ligand complexes. Progress in biophysics and molecular biology.2005,89(3):246-291.
    [52]Macarron R, Van Beeumen J, Henrissat B, et al. Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. FEBS letters.1993, 316(2):137-140.
    [53]Zheng B, Yang W, Zhao X, et al. Crystal structure of hyperthermophilic endo-β-1, 4-glucanase implications for catalytic mechanism and thermostability. Journal of biological chemistry.2012,287(11):8336-8346.
    [54]Ni J, Takehara M, Watanabe H. Identification of activity related amino acid mutations of a GH9 termite cellulase. Bioresource Technology.2010,101(16):6438-6443.
    [55]Davies G J, Dodson G G, Hubbard R E, et al. Structure and function of endoglucanase V. Nature.1993,365(6444):362-364.
    [56]罗辉,仇天雷,承磊,等.纤维素厌氧降解的研究进展.中国沼气.2008,26(2):3-9.
    [57]Ohmiya K, Sakka K, Kimura T, et al. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. Journal of bioscience and bioengineering. 2003,95(6):549-561.
    [58]Morais S, Heyman A, Barak Y, et al. Enhanced cellulose degradation by nano-complexed enzymes:Synergism between a scaffold-linked exoglucanase and a free endoglucanase. Journal of Biotechnology.2010,62(3):466-471.
    [59]Lee H J, Lee S, Ko H, et al. An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity. Molecules and cells.2010,29(4):379-385.
    [60]Zhang Y H P, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems. Biotechnology and bioengineering.2004,88(7): 797-824.
    [61]Igarashi K, Uchihashi T, Koivula A, et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science.2011,333 (6047):1279-1282.
    [62]Shyamala S, Ravikumar S, Vikramathithan J, et al. Isolation, purification, and characterization of two thermostable endo-1,4-p-d-glucanase forms from Opuntia vulguris. Applied biochemistry and biotechnology.2011,165(7):1597-1610.
    [63]孙宪昀.斜卧青霉木质纤维素酶系的合成调控研究[D].济南:山东大学博士论文,2007.
    [64]李宪臻,黄云战.徐德贵,等.天然纤维素的微生物降解机理研究进展.食品与发酵工业.1996,02:74-78.
    [65]Joo A R, Jeya M, Lee K M, et al. Purification and characterization of a β-1, 4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Applied microbiology and biotechnology.2009,83(2):285-294.
    [66]]郑淑霞,沈志扬,刘树滔,等.黑曲霉发酵粉中一种β-葡萄糖苷酶的分离纯与表征.福州大学学报:自然科学版,2004,32(1):101-104.
    [67]Karlsson J, Siika-aho M, Tenkanen M, et al. Enzymatic properties of the low molecular mass endoglucanases Cell2A (EG Ⅲ) and Cel45A (EG Ⅴ) of Trichoderma reesei. Journal of biotechnology.2002,99(1):63-78.
    [68]Zhao J, Shi P, Li Z, et al. Two neutral thermostable cellulases from Phiulophora sp. G5 act synergistically in the hydrolysis of filter paper. Bioresource Technology.2012.121: 404-410.
    [69]Schulein M. Enzymatic properties of cellulases from Humicola insolens. Journal of biotechnology.1997,57(1):71-81.
    [70]Zeng R, Xiong P, Wen J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoulleromonas sp. DY3. Extremophiles.2006, 10(1):79-82.
    [711 Feng Y, Duan C J, Pang H, et al. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Applied microbiology and biotechnology.2007,75(2):319-328.
    [72]Liu G. Wei X. Qin Y, et al. Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. The Journal of general and applied microbiology.2010,56(3):223-229.
    [731 Akila G. Chandra T S. A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS microbiology letters.2006,219(1):63-67.
    [74]Lee Y J, Kim B K, Lee B H, et al. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource technology.2008,99(2): 378-386.
    [75]Singh J, Batra N. Sobti R C. Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. Journal of industrial microbiology & biotechnology.2004.31(2):51-56.
    [76]Aa K, Flengsrud R, Lindahl V. et al. Characterization of production and enzyme properties of an endo-β-1,4-glucanase from Bacillus subtilis CK-2 isolated from compost soil. Antonie Van Leeuwenhoek.1994,66(4):319-326.
    [77]Robson L M, Chambliss G H. Endo-beta-1,4-glucanase gene of Bacillus suhlilis DLG. Journal of bacteriology.1987,169(5):2017-2025.
    [78]Tjia W M, Wong S. High-level secretory production and characterization of Bacillus licheniformis endo-1,4-beta-glucanase Cel9A in Bacillus subtilis WB80[C]//The Annual Meeting and Exhibition 2008.
    [79]Teeri T, Salovuori I, Knowles J. The molecular cloning of the major cellulase gene from Trichoderma reesei. Nature Biotechnology.1983,1(8):696-699.
    [80]Kubicek C P, Mikus M, Schuster A, et al. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol for Biofuels.2009, 2(19):1-14.
    [81]刘自刃,孙宪昀,曲音波.斜卧青霉114-2 cbh1(?)基因的TAIL-PCR克隆及与抗阻遏突变株JU-A10的比较.微生物学报,2008,48(5):667-671.
    [82]Sun X. Liu Z, Wei X, et al. Cloning of Cellulase and Regulation Factor Genes in Penicillium decumbens and Analysis of the Mutation Mechanism of Strain JU-A10[C]//The 30th Symposium on Biotechnology for Fuels and Chemicals.2008.
    [83]Hong J, Tamaki H, Akiba S, et al. Cloning of a gene encoding a highly stable endo-β-3, 4-glucanase from Aspergillus niger and its expression in yeast. Journal of bioscience and bioengineering.2001,92(5):434-441.
    [84]Hasper A A, Dekkers E, Van Mil M, et al. EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Applied and environmental microbiology.2002, 68(4):1556-1560.
    [85]Gielkens M M C, Dekkers E, Visser J, et al. Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Applied and environmental microbiology.1999,65(10):4340-4345.
    [86]Dan S, Marton I, Dekel M, et al. Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. Journal of Biological Chemistry. 2000,275(7):4973-4980.
    [87]Ko C H, Tsai C H, Lin P H, et al. Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresource technology. 2010,101(20):7882-7888.
    [88]Li X, Zhang P, Liang S, et al. Molecular cloning and characterization of a putative cDNA encoding endoglucanase IV from Trichoderma viride and its expression in Bombyx Mori. Applied biochemistry and biotechnology.2012:1-12.
    [89]Liu J, Liu W, Zhao X, et al. Cloning and functional characterization of a novel endo-β-1, 4-glucanase gene from a soil-derived metagenomic library. Applied microbiology and biotechnology.2011,89(4):1083-1092.
    [90]Wang F, Li F, Chen G, et al. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiological research.2009, 164(6):650-657.
    [91]Li W, Huan X, Zhou Y, et al. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi). Biochemical and biophysical research communications.2009,383(4):397-400.
    [92]Zhou S, Yomano L P, Saleh A Z. et al. Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (Encoded by celZ) in Escherichia coli B. Applied and environmental microbiology.1999,65(6):2439-2445.
    [93]Abdeljabbar D M, Song H J, Link A J. Trichoderma reesei cellobiohydrolase Ⅱ is associated with the outer membrane when overexpressed in Escherichia coli. Biotechnology letters.2012,34(1):91-96.
    [94]Denman S, Xue G P, Patel B. Characterization of a Neocullimaslix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase Ⅱ. Applied and environmental microbiology.1996,62(6):1889-1896.
    [95]Zhang X Z. Zhang Y H P. One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis:Opportunities and challenges. Hngineering in Life Sciences.2010,10(5):398-406.
    [96]Zhang X Z, Zhang Z, Zhu Z, et al. The noncellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg:heterologous expression, characterization, and processivity. Applied microbiology and biotechnology.2010,86(2):525-533.
    [97]Lee S J, Pan J G, Park S H, et al. Development of a stationary phase-specific autoinducible expression system in Bacillus sublilis. Journal of Biotechnology. 2010.85(9):1291-1297.
    [98]Linger J G, Adney W S, Darzins A. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mohilis. Applied and environmental microbiology. 2010,76(19):6360-6369.
    [99]Whitehead T R, Flint H J. Heterologous expression of an endoglucanase gene (endA) from the ruminai anaerobe Ruminococcus flavefaciens 17 in Streptococcus bovis and Streptococcus sanguis. FEMS microbiology letters.2006,126(2):165-169.
    [100]赵莹,孙哲,刘燕,等.酸性纤维素酶CBH Ⅱ基因与非抗性穿梭表达载体的重组及在乳酸杆菌的表达及其活性检测.畜牧兽医学报.2009,40(5):670-675.
    [101]Boer H, Teeri T T, Koivula A. Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnology and bioengineering.2000,69(5):486-494.
    [102]Zhao J, Shi P, Yuan T, et al. Purification, gene cloning and characterization of an acidic β-1,4-glucanase from Phialophora sp. G5 with potential applications in the brewing and feed industries. Journal of Bioscience and Bioengineering,2012.114(4):379-384.
    [103]Shi H, Yin X, Wu M, et al. Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. Journal of industrial microbiology & biotechnology.2012,39(2):347-357.
    [104]van Wyk N, den Haan R, van Zyl W H. Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Applied microbiology and biotechnology.2010,87(5):1813-1820.
    [105]du Plessis L, Rose S H, van Zyl W H. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Applied microbiology and biotechnology.2010,86(5): 1503-1511.
    [106]Yanase S, Yamada R, Kaneko S, et al. Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnology journal.2010,5(5):449-455.
    [107]Yanase S, Hasunuma T, Yamada R, et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied microbiology and biotechnology.2010,88(1): 381-388.
    [108]Miettinen-Oinonen A, Suominen P. Enhanced production of Trichodermu reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Applied and environmental microbiology.2002,68(8):3956-3964.
    [109]金欣,夏黎明.厌氧真菌内切-β-葡萄糖酶基因在里氏木霉中的重组与表达.高等化学工程学报.2011,4:637-642.
    [110]Tambor J H, Ren H, Ushinsky S, et al. Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-β-glucanases that efficiently hydrolyse cellulosic substrates. Applied microbiology and biotechnology.2012,93(1): 203-214.
    [111]Ribeiro O, Wiebe M, Ilmen M, et al. Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbyu gossypii. Applied microbiology and biotechnology.2010,87(4): 1437-1446.
    [112]Zhao F Y, Lin J F, Zeng X L, et al. Improvement in fruiting body yield by introduction of the Ampullaria crossean multi-functional cellulase gene into Volvariella volvacea. Bioresource Technology.2010,101(16):6482-6486.
    [113]Chen J, Wang Q, Hua Z, et al. Research and application of biotechnology in textile industries in China. Enzyme and microbial technology.2007,40(7):1651-1655.
    [114]尚楠.高氨基酸速溶茶加工工艺研究[D].中国农业科学院,2012.
    [115]屈小媛,胡萍.周光桥,等.果胶酶与纤维素酶复合提取黑树莓果汁的工艺优化.贵州农业科学.2011,39(9):194-197.
    [116]Renouard S, Hano C, Corbin C, et al. Cellulase-assisted release of secoisolariciresinol from extracts of flax(Linum usitatissimum) hulls and whole seeds. Food Chemistry. 2010,81(2):311-316.
    [117]Zheng P, Fang L, Xu Y, et al. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresource Technology.2010,101(20):7889-7894.
    [118]Singhvi M, Joshi D, Adsul M, et al. D-(-)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chemistry.2010,12(6):1106-1109.
    [119]Vigneswaran C, Jayapriya J. Effect on physical characteristics of jute fibres with cellulase and specific mixed enzyme systems. Journal Of The Textile Institute.2010,101(6): 6126-6130.
    [120]Han W, He M. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technology.2010,101(10): 3724-3731.
    [121]Wu S, Ding S, Zhou R, et al. Comparative characterization of a recombinant Volvariella volvacea endoglucanase Ⅰ (EG1) with its truncated catalytic core (EG1-CM), and their impact on the bio-treatment of cellulose-based fabrics. Journal of biotechnology.2007,130(4): 364-369.
    [122]Wu X C, Lee W, Tran L, et al. Engineering a Bacillus subtil is expression-secretion system with a strain deficient in six extracellular proteases. Journal of bacteriology.1991. 173(16):4952-4958.
    [123]Mueck C J, Hillen W. Catabolite repression in Bacillus subtilis:a global regulatory mechanism for the gram-positive bacteria?. Molecular microbiology.1995,15(3):395-401.
    [124]吴振芳,陈惠,曾民,等.内切葡聚糖酶基因在毕赤酵母中高效表达研究.农业生物技术学报.2009,17(3):529-535.
    [125]官兴颖,吴振芳,吴琦,等.枯草芽孢杆菌C-36内切葡聚糖酶基因的克降及其在大肠杆菌中融合表达.生物加工工程,2009,7(3):69-72.
    [126]Yang D, Weng H, Wang M, et al. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus suhlilis strain 115. Molecular biology reports.2010, 37(4):1923-1929.
    [127]李春梅,何江波,陈惠,等.高产中性纤维索酶的巨大芽孢杆菌基因工程菌发酵工艺条件优化.农业生物技术学报.2011,19(3):557-564.
    [128]Coral G, Arikan B, Unaldi M N, et al. Some properties of neutral carboxymethyl cellulase of Aspergillus niger Z10 wild-lype strain. Turkish journal of biology.2002,26: 209-213.
    [129]Endo K, Hakamada Y, Takizawa S, et al. A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate:enzymatic properties, and nucleotide and deduced amino acid sequences. Applied microbiology and biotechnology.2001,57(1-2):109-116.
    [130]Norledge B V, Lambeir A M, Abagyan R A, et al. Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (Loop 8) of triosephosphate isomerase:Toward a new substrate specificity. Proteins:Structure. Function, and Bioinformatics.2001,42(3):383-389.
    [131]Cereghino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS microbiology reviews.2000,24(1):45-66.
    [132]Lo A C, Mac Kay R M, Seligy V L, et al. Bacillus subtilis β-1,4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Applied and environmental microbiology.1988,54(9):2287-2292.
    [133]Gusakov A V, Sinitsyn A P, Berlin A G, et al. Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance. Enzyme and Microbial Technology.2000,27(9):664-671.
    [134]Issakainen J,Jalava J, Saari J, et al. Relationship of Scedosporium prolificans with Pelriella confirmed by partial LSU rDNA sequences. Mycological Research.1999,103(9): 1179-1184.
    [135]Cho S, Mitchell A, Regier J C, et al. A highly conserved nuclear gene for low-level phylogenetics:elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution.1995.12(4):650-656.
    [136]Rehner S A, Buckley E. A Beauveria phytogeny inferred from nuclear ITS and EF1-α sequences:evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia.2005,97(1):84-98.
    [137]Barron G L, Cain R F, Gilman J C. A revision of the genus Petriella. Canadian Journal of Botany.1961,39(4):837-845.
    [138]Murashima K, Nishimura T, Nakamura Y, et al. Purification and characterization of new endo-1,4-(3-d-glucanases from Rhizopus oryzae. Enzyme and Microbial Technology. 2002,30(3):319-326.
    [139]Mawadza C, Hatti-Kaul R, Zvauya R, et al. Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology.2000,83(3):177-187.
    [140]Huang X P, Monk C. Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World Journal of Microbiology and Biotechnology.2004,20(1):85-92.
    [141]Chaabouni S E, Mechichi T, Limam F, et al. Purification and characterization of two low molecular weight endoglucanases produced by Penicillium occitanis mutant pol 6. Applied biochemistry and biotechnology.2005,125(2):99-112.
    [142]Sun W, Nicholson A W. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant. Biochemistry.2001,40(16):5102-5110.
    [143]Andreaus J, Campos R, Giibitz G, et al. Influence of cellulases on indigo backstaining. Textile Research Journal.2000,70(7):628-632.
    [144]Cavaco-Paulo A. Mechanism of cellulase action in textile processes. Carbohydrate Polymers.1998,37(3):273-277.
    [145]Xu B, Janson J C, Sellos D. Cloning and sequencing of a molluscan endo-β-1, 4-glucanase gene from the blue mussel, Mytilus edulis. European Journal of Biochemistry. 2001,268(13):3718-3727.
    [146]Sakamoto K, Toyohara H. Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology.2009,152(4):390-396.
    [147]Igarashi K, Ishida T, Hori C, et al. Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Applied and environmental microbiology.2008,74(18):5628-5634.
    [148]Haakana H, Miettinen-Oinonen A, Joutsjoki V, et al. Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzyme and microbial technology.2004,34(2):159-167.
    [149]Shimonaka A, Koga J, Baba Y. et al. Specific characteristics of family 45 endoglucanases from Mucorales in the use of textiles and laundry. Bioscience, biotechnology, and biochemistry.2006,70(4):1013-1016.
    [150]Wei Y D, Lee S J, Lee K S, et al. N-glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase. Biochemical and biophysical research communications. 2005,329(1):331-336.
    [151]Koga J, Baba Y, Shimonaka A, et al. Purification and characterization of a new family 45 endoglucanase. STCE1, from Staphylotrichum coccosporum and its overproduction in Humicola insolens. Applied and environmental microbiology.2008,74(13):4210-4217.
    [152]Baba Y, Shimonaka A, Koga J, et al. Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor cireinelloides. Journal of bacteriology.2005,187(9):3045-3051.
    [153]Shimonaka A, Baba Y, Koga J, et al. Molecular cloning of a gene encoding endoβ-D-1, 4-glucanase PCE1 from Phycomyces nilens. Bioscience, biotechnology, and biochemistry. 2004,68(11):2299-2305.
    [154]Wonganu, B, Pootanakit K, Boonyapakron K, et al. Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein expression and purification.2008,58(1):78-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700