Ti微合金化Ⅳ级螺纹钢的开发和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热轧带肋钢筋是建筑结构中广泛应用的建筑用钢材,在我国约占长材产量的30%。长期以来,我国建筑结构中使用的钢筋基本上是Ⅱ级螺纹钢HRB335,造成矿石等资源的浪费。而国外早在20世纪70年代就已经普遍采用屈服强度400MPa以上级别钢筋作为建筑结构的主导受力钢筋。随着我国国民经济的不断发展,冶金、建筑等行业与国际接轨步伐加快。我国有关部门多次下文要求推广建筑用Ⅲ、Ⅳ级高强钢筋。目前,国内钢铁企业生产和使用的主要是20MnSi系列的Ⅱ级和添加少量微合金元素的Ⅲ级螺纹钢。而国外钢铁企业主要产品为Ⅳ级螺纹钢。
     国内多家企业均生产过屈服强度500MPa以上的Ⅳ级螺纹钢。采取的技术线路是添加Nb、V等微合金元素。这种技术路线由于添加了价格昂贵的微合金元素,生产成本较高,Nb、V微合金化生产Ⅳ级螺纹钢筋的利润空间越来越小。同样作为微合金添加元素的Ti的价格比Nb、V要低很多,为此,结合企业实际研发新的低成本、高强度的Ⅳ级螺纹钢就显得十分迫切,具有巨大的经济价值和社会效益。
     本文对Ti微合金化Ⅳ螺纹钢进行实验室研究,研究了Ti微合金化Ⅳ螺纹钢成分对组织和性能的影响,确定了Ti微合金化Ⅳ螺纹钢的最佳成分,研究了钢中夹杂物属性,确定了Ti微合金化Ⅳ螺纹钢析出强化机理以及Ti微合金化Ⅳ螺纹钢冶炼工艺和轧制工艺,为实际生产提供了理论依据。
Hot rolled ribbed steel bars are widely used construction steels in building structures and other constructions. The output of rebar in China accounts for about 30% of long products. For a long time, rebar used in building structures is basically HRB355 in China, result in a waste of ore resource etc. On the other hand, the rebars with yield strength of more than 400MPa have been widely used in 70s in the 20th century as a main structural steel. With the continuous development of China's national economy, metallurgy, construction and other industries are speeding up the pace with international standards. Relative authorities in China have repeatedly requested to promote the use ofⅢandⅣgrade high-strength construction rebars. At present, the products in iron and steel plants are mainlyⅡgrade rebar of 20MnSi series orⅢgrade rebar with a small amount of microalloy elements, while the main products of foreign steel companies areⅣgrade rebar.
     Domestic enterprises have produced gradeⅣrebar with the yield strength of more than 500MPa. The production route is to add Nb, V and other microalloy elements. The production costs are relatively high by this technical route because of higher price of addition element Nb and V, which makes the profits of gradeⅣrebar is becoming less and less. Contrary, the price of addition Ti is lower than that of Nb and V, so it is important to develop new low-cost, high-strength gradeⅣrebar with Ti-addition.
     In this paper, Ti microalloyed gradeⅣrebar was developed in laboratory. The effects of compositions on microstructure and properties were studied and the optimum chemical compositions were decided. In addition, the inclusions in steel were investigated and the mechanism of precipitation strengthening in Ti microalloyed gradeⅣrebar was analyzed. The refine and rolling technologies are also studied in the paper.
引文
[1]干勇,田志凌,董瀚,等.中国材料工程大典第2卷[M].北京:化学工业出版社,2006:406~407.
    [2] Klaus V, R.C. Guimarues. Effect of Niobium in Works Steels and Application[J].微合金化技术, 2002, 2(2): 49~53.
    [3]毛新平等.薄板坯连铸连轧-微合金化技术[M].北京:冶金工业出版社,2008.
    [4]苏世怀,孙雄,汪开忠.铌微合金化技术在H型钢生产中的应用[J].微合金化技术, 2001, 1(1): 53~58.
    [5] Korchynsky M. Proceedings of Microalloying 1975. New York[C], Union Carbide Corp., 1977.
    [6] Paxton H.W. The metallurgy of steels for large dianeter line pipe [M], Aollys for Eighties, Climax Molybdenium Compasny, 1981,185~211.
    [7]王祖滨,东涛.低合金高强度钢[M].北京:原子能出版社,1996.
    [8] Fletcher F E.High-Strength Low-Alloy Steel-Status Selection and Physical Metally[J].Battelle Press,1983.
    [9]毛新平.薄板坯连铸连轧Ti微合金化高强耐候钢研究:[D博士].北京:北京科技大学,2005.
    [10] Lutz Meyer.钛在低碳钢中作为一种强化元素和控制硫化物元素.徐新华,译.宝钢情报,1989,(增刊):149~158.
    [11] Joachim Kunze.Solubility of titanium nitride in delta. Iron. SteelResearch.1991,62(10):430~432.
    [12] Taloy K A.Solubility Products for titanium-,vanadium-,and niobium-carbide in ferrite.Scripta Metallurgica et Materialia,1995,32(1):7~12.
    [13]傅杰,朱剑,迪林,等.微合金钢中TiN的析出规律研究[J].金属学报,2000,38(8):801~804.
    [14] Cuddy L J.Microstructure developed during thermomechanical treatment of HSLA steels.Metall.Trans.A,1981,12A(7):1313~1320.
    [15]杨才福,张永权,王宇杰.钛含量对热轧带钢力学性能的影响[J].钢铁,1995,30(8):48~51.
    [16] Carboni A,Ruzza D W,Feldbauer S L.Quenching for improved direct hot charging quality.Iron Steelmaker,1999,26(8):39~42.
    [17] Hasen S S,Vander Sande J B,Morris Cohen.Niobium carbonitride precipitation and austenite Recrystallization in hot-rolled microalloyed steels.Metallurgical Transactions A.1980,11A(3):387~402.
    [18]谢利群,毛新平,霍向东.Ti对钢组织性能的影响[J].冶金丛刊,2005,(2):1~4.
    [19]张秀芳,马成普,钟定钟,等.汽车用含钛T52(L)钢板控制轧制控制冷却工艺研究与应用[J].钢铁研究,1994,81(6):14~22.
    [20]雍岐龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989.
    [21]赵嘉蓉,唐文胜,等终轧温度和轧后冷却对含钛微合金钢屈服强度的影响[J].钢铁,1996,31(5):30~35.
    [22]杨才福,张永权,刘天军,等.微量Ti对热轧宽带钢力学性能的影响[J].特钢技术,1995,(1):51~54.
    [23] Massip A,Meyer L.Thyssen Technische Berichte,1989,Heft 1:11~20.
    [24]王霆.优化含钛热轧汽车大梁钢板化学成分及工艺研究[J].鞍钢技术,1996,(9):32~39.
    [25]齐长发,刘洪兵.浅谈微合金化元素对低合金钢热塑性的影响[J].河北冶金,1999,111(3):6~9.
    [26]刘清友,陈红桔,张永权,等.钛对汽车车轮用钢组织和性能的影响[J].钢铁研究学报,1994,6(1):49~54.
    [27] Yang Gao.Effect on Mn and Ti precipitates on the hot ductility of low carbon and ultra low carbon steel.ISIJ Internatinal,1995,35(7):914.
    [28] Adrian H,Rickering F B.Materials Science and Technology,1991,7:176~182.
    [29]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2000.
    [30]尹桂全,高甲生,等.微量Ti对焊接热影响区奥氏体晶粒长倾向的影响[J].上海金属,1998,(1):24~28.
    [31]许祖泽.新型微合金钢的焊接[M].北京:机械工业出版社,2004.
    [32]毛新平,康永林,李烈军,等.一种应用薄板坯连铸连轧生产Ti微合金化高强耐候钢板的工艺.中国专利:200510036889.X.
    [33]毛新平,林振源,李轲新,等.一种基于薄板坯连铸连轧采用Ti微合金化工艺生产700MPa级高强耐候钢的方法.中国专利:200610123458.1.
    [34]毛新平,霍向东,刘清友,等.薄板坯连铸连轧微合金技术及其应用.钢铁,2006,41(增刊1):113~121.
    [35] Meyer L,Heisterkamp F, Lauterbom D. Processing and properties of low carbon steel.TMSAIME,1973:297.
    [36]林滋泉,敖列哥,郝森.鞍钢钒、钛、铌微合金钢的应用与开发[J].钢铁钒钛,2001,22(1):1~6.
    [37]傅杰,吴华杰,刘阳春.HSLC和HSLA钢中的纳米铁碳析出物.中国科学E辑[J].2007,37(1):43~52.
    [38]高秀华,齐克敏,邱春林等.20MnSiⅢ级热轧螺纹钢筋的开发[J].钢铁研究学报,2006,18(7):43~45.
    [39]曹荫之,付俊岩.中国含钒低、微合金化钢的开发和前景[J].钢铁钒钛,2000,21(3):2~11.
    [40]汪涛.三级螺纹钢筋(HRB400)研制与开发[J].重钢技术,2003,3:21~23.
    [41]冶金工业信息标准研究院标准化研究所,中国标准出版社第二编辑室.金属材料物理实验方法标准汇编[M].中国标准出版社,2002.
    [42]王东明,刘凤莲,郭晓宏.Ti在热轧钢板中沉淀强化行为的试验研究[J].鞍钢技术,2008,3:21~24.
    [43]傅杰,朱剑,迪林.微合金钢中TiN的析出规律研究[J].金属学报,2000,36(8):801~804.
    [44]张德堂,施炳弟.钢中非金属夹杂物图谱[M].国防工业出版社,1980.
    [45]雍歧龙,白埃民,干勇.稀溶体中第二相质点的Ostwald熟化[J].钢铁研究学报,1992,4(1):59~66.
    [46]宋维锡.金属学[M].北京:冶金工业出版社,1980.
    [47]康永林,傅杰,柳得橹等.薄板坯连铸连轧刚的组织性能控制[M].北京:冶金工业出版社,2006.
    [48]肖锋.微钛处理钢中Ti(C,N)第二相质点析出长大行为及其对晶粒长大的阻止作用研究[J].四川冶金,1998,4:46~49.
    [49]杜万春,曾梅光.Ti微处理钢中TiN沉淀颗粒大小,分布及其对奥氏体晶粒尺寸的影响[J].钢铁钒钛,1989,10(1):21~24.
    [50] Gladman T. Precipitation Hardening in Metals. Mater Sci Tech Ser 1999, 15(1): 30-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700