钢筋腐蚀机理及氯离子影响机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋腐蚀是严重威胁钢筋混凝土结构耐久性的首要因素,关系国计民生重大问题。混凝土中的钢筋是否发生腐蚀取决于维持其钝态的钢筋/混凝土界面环境条件,混凝土碳化和氯离子侵蚀是导致钢筋表面去钝化,引起腐蚀的主要原因。国际上钢筋腐蚀机理研究虽然较多,但许多问题仍未得到满意解决。
     本工作应用原位、半原位和非原位相结合方法,研究钢筋在模拟混凝土孔隙液中腐蚀行为和氯离子及pH值对钢筋去钝化的影响机制。
     (1)发展扫描微参比电极技术,结合极化曲线测试法,揭示了氯离子对钢筋腐蚀行为的影响机制,获得了引起钢筋腐蚀的氯离子临界浓度。钢筋在模拟混凝土孔隙液中的表面微区电位分布的测试表明,在氯离子侵蚀下,钢筋表面初始时存在多个互相竞争,此消彼长的腐蚀活性点,最终个别活性点发展成宏观腐蚀点,引起钢筋局部腐蚀。扫描微参比电极技术测试的引起钢筋腐蚀的氯离子临界浓度值比动电位扫描阳极极化曲线测试结果低,表明前者有更高灵敏性。
     (2)探明了钢筋在模拟混凝土孔隙液中钝化膜半导体特性与耐蚀性的关联,首次揭示了介质pH值和预钝化电位对钢筋钝化膜半导体特性的影响。钢筋在模拟混凝土孔隙液中形成的钝化膜呈现重掺杂非晶态n型半导体特性,氧空缺是其主要的施主形式。随着溶液pH值降低,钢筋表面氧化物发生部分溶解,钝化膜原有的晶格排列遭到破坏,导致更多氧空缺的出现,钝化膜的施主浓度增大,平衡平带电位负移,钝化膜趋向于不稳定,抗腐蚀能力减弱。对钢筋表面施加预钝化电位,会使生成的钝化膜具备更加规则的晶型,其组成也会发生相应变化,从而减少了钝化膜中的氧空缺浓度,提高了钢筋的耐蚀性。
     (3)应用XRD、XPS、SEM技术,初步探明了不同体系中钢筋钝化膜的形貌和组成及其碳化和氯离子侵蚀的影响作用。碳化导致钝化膜表面发生相对均匀的溶解,伴有难溶性腐蚀产物生成。氯离子可先通过缺陷穿透钝化膜,与铁基体发生反应,因此引起钢筋点腐蚀,腐蚀产物以可溶性盐为主。
The corrosion of reinforcing steel is the main reason for the premature degradation of reinforced concrete structures, which concerns the national economy and the people's livelihood. Whether or not the reinforcing steel in concrete maintains its passivity depends on the physical and chemical conditions at the steel/concrete interface. In general, the two major factors which cause the depassivation of reinforcing steel in concrete are carbonation and penetration of chloride ions. So far, many investigations have been carried out to explore the corrosion mechanism of reinforcing steel. However, there are still a lot of problems needing great effort to solve.
     In this work, many research methods including in-situ, semi-situ and ex-situ measurements were utilized to study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions and the effects of chloride ions and pH of the solution on the steel depassivation. The progress of this work and the main results are as follows:
     (1) The scanning micro-reference electrode technique (SMRE) has been developed to study the mechanism of the steel corrosion induced by chloride ions and measure the chloride threshold concentration for the steel corrosion initiation in simulated concrete pore solutions. The potential distribution on the surface of the reinforcing steel in the simulated concrete pore solution reveals that there are a number of unstable micro-pitting nuclei on the steel surface in the solution with chloride ions. These active pits compete with each other and only a few of them can develop into real pitting corrosion. The chloride threshold concentration measured by SMRE is lower than the result obtained by the potentiodynamic anodic polarization, which shows that SMRE has higher sensitivity.
     (2) The semiconductor properties and relevant corrosion resistance of the passive film on the reinforcing steel surface in simulated concrete pore solutions were explored. The effects of pH of the solution and different film formation potentials on the semiconductor properties were also studied. The result shows that the films behave as heavily doped amorphous n-type semiconductors in which oxygen vacancies play the main role of donors. Along with the reduction of pH, the oxide film covering on the steel partly dissolves and the structure of the oxide crystal lattice changes, which result in higher oxygen vacancy concentration and more negative equilibrium flat potential. Accordingly the steel shows a higher tendency to corrode. Film formation potentials can change the component and structure of the film and reduce the oxygen vacancy concentration, thus strengthen the protection function of the film.
     (3) The surface physical and chemical properties of the reinforcing steel immersed in different simulated pore solutions and the effects of carbonation and chloride ions were investigated using XRD, XPS and SEM. Carbonation can make the film surface dissolve equably with indissolvable corrosion products depositing. However, chloride ions can penetrate the film through the surface defects and corrode the steel base, which turn off dissolvable corrosion products.
引文
[1]布拉德G S,克劳瑟H R.张效忠等译.材料手册[M].北京:科学出版社,1989.
    [2]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [3]陶有生.中国水泥、混凝土及其制品的可持续及环境协调发展[J].混凝土与水泥制品,1999(2):21-24.
    [4]黄兆龙,王和源,湛渊源.混凝土耐久性设计及实务[A].第二届海峡两岸材料腐蚀与防护研讨会论文集[C].台湾成功大学,2000,73-78.
    [5]洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性[J].建筑技术,2000,31(2):102-104.
    [6]Broomfield J P,Davies K,Hladky K.The use of permanent corrosion monitoring in new and existing reinforced concrete structures[J].Cement & Concrete Composites,2002,24(1):27-34.
    [7]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [8]黄士元,蒋家奋,杨南如,周兆桐.近代混凝土技术[M].西安:陕西科学技术出版社,1998.
    [9]Mehta P K.Concrete durability-fifty years progress[A].Proc.of 2nd Inter.Conf.on Concrete Durability[C].Detroit:ACI Publication SP126-1,1991.1.
    [10]Broomfield J P.Corrosion of steel in concrete:understanding,investigation and repair[A].E&FN Spon,1997.
    [11]樊云昌,曹兴国,陈怀荣.混凝土中钢筋腐蚀的防护与修复[M].北京:中国铁道出版社,2001.
    [12]杜荣归,刘玉,林昌健.氯离子对钢筋腐蚀机理的影响及其研究进展[J].材料保护,2006,39(6):45-50.
    [13]Hausmann D A,Steel corrosion in concrete:how does it occur[J].Materials Protection,1967,6(11):19-23.
    [14]洪乃丰.混凝土中钢筋腐蚀与防护技术(2)——混凝土对钢筋的保护及钢筋腐蚀的电化学性质[J].工业建筑,1999,29(9):58-61.
    [15]Vinod K.Protection of steel reinforcement for concrete——A review[J].Corrosion Reviews, 1988,16(4):317-358.
    
    [16]Moreno M,Morris W,Alvarez M G.et al.Corrosion of reinforcing steel in simulated concrete pore solutions——Effect of carbonation and chloride content[J].Corrosion Science,2004,46(11):2681-2699.
    [17]Shamsad A.Reinforcement corrosion in concrete structures,its monitoring and service life prediction——a review[J].Cement & Concrete Composites,2003,25:459-471.
    [18]刘晓敏,宋光铃,林海潮,史志明,曹楚南.混凝土中钢筋腐蚀破坏的研究概况[J].材料保护,1996,29(6):16-19.
    [19]闫宏生.混凝土的碳化及其对钢筋腐蚀的影响[J].内蒙古科技与经济,2004(18):73-75.
    [20]贾红梅,阎贵平,闫光杰.混凝土中钢筋锈蚀的研究[J].中国安全科学学报,2005,15(5):56-59.
    [21]Bruno H,L'Hostis V,Frederic M,Hassane I.Electrochemical behavior of mild steel in concrete:Influence of pH and carbonate content of concrete pore solution[J].Electrochimica Acta,2005,51:172-180.
    [22]Morris W,Vazquez M.Corrosion of reinforced concrete exposed to marine environment[J].Corrosion Reviews,2002,20(6):469-508.
    [23]Martin F J,Olek J.Experimental procedure for fundamental studies of reinforcing steel corrosion processes[J].Review of Scientific Instruments,2003,74(4):2512-2516.
    [24]Saremi M,Mahallati E.A study on chloride-induced depassivation of mild steel in simulated concrete pore solution[J].Cement and Concrete Research,2002 {32}:1915-1921.
    [25]洪乃丰.混凝土中钢筋腐蚀与防护技术(3)——氯盐与钢筋锈蚀破坏[J].工业建筑,1999,29(10):60-63.
    [26]Hussain S E,Al-Gahtani A S,Rasheeduzzafar.Chloride threshold for corrosion of reinforcement in concrete[J].ACI Materials Journal,1996,94(6):534-538.
    [27]Hausmann D A,A probability model of steel corrosion in concrete[J].Materials Performance 1998,37(10):64-68.
    [28]Pillai R G,Trejo D.Surface condition effects on critical chloride threshold of steel reinforcement[J].ACI Materials Journal,2005,102(2):103-109.
    [29]Thangavel K.The threshold limit for chloride corrosion of reinforced concrete[J].Corrosion Reviews,2004,22(1):55-70.
    [30]Li L,Sagues A A.Chloride corrosion threshold of reinforcing steel in alkaline solutions——Effect of specimen size[J].Corrosion,2004,60(2):195-202.
    [31]Alonso C,Castellote M,Andrade C.Chloride threshold dependence of pitting potential of reinforcements[J].Electrochimica Acta,2004,7(21):3469-3481.
    [32]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报,2000,28(6):570-574.
    [33]谭月华,张军,氯在水泥生物和使用中的影响[J].新疆大学学报(理工版),2001,18(4):472-475.
    [34]洪乃丰.海砂腐蚀与“海砂屋”危害[J].工业建筑,2004,34(11):65-67.
    [35]GB 50164-92.混凝土质量控制标准[S].
    [36]GB 50204-2002.混凝土结构工程施工质量验收规范[S].
    [37]Mussato B T,Gepraegs,O K,Famden,G.Relative effects of sodium chloride and magnesium chloride on reinforced concrete State of the art[M].Maintenance and Management of Pavement and Structures,2004,(1866):59-66.
    [38]邢风荣,杨建平,史爱娜.大港油田钢筋混凝土构筑物腐蚀分析[J].石油规划设计,2000,11(4):45-47.
    [39]邱富荣,杜洪彦,林昌健.21世纪钢筋混凝土及其表面保护展望[J].材料保护,2000,33(1):23-26.
    [40]廉慧珍,吴中伟.混凝土可持续发展与高性能胶结材料[J].混凝土,1998(6):8-12.
    [41]冯乃谦.高性能混凝土的耐久性与超高耐久性混凝土的开发应用[J].混凝土,1998(2):6-10.
    [42]Bertolin L.Behavior of Stainless Steel in Simulated Concrete Pore Solution[J].British Corrosion Journal,1996
    [43]Van den Berg G J,梁爱华.不锈钢钢筋用于混凝土的研究[J].建筑技术,2000,31(2):105-107.
    [44]陈锦虹,周明君,卢锦堂,许乔瑜,孔纲,眭润舟.热浸镀锌钢筋在混凝土中的应用前景[J].材料保护,2003,36(9):12-15.
    [45]Manning D G.Corrosion performance of epoxy-coated reinforcing steel:North American experience[J].Construction and Building Materials,1996,10(5):349-365.
    [46]吴金岳,吴松贵,徐旭峰,徐乃欣.环氧涂层钢筋及其应用[J].腐蚀与防护,2004,25 (3),105-109.
    
    [47]胡融刚.钢筋/混凝土体系腐蚀过程的电化学研究[D].厦门:厦门大学,2004.
    [48]洪乃丰.混凝土中钢筋腐蚀与阻锈剂[J].混凝土,2001,(6):25-28.
    [49]Hansson C M,Mammoliti L,Hope B B.Corrosion inhibitors in concrete:Part Ⅰ.The principles[J].Cement & Concrete Research 1998,28(12):1775-1781.
    [50]Treadaway K W,Russel A D.Inhibition of the corrosion inhibition of steel in concrete[J].Highways and Public Works,1968,36(1):40-45.
    [51]杜荣归,胡融刚,胡仁,冯祖德,黄若双,谭建光,林昌健.若干无机缓蚀剂对混凝土中钢筋的阻锈作用[J].厦门大学学报(自然科学版),2001,40(4):908-913.
    [52]Craig R J,Wood L E.Effectiveness of corrosion inhibitors and their influence on the physical properties of Portland cement mortars[J].Highway Research Record,1970,328(1):77-88.
    [53]杜荣归,王周成,黄若双,胡融刚,赵冰,谭建光,林昌健.LD-2复合缓蚀剂对海水介质混凝土中钢筋阻锈作用研究[J].电化学,2001,7(4):494-500.
    [54]Gonzalez J A,Ramirez E,Bautista A.Protection of steel embedded in chloride containing concrete by means of inhibitors[J].Cement and Concrete research,1998,28(4):577-589.
    [55]Bertolini L,Bolzoni F,Pedeferri P,Lazzafi L,Pastore T.Cathodic protection and cathodic prevention in concrete:principles and applications[J].Journal of Applied Electrochemistry,1998,28:1321-1331.
    [56]杜荣归,黄若双,赵冰,胡融刚,林昌健.钢筋混凝土结构中阴极保护技术的应用现状及研究进展[J].材料保护,2003,36(4):11-14.
    [57]Glass G K,Hassanein A M,Buenfeld N R.Cathodic protection afforded by an intermittent current applied to reinforced concrete[J].Corrosion Science,2001,43:1111-1131.
    [58]李建勇,杨红玲.国外混凝土钢筋锈蚀破坏的修复和保护技术[J].建筑技术,2002,7(33):49l-493.
    [59]Ihekwaba N M,Hope B B,Hansson C M.Carbonation and electrochemical chloride extraction from concrete[J].Cement and Concrete Research,1996,26:1095-1107.
    [60]Yeih W,Chang J J.A study on the efficiency of electrochemical realkalisation of carbonated concrete[J].Construction and Building Materials,2005,19:516-524.
    [61]Marcotte T D,Hansson C M,Hope B B.The effect of the electrochemical chloride extraction treatment on the steel reinforced mortar:Part Ⅱ.Microstructural characterization[J].Cem. Concr.Res.,1999,29(10):1561-1568.
    
    [62]Orellan J C,Escadeillas G,Arliguie G.Electrochemical chloride extraction:efficiency and side effects[J].Cement and Concrete Research,2004,34:227-234.
    [63]Glass G K,Buenfeld N R.The inhibitive effects of electrochemical treatment applied to steel in concrete[J].Corros.Sci.,2000,42:923-927.
    [64]Arya C,Sa'id-shawqi Q,Vassie P R W.Factors influencing electrochemical removal of chloride from concrete[J].Cem.Concr.Res,1996,26:851-860.
    [65]Popovics J S.NDE techniques for concrete and masonry structures[J].Prog.Stmc.Engng Mater,2003,5(1):49-59.
    [66]Feliu V,Gonzalez J A,Andrade C,Feliu S.Equivalent circuit for modelling the steel concrete interface.Ⅰ.experimental evidence and theoretical predictions[J].Corrosion Science,1998,40:975-993.
    [67]Andrade C,Alonso C.Corrosion rate monitoring in the laboratory and on site[J].Construction and Building Materials,1996,10(5):315-328.
    [68]白新德,彭德全,耿怀之.混凝土中钢筋腐蚀速率的现场无损检测技术[J].材料保护,2002,35(8):17-19.
    [69]Feliu S,Gonzalez J A,Andrade M C.Confinement of the electrical signal for in-situ measurement of polarization resistance in reinforced concrete[J].ACI Materials journal,1990,87(5):98-104.
    [70]Stem M,Geary A L.Electrochemical polarization I.A theoretical analysis of the shape of polarization curves[J].Electrochem Sot.,1957,104:56-63.
    [71]Law D W,Millard S G,Bungey J H.Linear polarization resistance measurements using a potentiostatically controlled guard ring[J].NDT&E International,2000,30(1):15-21.
    [72]Gonzalez J A,Andrade C.Effect of carbonation,chlorides and relative ambient humidity on the corrosion of galvanized rebars embedded in concrete[J].British Corros J.,1982,17(1):21-28.
    [73]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984.
    [74]化工部化工机械研究所.腐蚀与防护手册:腐蚀理论试验及监测[M].北京:化学工业出版社,1989.
    [75]杜荣归,胡融刚,冯祖德,潭建光,林昌健.混凝土中钢筋的腐蚀行为研究[J].电化学, 2000(6):305-310.
    
    [76]林昌健.金属表面微区电位电流分布的测量及在局部腐蚀中的应用和不锈钢点腐蚀发生的早期过程[D].厦门:厦门大学,1985.
    [77]林昌健,卓向东,冯祖德,杜荣归,田昭武.空间分辨电化学技术用于研究金属局部腐蚀[J].电化学,1999(5):25-30.
    [78]Kinoshita K,Madou M J.Electrochemical measurements on Pt,Ir,and Ti oxides as pH probes[J].Journal of Electrochemistry Society 1984,131(5):1089-1094.
    [79]黄若双,胡融刚,杜荣归,谭建光,林昌健.Ir02-pH微电极的研制及钢筋/混凝土界面pH的测量[J].腐蚀科学与防护技术,2002,14(5):305-308.
    [80]Du R G,Hu R G,Huang R S,Lin C J.In-situ Measurement of CI Concentrations and pH at the Reinforcing Steel/Concrete Interface by combination sensors[J].Analytical Chemistry,2006,78(9):3179-3185.
    [81]Kitowski C J,Wheat H G..Effect of chlorides on reinforcing steel exposed to simulated concrete solutions[J].Corrosion,1997,53(3):216-226.
    [82]国家技术监督局.钢筋混凝土用热轧光圆钢筋GBl3013-91[M].北京:中国标准出版社,2004.
    [1]Lewis D A.Some aspects of the corrosion of steel in concrete[A].In Prec.1st Intemational ConfMet.Con[C].London,1962,547-555.
    [2]Rajagopalan K S,Rengaswamy N S,Balasubramanian T M,Venu K.Environment around steelreinforcement in R.C.B.W and R.C.C.constructions[J].Journal of National Buildings Organization,1966,11:1-12.
    [3]Hausmann D A.Steel corrosion in concrete:how does it occur[J].Materials Protection,1967,6:19-23.
    [4]Gouda V K.Corrosion and corrosion inhibition of reinforcing steel - I immersed in alkaline solutions[J].British Corrosion Journal,1970,5:198-203.
    [5]Thomas M D A,Matthevs J D,Haynes C A.Chloride diffusion and reinforcement corrosion in marine exposed concrete containing pulverised fuel ash[A].In Corrosion of Reinforcement in Concrete[C].New York:Applied Science,1990.
    [6]Pettersson K.Chloride threshold value and the corrosion rate in reinforced concrete[J].Cem.Concr.Res.,1994,20:461-470.
    [7]Hussain S E,Al-Gahtani A S,Rasheeduzzafar.Chloride threshold for corrosion of reinforcement in concrete[J].ACI Materials Journal,1996,94:534-538.
    [8]Glass G K,Buenfeld N R.The presentation of the chloride threshold level for corrosion of steel in concrete[J].Corros.Sci.,1997,39:1001-1013.
    [9]Moreno M,Morris W,Alvarez M G,etc.Corrosion of reinforcing steel in simulated concrete pore solutions-Effect of carbonation and chloride content[J].Corrosion Science,2004,46:2681-2699.
    [10]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [11]Thangavel K.The threshold limit for chloride corrosion of reinforced concrete[J].Corrosion Reviews,2004,22:55-70.
    [12]Morris W,Vico A,Vaquez A.Chloride induced corrosion of reinforcing steel evaluated by concrete resistivity measurements[J].Electrochimica Acta,2004,49:4447-4453.
    [13]Poupard O,Alt-Mokhtar A,Dumargue P.Corrosion by chlorides in reinforced concrete: Determination of chloride concentration threshold by impedance spectroscopy[J].Cement
    and Concrete Research,2004,34:991-1000.
    
    [14]Alonso C,Andrade C,Castellote M,Castro P.Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar[J].Cem.Conc.Res.,2000,30:1047-1055.
    [15]Li L,Sagues A A.Chloride corrosion threshold of reinforcing steel in alkaline solutions——Effect of specimen size[J].Corrosion,2004,60:195-202.
    [16]Saremi M,Mahallati E.A study on chloride-depassivation of mild in simulated concrete pore solution[J].Cem.Conc.Res.,2002,32:1915-1921.
    [17]Pillai R G;Trejo D.Surface condition effects on critical chloride threshold of steel reinforcement[J].ACI Materials Journal,2005,102:103-109.
    [18]Alonso C,Castellote M,Andrade C.Chloride threshold dependence of pitting potential of reinforcements[J].Electrochimica Acta,2004,7:3469-3481.
    [19]Moreno M,Morris W,Alvarez M G;ets.Corrosion of reinforcing steel in simulated concrete pore solutions-Effect of carbonation and chloride content[J].Corrosion Science,2004,46:2681-2699.
    [20]储伟,史苑芗,魏宝明.钢筋在混凝土模拟孔溶液及水泥净浆中的腐蚀电化学行为[J].南京化工学院学报,1995,17(3):14-19.
    [21]刘晓敏,史志明,林海潮等.钢筋在混凝土模拟孔隙液中腐蚀电化学行为[J].腐蚀科学与防护技术,1997,9(2):140-143.
    [22]李岩,朱雅仙,方璟.混凝土中钢筋腐蚀的氯离子临界浓度试验研究[J].水利水运工程学报,2004,(1):25-29.
    [23]林昌健.金属表面微区电位电流分布的测量及在局部腐蚀中的应用和不锈钢点腐蚀发生的早期过程[D].厦门:厦门大学,1985.
    [24]Isaacs H S,Vyas B.Scanning reference electrode techniques in localized corrosion,in Electrichemical Corrosion Testing[M].ATSM STP 727,1981.
    [25]Ohrnori T,Sakamaki K,Jujishima A.In-situ observation of the electrode/solution interface using a scanning tunneling microscope[J].Corrosion Engineering,1990,39:625.
    [26]Bard A J,Fan F,Kwak J,etc.Sanning electrochemical microscopy,introdnction and principles[J].Analytical Chemistry,1989,61:132-138.
    铩颷27]林昌健,卓向东,冯祖德,杜荣归,田昭武.空间分辨电化学技术用于研究金属局部Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    腐蚀[J].电化学,1999,5(1):25-30.Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    
    [28]李彦,杜荣归,邵敏华,胡融刚,林玉华,林昌健.钢筋表面微区分布的原位测量[J].厦Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    门大学学报(自然科学版),2004,43(1):138-140.Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    
    [29]田昭武.电化学实验方法进展[M].厦门:厦门大学出版社,1989.Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    
    [30]国家技术监督局.钢筋混凝土用热轧光圆钢筋GB13013-91[M].北京:中国标准出版Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    社,2004.Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    
    [31]Kitowski C J,Wheat H G.Effect of chlorides on reinforcing steel exposed to simulatedQuery =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    concrete solutions[J].Corrosion,1997,53:216-226.Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    
    [32]Punckt C,Bolscher M,Rotermund H H,Mikhailov A S,Organ L,Budiansky N,Scully R,Query =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    Hudson J L.Sudden Onset of Pitting Corrosion on Stainless Steel as a CriticalQuery =
    CADORecordset Error
     Code = 80040e31
     Code meaning = IDispatch error #3121
     Source = Microsoft OLE DB Provider for SQL Server
     Description = 超时已过期
    Phenomenon[J].Science,2004,305:1133-1136.
    [1]Stimming U,Schultze J W.A semiconductor model of the passive film on iron electrodes and its application to electrochemical reactions[J].Electrochim.Acta,1979,24:859-869.
    [2]Stimming U.Photoelectrochemical studies of passive films[J].Electrochimica Acta,1986,31:415-429.
    [3]Schultze J W,Lohrengel M M.Stability,reactivity and breakdown of passive films[J].Electrochimica Acta,2000,45:2499-2513.
    [4]Morison S R.Electrochemistry at Semiconductor and Oxidized Metal Electrodes[M].New York:Plenum Press,1981.
    [5]Belo D C M,Hakiki N E,Ferreira M G S.Semiconducting properties of passive films formed on nickel-base alloys type Alloy 600:influence of the alloying elements[j].Electrochimica Acta,1999,44:2473-2481.
    [6]Maximovitch S.Influence of formation conditions on impedance properties of nickel passive layers formed in 1 M KOH[J].Electrochimica Acta,1996,41:2767-2771.
    [7]Kong D S,Chen S H,Wang C,Yan W.A study of the passive films on chromium by capacitance measurement[J].Corr.Sci.,2003,45:747-758.
    [8]Azumi K,Ohtsuka T,Sato N.Mott-Schottky plot of the passive film formed on iron in neutral Borate and Phosphate solutions[J].J.Electrochem.Soc.,1987,134:1352-1357.
    [9]Cheng Y F,Luo J L.Electronic structure and pitting susceptibility of passive film on carbon steel[J].Electrochimica Acta,1999,44:2947-2957.
    [10]Simoes A M P,Ferrira M G S,Rondot B,Cunha M,Belo.Study of passive films formed on AISI 304 stainless steel by impedance measurements and photoelectrochernistry[J].J.Electrochem.Soc.,1990,137:82-87.
    [11]Hakiki N E,Boudin S,Rondot B,Belo D C M.The electronic structure of passive films formed on stainless steels[J].Corr.Sci.,1995,37:1809-1822.
    [12]林玉华,杜荣归,胡融刚,林昌健.不锈钢钝化膜耐蚀性与半导体特性关联研究[J].物理化学学报,2005,21(7):740-745.
    [13]曾一民,乔利杰,郭献忠,李金许,褚武扬.氢对310不锈钢钝化膜半导体性质的影响 [J].金属学报,2001,37(1):67-71.
    
    [14]Morrison S R.The chemical physics of surfaces[M].New York:Academic Press,1970.
    [15]Pleskov Y V.The electric double layer at the semiconductor/electrolyte interface[J].Prog.Surf.Sci.,1971,(7):65.
    [16]Healy T W,Yates D E,White L R,Chan D.Nernstian and non-Nernstian potential differences at aqueous interfaces[J].J.Electroanal.Chem.,1977,80:57-66.
    [17]吴浩青,李永肪.电化学动力学[M].北京:高等教育出版社,1998.
    [18]Kitowski C J,Wheat H G.Effect of chlorides on reinforcing steel exposed to simulated concrete solutions.[J].Corrosion,1997,53:216-226.
    [19]Young L.Anodic oxide films part 4-the interpretation of impedance measurements on oxide coated electrodes on niobium[J].Trans.Faraday So.,1955,51:1250.
    [20]Paola A D.Semiconducting properties of passive film on stainless steel[J].Electrochimica Acta,1989,34:203-210.
    [21]Dean M H,Stimming U.Capacity of semiconductor electrodes with multiple bulk electronic states[J].J.Electroanal.Chem.,1987,228:135-151.
    [22]Schoonman J,Vos K,Blasse G,J.Electrochem.Soc.,1981,128:1154.
    [23]Su P,Chan L,Oriani R A.The role of hydrogen in the pitting of passivating films on pure iron[J].Corros.Sci.,1992,33:437-444.
    [24]Macdonald D D.The point defect model for the passive state[J].Electrochem.Soc.,1992,139:3434-3449.
    [25]樊云昌,曹兴国,陈怀荣.混凝土中钢筋腐蚀的防护与修复[M].北京:中国铁道出版社,2001.
    [1]黄惠忠等.论表面分析及其在材料研究中的应用[M].北京:科学技术文献出版社,2002.
    [2]朱贵云等.激光光谱分析法[M].北京:科技出版社,1989.
    [3]赵藻藩,周性尧,张悟铭,赵文宽.仪器分析[M].北京:高等教育出版社,1990.
    [4]Marco J F,Gracia M,Gancedo J R,MartoA n-Luengo M A,Joseph G.Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the Antarctic and Easter Island[J].Corrosion Science,2000,42:753-771.
    [5]Wua S L,Cuia Z D,Heb F,Baic Z Q,Zhua S L,Yang X J.Characterization of the surface film formed from carbon dioxide corrosion on N80 steel[M].Materials Letters,2004,58:1076-1081.
    [6]Mischler S,Spiegel A,Stemp M,Landolt D.Influence of passivity on the tribocorrosion of carbon steel in aqueous solutions[J].Wear,2001,251:1295-1307.
    [7]Sosa E,Cabrera-Sierra R,Marina E,Rinco'n,Oropeza M T,Gonza'lez.Evolution of non-stoichiometfic iron sulfide film formed byelectrochemical oxidation of carbon steel in alkaline sour environment[J].Electrochimica Acta,2002,47:1197-1208.
    [8]Sosa E,Cabrera-Sierra R,Oropeza M T,Herna'ndez F,Casillas N,Tremont R,Cabrera C,Gonza'lez.Electrochemically grown passive films on carbon steel(SAE 1018)in alkaline sour medium[J].Electrochimica Acta,2003,48:1665-1674.
    [9]Cvijovic I,Parezanovic I,Spiege M.Influence of H_2-N_2 atmosphere composition and annealing duration on the selective surface oxidation of low-carbon steels[J].Corrosion Science,2006,48:980-993.
    [10]王为,郭鹤桐,高建平,项民.20碳钢在三元复合驱油溶液中的腐蚀行为[J].中国腐蚀与防护学报,1998,18(3):203-208.
    [11]杨德庆,徐坚颖.碳钢在亚硫酸铵蒸煮液中腐蚀产物的表面相分析[J].云南工业大学学报,1997,13(1):86-92.
    [12]陈尧,白真权,林冠发.普通13Cr钢在高温高压下的抗CO_2腐蚀性能[J].热处理技术与装备,2007,28(1):10-14.
    [13]梅平,艾俊哲,陈武,袁谷.二氧化碳对N80钢腐蚀行为的影响研究[J].腐蚀与防护, 2004,25(9):379-382.
    
    [14]林冠发,郑茂盛,白真权,赵新伟.P110钢CO_2腐蚀产物膜的XPS分析[J].光谱学与光谱分析,2005,125(11):1875-1879.
    [15]屈庆,严川伟,白玮,张蕾,万晔,曹楚南.NaCl在A3钢大气腐蚀中的作用[J].中国腐蚀与防护学报,2003,23(3):160-163.
    [16]蔡健平,郑逸苹,刘寿荣.氯化物、硫污染物对碳钢大气腐蚀的协同作用[J].中国腐蚀与防护学报,1996,16(4):303-306.
    [17]Binnig G,Rohrer H,Gerber C,Weibel E.Tunneling through a controllable vacuum gap[J].Appl.Phys.Lett.,1981,40(2):178-80.
    [18]Punckt C,Bo"lscher M,Rotermund H H,Mikhailov A S,Organ L,Budiansky N,Scully R,Hudson J L.Sudden Onset of Pitting Corrosion on Stainless Steel as a Critical Phenomenon[J].Science,2004,305:1133-1136.
    [19]汪鹰,史苑芗,魏宝明,林昌健.用XPS研究钢筋钝化膜和Cl对钝化膜的影响[J].中国腐蚀与防护学报,1998,18(2):107-112.
    [20]汪鹰,史苑芗,魏宝明,林昌健.原子力显微镜对钢筋表面钝化膜的研究[J].中国腐蚀与防护学报,1998,18(2):102-106.
    [21]陈友治,徐瑛,丁庆军,李云龙.酸性介质对钢筋混凝土腐蚀机理研究[J].武汉理工大学学报,2001,23(80):4-6.
    [22]Huet B,L'Hostis V,Miserque F,Idrissi H.Electrochemical behavior of mild steel in concrete:Influence of pH and carbonate content of concrete pore solution[J].Electrochimica Acta,2005,51(1):172-180.
    [23]黄胜涛.固体X射线学[M].北京:高等教育出版社,1985.
    [24]王建祺等.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社,1992.
    [25]朱祖福,沈锦德,许志义等.电子显微镜[M].北京:机械工业出版社,1984.
    [26]Wagner C D,Riggs W M,Davis L E.Hand book of X-ray Photoeletron Spectroscopy[M].Minnesota:Perkin-Elmer Corporation,1992.
    [27]Pou T E,Oliver J,Murphy,Vaneica Y,Bockris J O.Passive Films on Iron:The Mechanism of Breakdown in Chloride Containing Solutions.J.Electrochem.Soc.,1984,131:1243-1251.
    [28]Vinod K.Protection of steel reinforcement for concrete——A review[J].Corrosion Reviews,1988,16(4):317-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700