钝态金属在氯离子环境中的局部腐蚀行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高放废物地质处置罐是将高放废物与地质处置环境隔离的第一道人工屏障,在地质处置环境中将面临长期而又严峻的腐蚀科学问题。选择环保耐蚀材料作为高放废物地质处置罐的候选材料具有重要意义。钝态金属不锈钢和钛表面均能够自发生成致密、稳定的钝化膜,具有优良的耐均匀腐蚀性能,被广泛应用于航空航天、深海开发、石油化工及核能核电等众多工业领域。但在实际服役环境中,钝态金属往往因温度、压力、离子种类及其浓度、溶解氧浓度等环境因素的影响而发生局部腐蚀。为满足我国高放废物地质处置工程的需求,本文依据北山高放废物地质处置环境的特征围绕典型钝态金属可能发生的局部腐蚀问题展开相关工作,为我国高放废物处置罐罐体材料的选择提供重要的理论依据。
     采用动电位极化曲线、电化学阻抗谱、Mott-Schottky曲线、循环极化及恒电位极化等电化学方法研究了温度及Cl-浓度对超纯高铬铁素体不锈钢Cr26Mo1和Cr30Mo2耐点蚀性能的影响。结果表明:25℃时,超纯铁素体不锈钢Cr26Mo1和Cr30Mo2在Cl-浓度为0.01-2M的体系中处于钝化状态,点蚀电位较高。在低温条件发生点蚀后,不锈钢钝化膜具有自修复能力。当温度分别超过45和60℃,Cr26Mo1和Cr30Mo2不锈钢在0.6MCl-溶液中的抗点蚀性能显著降低。在高温条件发生点蚀后,不锈钢钝化膜基本不能自修复。相同环境体系中,Cr30Mo2不锈钢的耐点蚀性能要好于Cr26Mo1不锈钢。依据处置罐温度变化和北山60个地下水样中的Cl-浓度范围,Cr26Mo1不锈钢在地下水中将面临点蚀的威胁。而Cr30Mo2不锈钢在Cl-浓度低于0.06M的环境中相对安全。但在Cl-浓度为0.06-1M时,当温度高于60℃时Cr30Mo2不锈钢可能发生点蚀。处置罐温度升高或渗入地下水中Cl-的富集均能够促进不锈钢点蚀的萌生和扩展。
     通过对比点蚀电位发现超纯高铬铁素体不锈钢在温度低于45℃时的耐点蚀性能优于316L不锈钢和Hastelloy C-4。高含量Cr在Cr30Mo2和Cr26Mo1不锈钢中起着重要作用。但在高温度条件下,Cr30Mo2和Cr26Mo1不锈钢的抗点蚀性能低于316L和Hastelloy C-4。这主要与316L不锈钢和Hastelloy C-4中的Mo含量较高有关,增加Mo含量可提高材料的抗点蚀能力,尤其在温度较高条件下Mo的作用更加显著。
     研究发现,在浸泡初期,带缝隙钛电极的维钝电流密度随着温度升高而增大,钝化膜阻抗降低,但在25-90℃内均处于钝化状态。随浸泡时间延长,带缝隙钛电极在温度和Cl-共同作用下发生缝隙腐蚀并扩展,且腐蚀主要集中于缝隙口处。在地质处置环境中,当温度高于85℃,钛处置罐缝隙腐蚀持续扩展的临界Cl-浓度需大于0.6M。当温度为70℃,Cl-浓度需达到2M。当温度低于55℃,提高Cl-浓度对增加钛缝隙腐蚀敏感性并不明显。采用恒电位加速缝隙腐蚀试验方法研究得到,诱发钛缝隙腐蚀各阶段转变的临界温度随体系中Cl-浓度或外加电位升高而下降。这种方法是通过外加电位来改变缝隙内外的电位差,以反映实际缝隙内外面积比、几何形状等因素引起缝隙内外电位不同所带来的影响,具有一定的可行性。
     在95℃的模拟缝隙溶液中,当H+浓度为0.01M时,阳极极化曲线直接进入钝化区,钛表面钝化膜处于钝化状态,Cl-浓度的影响不明显。当H+浓度为0.1M,且Cl-浓度达到1M时,阳极极化曲线开始呈现出明显的活化-钝化转变特征,Rf和Rp均有所下降。当H+浓度高于0.5M时,致钝电流密度ic和维钝电流密度ip显著增大,Rf和Rp急剧下降,可促进钛表面钝化膜的破裂溶解。在1M HCl+1M NaCl模拟缝隙溶液中,阳极极化曲线呈现活化-钝化转变的临界温度为75℃。
     研究发现钛表面钝化膜在50-95℃的模拟缝隙酸化溶液中迅速溶解,自腐蚀电位降至-570~-670mV (SCE),远低于析氢反应平衡电位。钛在缝隙腐蚀过程中的吸氢行为是存在的。在高温或较低的外加阴极电位条件下,H+的阴极还原反应速率增加,试样内吸收氢的含量升高,但吸氢效率有所下降。氢化物聚集分布在试样表层,厚度随温度升高或控制阴极电位降低而增加,且表面腐蚀程度加重。采用二次离子质谱深度剖面分析进一步说明了工业纯钛在模拟缝隙溶液中的吸氢行为,氢含量沿深度方向逐渐降低。
     综合分析认为:钝态金属处置罐在高放废物地质处置过程中能否发生局部腐蚀问题很大程度上取决于环境介质条件的变化。在一定的温度或氯离子浓度范围内,超纯高铬铁素体不锈钢将面临着点蚀的威胁。工业纯钛在低温或低氯离子浓度条件下是相对安全的,但在高温和高氯离子浓度的处置环境中倾向发生缝隙腐蚀,同时伴随着吸氢问题。钛处置罐在结构设计、加工制造过程中应尽量避免缝隙的出现,可减少缝隙腐蚀的发生。
High-Level Radioactive Waste (HLW) container is the first important artificial barrier which can separates the HLW from the disposal surroundings. The container in disposal surroundings will be faced with rigorous corrosion problem. Therefore, it is significant to selecte the corrosion resitance material to be used as the HLW container. Passive metals (stainless steels and Ti) are highly corrosion resistant due to their stable passive films spontaneously formed on surface and widely used in aerospace, deep-sea, petroleum chemistry, nuclear power industry, etc. However, passive metals are susceptible to localized corrosion in actual environment. Because of the influences of temperature, chloride concentration, hydrostatic pressure and dissolved oxygen, passive metals usually suffer the localized corrosion in service. In view of the application of passive metals in Beishan Groundwater for Geological Disposal of High-level Radioactive Nuclear Waste, this paper had investigated the localized corrosion behavior of ultra pure high chromium ferrite stainless steel and Grade-2Ti in simulated chloride environments which is very important to improve the localized corrosion and prolong their service life.
     The effects of temperature and Cl-concentration on the pitting corrosion of Cr26Mo1and Cr30Mo2ultra pure high chromium ferritic stainless steel had been investigated using different electrochemical techniques of potentiodynamic polarization, electrochemical impedance spectroscopy, capacitance measurements (Mott-Schottky approach) and potentiostatic polarization measurements. The results revealed that Cr26Mo1and Cr30Mo2stainless steels exhibited the passive characteristics in0.01-2M NaCl solutions at25℃, and the pitting potential all were positive. In the condition of lower temperature, the passive films could be self-repaired after pitting corrosion. When the temperature increased to45℃, the pitting corrosion resitance of Cr26Mo1stainless steel decreased evidently, and the critical temperature of Cr30Mo2stainless steel was60℃. The passive films can not be self repaired after pitting corrosion at higher temperature.In the same environment, the pitting corrosion resistance of Cr30Mo2stainless steel is better than Cr26Mo1. According to the temperature of container and the range of Cl-concentration in Beishan groundwater, Cr26Mo1stainless steel is dangerous. Cr30Mo2stainless steel will be secure when Cl-concentration is lower than0.06M, but will suffer pitting corrosion in0.06-1M when the temperature increase to60℃. Therefore, increasing temperature and Cl" concentration in groundwater all can promote the initiation and propagation of piiting corrosion of stainless steels HLW disposal container.
     According to the comparison of the pitting corrosion potential, the pitting corrosion resistances of Cr26Mo1and Cr30Mo2ultra pure ferritic stainless steels are better than316L austenitic stainless steel and Hastelloy C-4when the temperature is lower than45℃. Cr content plays an important role in Cr26Mo1and Cr30Mo2stainless steels. When the temperature is higher (60-90℃), the pitting corrosion resistances of Cr26Mo1and Cr30Mo2stainless steel are not as good as316L and Hastelloy C-4.This is because of the effect of Mo, especially at higher temperatures.
     The results showed that all the creviced specimens of Grade-2Ti exhibited the passive characteristics in the initial immersion period at25-95℃. As increasing the temperature, the galvanic current increased and the resistance of passive film decreased. With extending the immersion time, the crevice corrosion of Grade-2Ti initiated and propagated as a result of the gradual aggressive environment in the crevice. The damage caused by anodic active dissolution in the crevice mainly located near the crevice mouth. It can be speculated that the critical Cl" concentration of propagation of crevice corrosion for Grade-2Ti is0.6M in geological disposal environment at80-95℃. At70℃, the critical Cl" concentration is2M. When the temperature is lower than55℃, the effect of increasing Cl-concentration is not obvious to promte the crevice corrosion of titanium container. In addition, the results of potentiostatic polarization measurements revealed that the critical temperature of crevice corrosion of Grade-2Ti decreased with increasing Cl-concentration and the applied potential. This accelerated test method can reflect the influence of potential difference between the inside and outside of crevice on titanium. So this method is useful and feasible.
     In simulated crevice corrosion solutions, the effects of H+, Cl-and temperature on the active/passive characteristics of Grade-2Ti were investigated in detail. When H+concentration was0.01M, the anodic polarization curves exhibited the typical passive characteristics at95℃, and the effect of Cl" concentration was not obvious. When H+concentration was0.1M, and Cl" concentrations increased to1M, the anodic polarization curves exhibited obvious active/passive characteristics. When H+concentration was0.5M, the critical current density and passive current density increases evidently increased, Rf and Rp decreased. In1M HCl+1M NaCl solutions, the critical temperature of exhibiting obvious active/passive characteristics was75℃.
     It is found that the passive films on Grade-2Ti dissolved quickly in simulated crevice corrosion solutions at50-95℃, and the corrosion potential decreased to-570~-670mV (SCE) which was more negative than hydrogen evolution potential. So hydrogen absorption accompanied by the crevice corrosion of Grade-2Ti. In order to understand this problem, hydrogen absorption and mechanical performance degradation of Grade-2Titanium in simulated crevice acid solution were studied. The results showed that with the increase of temperature and cathodic potential, the velocity of H+reduction and the cathodic current density increased, and the content of hydrogen in charged specimens increased but the efficiency of absorbed hydrogen decreased. The section morphologies of Grade-2Ti after being cathodically polarized revealed that hydride accumulated on the surface of specimens. With increasing temperature or decreasing cathodic potential, the thickness of hydride layer increased and tended to be uniform. Further, the content of hydrogen decreasing with depth was approved by SIMS.
     Comprehensive analysis shows that:localized corrosion of passive metals container in the long-term disposal of High-level Radioactive Nuclear Waste mainly depends on the variation of environment. Under a range of temperature and Cl-concentration, ultra pure high chromium ferritic stainless steel may suffer pitting corrosion. Grade-2Ti will be safe in the environment with lower temperature or lower Cl-concentration, but may suffer crevice corrosion in the environment with higher temperature or higher Cl-concentration. Also, hydrogen absorption may occure together with crevice corrosion. In order to decrease the occurrence of crevice corrosion of titanium disposal container, it should try to avoid the gap in the process of structural design and manufacturing.
引文
[1]潘自强,钱七虎.我国高放废物地质处置战略研究[J].中国核电,2013,6(2):98-100.
    [2]王驹,陈伟明,苏锐,等.我国高放废物地质处置库场址筛选总体技术思路探讨[J].世界核地质科学,2011,28(1):45-51.
    [3]王驹.高放废物安全处置需科学对待[J].中国核工业,2012(6):20-20.
    [4]王驹,陈伟明,苏锐,等.高放废物地质处置及其若干关键科学问题[J].岩石力学与工程学报,2006,25(4):801-812.
    [5]Bennett D. G., Gens R. Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion [J]. Journal of Nuclear Materials,2008,379:1-8.
    [6]闵茂中.放射性废物处置原理[M].北京原子能出版社,1998.
    [7]阳靖峰.高放废物地质处置环境下金属处置罐材料的腐蚀行为[D].中国科学院.2011.
    [8]郭永海,杨天笑,刘淑芬.高放废物处置库甘肃北山预选区水文地质特征研究[J].铀矿地质,2001,17(3):184-189.
    [9]王驹,陈伟明,苏锐,等.我国高放废物地质处置研究[J].原子能科学技术,2004,38(4):339-342.
    [10]刘帅,王驹,刘晓东,等.甘肃北山预选区地质处置系统初步FEPs分析[J].东华理工大学学报(自然科学版),2012,35(3):256-262.
    [11]郭永海,王驹,刘淑芬,等.高放废物处置库预选区野马泉岩体地下水化学特征[J].原子能科学技术,2004,38(增刊):143-147.
    [12]郭永海,王驹,王志明,等.从北山地下水化学特征推论地下水的形成及区域循环[J].矿物岩石地球化学通报,2007(26):607-609.
    [13]Feron D, Crusset D, Gras J M. Corrosion issues in nuclear waste disposal [J]. Journal of Nuclear Materials,2008,379:16-23.
    [14]Johnson L H, Shoesmith D W, Ikeda B M, et al. Lifetimes of titanium and copper containers for the disposal of used nuclear fuel [J]. Materials Research Society, 1992,257:439-446.
    [15]尹开锯,李聪,邱绍宇,等.核废料包装材料研究现状[J].核动力工程,2007,28(2):76-80.
    [16]Gras J M. Life prediction for HLW containers-issues related to long-term extrapolation of corrosion resistance[J]. Comptes Rendus Physique,2002,3(7): 891-902.
    [17]Ha H Y, Park C J, Kwon H S. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11% Cr ferritic stainless steel examined by micro-droplet cell [J]. Corrosion Science,2007,49(3):1266-1275.
    [18]Kim J K, Kim Y H, Lee J S, et al. Effect of chromium content on intergranular corrosion and precipitation of Ti-stabilized ferritic stainless steels [J]. Corrosion Science,2010,52(5):1847-1852.
    [19]Jung R H, Tsuchiya H, Fujimoto S. XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere [J]. Corrosion Science,2012,58: 62-68.
    [20]Tromans D. Thermodynamic evaluation of the effects of amorphism on film breakdown and pitting initiation [J]. Journal of the Electrochemical. Society,2005, 152(11):B460-B469.
    [21]Siham L, Ratiba N, Houria R, et al. Corrosion and passivation behaviour of three stainless steels in differents chloride concentrations [J]. Asian journal of chemistry,2008,20(4):2545-2550.
    [22]Hermas A A, Ogura K, Takagi S, et al. Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel [J]. Corrosion,1995, 51(1):3-10.
    [23]Kim J K, Kim Y H, Uhm S H, et al. Intergranular corrosion of Ti-stabilized llwt% Cr ferritic stainless steel for automotive exhaust systems [J]. Corrosion Science, 2009,51(11):2716-2723.
    [24]李实,池和冰,江来珠.超纯铁素体不锈钢精炼技术的进步与发展[J].钢铁研究学报,2011,23(9):1-4.
    [25]游香米,姜周华,李花兵.超纯铁素体不锈钢品种和精炼技术的进展[J].特殊钢,2006,27(5):40-42.
    [26]Yoshioka K, Suzuki S, Kinoshita N, et al. Ultra-Low C and N high chromium ferritic stainless steel [J]. Kawasaki Steel Technical Report,1986,14:101-112.
    [27]王红旺,夏向东,张通,等.超纯铁紊体不锈钢在内蒙古天然碱苛化烧碱蒸发完成液中的腐蚀性能[J].内蒙古工学院学报,1992,11(1):50-58.
    [28]杨作宏,程子建.超纯铁素体不锈钢新品种研发与应用[J].中国冶金,2013,23(5):17-21.
    [29]Kostov A, Friedrich B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys [J]. Computational Materials Science,2006, 38(2):374-385.
    [30]R.温斯顿.里维.尤利格腐蚀手册[M].北京:化学工业出版社,2005.
    [31]冯颖芳.世界钛及钛合金的应用研究进展[J].世界有色金属,2012(4):54-57.
    [32]杨世杰.钛在氯碱工业中的发展[J].钛工业进展,2003,20(4):98-100.
    [33]王镐,李献军.钛在海洋工程应用新进展[J].中国金属通报,2013(4):20-21.
    [34]Richaud H, Marchebois H, Gerard P. Titanium and super stainless steel welded tubing solutions for sea water cooled heat exchangers [J]. Materials Technology,2009, 24(3):191-200.
    [35]Ameer M A, Fekry A M, Shanab S M. Electrochemical behavior of titanium alloy in 3.5% NaCl containing natural product substances [J]. International Journal of Electrochemical Science,2011,6(5):1572-1585.
    [36]Venkatesan R, Dwarakadasa E S, Ravindran M. A deep-sea corrosion study on titanium and Ti6A14V alloy [J]. Corrosion Prevention and Control,2004,51(3):98-103.
    [37]Zielinski A J, Sobieszczyk S. Corrosion of titanium biomaterials, mechanisms, effects and modelisation [J]. Corrosion Reviews,2008,26(1):1-22.
    [38]Sasikumar Y, Rajendran N. Influence of surface modification on the apatite formation and corrosion behavior of Ti and Ti-15Mo alloy for biomedical applications[J]. Materials Chemistry and Physics,2013,138(1):114-123.
    [39]Ameer M A, Fekry A M, Shanab S M. Electrochemical behavior of titanium alloy in 3.5% NaCl containing natural product substances [J]. International Journal of Electrochemical Science,2011,6(5):1572-1585.
    [40]Nakayama G, Sakakibara Y, Taniyama Y, et al. The long-term behaviors of passivation and hydride layer of commercial grade pure titanium in TRU waste disposal environments [J]. Journal of Nuclear Materials,2008,379(1-30):174-180.
    [41]Nishimura T, Corrosion resistance of molybdenum-containing titanium alloy for overpack in simulating underground environment [J]. Journal of Nuclear Materials, 2009,385(3):495-503.
    [42]He X, Noel J J, Shoesmith D W. Temperature dependence of crevice corrosion initiation on titanium grade-2 [J]. Journal of the electrochemical society,2002, 149(9):B440-B449.
    [43]Nishimura T. Corrosion resistance of Mo-Fe-Ti alloy for overpack in simulating underground environment[J]. Nuclear Engineering and Design,2011,241(12): 4745-4749.
    [44]He X, Noel J J, Shoesmith D W. Effects of iron content on microstructure and crevice corrosion of grade-2 titanium [J]. Corrosion,2004,60(4):378-387.
    [45]Tsujikawa S, Kojima Y. Repassivation method to predict long term integrity of low alloy titanium for nuclear waste package [J]. Materials Research Society,1991, 212:261-268.
    [46]Bond A P, Lizlovs E A. Anodic polarization of austenitic stainless steels in chloride media [J]. Journal of the electrochemical society,1968,115(11): 1130-1135.
    [47]Park J 0, Matsch S, Bohni H. Effects of temperature and chloride concentration on pit initiation and early pit growth of stainless steel [J]. Journal of the electrochemical society,2002,149(2)-.B34-B39.
    [48]Dong C F, Luo H, Xiao K, et al. Effect of temperature and Cl-concentration on pitting of 2205 duplex stainless steel [J]. Journal of wuhan university of technology-materials science,2011,26(4):641-647.
    [49]Laycock N J, Newman R C. Temperature dependence of pitting potentials for austenitic stainless steels above their critical pitting temperature [J]. Corrosion Science,1998,40(6):887-902.
    [50]邓博,蒋益明,郝允卫,等.F-和C1-对316不锈钢临界点蚀温度的协同作用[J].中国腐蚀与防护学报,2008,28(1):30-33
    [51]Farina S B, Duffo G S. Stress corrosion cracking behavior of pure titanium in iodine-alcohol solutions [J]. Corrosion,2007,63(5):450-461.
    [52]Ogawa T, Yokoyama K, Asaoka K, et al. Hydrogen absorption behavior of beta titanium alloy in acid fluoride solutions [J]. Biomaterials,2004,25(12):2419-2425.
    [53]赵朴.00Cr18Mo2铁素体不锈钢的耐腐蚀性能研究[J].钢铁研究学报,1989,2(1):33-40.
    [54]余海峰,王伟明,杨军,等.宝钢太阳能热水器用低钼超纯铁素体不锈钢[J].宝钢技术,2010,2:16-20.
    [55]Horvath J, Uhlig H H. Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe, and related stainless steels [J]. Journal of the electrochemical society, 1968,115(8):791-795.
    [56]Kaneko M, Isaacs H S. Effects of molybdenum on the pitting of ferritic-and austenitic-stainless steels in bromide and chloride solutions [J]. Corrosion Science,2002,44(8):1825-1834.
    [57]张恒华,王德英,周建辉,等.钼对超纯铁素体不锈钢在中性氯介质中抗点蚀性能的影响[J].腐蚀科学与防护技术,1993,5(3):162-167.
    [58]Shu J, Bi H Y, Li X, et al. The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels [J]. Corrosion Science,2012,57:89-98.
    [59]Halada G P, Kim D, Clayton C R. Influence of nitrogen on electrochemical passivation of high-nickel stainless steels and thin molybdenum-nickel films [J]. Corrosion, 1996,52(1):36-46.
    [60]Leiva-Garcia R, Akid R, Greenfield D, et al. Study of the sensitisation of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), by means of scanning electrochemical microscopy [J]. Electrochimica Acta,2012,70(30):105-111.
    [61]Streicher M A. Pitting corrosion of 18Cr-8Ni stainless steel [J]. Journal of the electrochemical society,1956,103(7):375-390.
    [62]Yang Y, Tan H, Zhang Z, et al. Effect of annealing temperature on the pitting corrosion behavior of UNSS 82441 duplex stainless steel [J]. Corrosion,2013, 69(2):167-173.
    [63]Deng B., Jiang Y M, Gao J, et al. Effect of annealing treatment on microstructure evolution and the associated corrosion behavior of a super-duplex stainless steel [J]. Journal of Alloys and Compounds,2010,493(1-2):461-464.
    [64]Zhang L H, Jiang Y M, Deng B, et al. Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel [J]. Materials characterization,2009, 60(12):1522-1528.
    [65]Meguid E A A. Pitting corrosion behavior of type 904L stainless steel in sodium bromide solutions [J]. Corrosion,1997,53(8):623-630.
    [66]Cai B, Liu Y, Tian X, et al. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater[J]. Corrosion Science,2010,52(10): 3235-3242.
    [67]Naganuma A, Azumi K. Observation of corrosion behavior of stainless steels in a salt manufacturing plant environment using the multichannel electrode method [J]. Corrosion Science,2011,53(4):1165-1173.
    [68]Jargelius-Pettersson R F A, Pound B G. Examination of the role of molybdenum in passivation of stainless steels using AC impedance spectroscopy [J]. Journal of The Electrochemical Society,1998,145(5):1462-1469.
    [69]Dayal R K, Parvathavarthini N, Gnanamoorthy J B. Measurement of crevice corrosion resistance of stainless steels using a potentiodynamic method [J]. British Corrosion Journal,1983,18(4):184-186.
    [70]Azuma S, Kudo T, Miyuki H, et al. Effect of nickel alloying on crevice corrosion resistance of stainless steels [J]. Corrosion,2004,46(9):2265-2280.
    [71]梁成浩.镍对304不锈钢在NaCl溶液中缝隙腐蚀行为的影响[J].腐蚀科学与防护技术,1999,11(3):147-151.
    [72]Li H b, Jiang Z H, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels [J]. International Journal of Minerals, Metallurgy and Materials,2009,16(5):517-524.
    [73]梁成浩,高彦静.离子镀TiN膜对不锈钢在海水中缝隙腐蚀行为的影响[J].腐蚀科学与防护技术,1995.7(2):167-170.
    [74]Johns D R, Shemwell K. The crevice corrosion and stress corrosion cracking resistance of austenitic and duplex stainless steel fasteners [J]. Corrosion Science,1997,39(3):473-481.
    [75]Lu Y C, Ives M B. Chemical treatment with cerium to improve the crevice corrosion resistance of austenitic stainless steels [J]. Corrosion,1995,37(1):145-155.
    [76]Jakobsen P T, Maahn E. Temperature and potential dependence of crevice corrosion of AISI 316 stainless steel [J]. Corrosion Science,2001,43(9):1693-1709.
    [77]Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. Journal of Materials Science,2012,47(2):1018-1025.
    [78]Abd El Meguid E A, Abd El Latif A. Electrochemical and SEM study on Type 254 SMO stainless steel in chloride solutions [J]. Corrosion,2004,46(10):2431-2444.
    [79]Machuca L L, Bailey S I, Gubner R, et al. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater [J]. Corrosion,2012, 67:242-255.
    [80]Hu Q, Zhang G A, Qiu Y B, et al. The crevice corrosion behaviour of stainless steel in sodium chloride solution [J]. Corrosion Science,2011,53(12):4065-4072.
    [81]Cai B P, Liu Y H, Tian X J, et al. An experimental study of crevice corrosion behaviour of 316L stainless steel in artificial seawater [J]. Corrosion,2010, 52(10):3235-3242.
    [82]Kim J K, Kim Y H, Kim K Y. Influence of Cr, C and Ni on intergranular segregation and precipitation in Ti-stabilized stainless steels [J]. Scripta Materialia, 2010,63(4):449-451.
    [83]邵泽斌陈海涛郎字平,等.430铁素体不锈钢晶间腐蚀敏感性评测方法及影响因素[J].特殊钢,2012,33(5):57-60.
    [84]Majidi A P, Streicher M A. Potentiodynamic reactivation method for detecting sensitization in AISI 304 and 304L stainless steels [J]. Corrosion,1984, 40(8):393-408.
    [85]Lin D Y, Chang T C. Influence of Si content on the intergranular corrosion of SUS 309L stainless steels [J]. Materials Science and Engineering:A,2003, 359(1-2):396-401.
    [86]Abdel-Karim R, Elmahallawi I, El-Menshawy K. Microstructure and corrosion properties of nitrogen stainless steel 316L produced by hipping [J]. Powder Metallurgy,2004,47(1):43-48.
    [87]Li H, Jiang Z, Zhang Z, et al. Intergranular corrosion behavior of high nitrogen austenitic stainless steel[J]. International Journal of Minerals, Metallurgy and Materials,2009,16(6):654-660.
    [88]Kim J K, Kim Y H, Lee B H, et al. New findings on intergranular corrosion mechanism of stabilized stainless steels [J]. Electrochimica Acta,2011,56(4):1701-1710.
    [89]秦丽雁,张寿禄,宋诗哲.典型不锈钢晶间腐蚀敏化温度的研究[J].中国腐蚀与防护学报,2006,26(1):2-5.
    [90]金维松,郎宇平,荣凡,等.EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究[J].中国腐蚀与防护学报,2007,27(1):54-59.
    [91]褚武扬,乔利杰,陈奇志,等.断裂与环境断裂[M].北京:科学出版社,2000:156-160.
    [92]Yonezu A, Kusano R, Chen X. On the mechanism of intergranular stress corrosion cracking of sensitized stainless steel in tetrathionate solution[J]. Journal of Materials Science,2013,48(6):2447-2453.
    [93]Donohoe C J, Whillock G 0 H. Localized Corrosion of Stainless Steel in a Nuclear Waste Cooling Water System-Part 7:Direct Radiation Experiments[J]. Corrosion, 2012,69(2):107-121.
    [94]Scenini F, Sherry A. Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel in High-Temperature Water with Anionic Impurities Contamination[J]. Corrosion,2012,68(12):1094-1107.
    [95]Almubarak A, Belkharchouche M, Hussain A. Stress corrosion cracking of sensitized austenitic stainless steels in Kuwait petroleum refineries[J]. Anti-Corrosion Methods and Materials,2010,57(2):58-64.
    [96]Chen Y Y, Shih H C, Liou Y M, et al. Stress corrosion cracking of type 321 stainless steels under simulated petrochemical conditions containing thiosulfate and chloride [J]. Corrosion,2006,62(9):781-794.
    [97]Cragnolino G, Dunn D S, Sridhar N. Environmental factors in the stress corrosion cracking of type 316L stainless steel and alloy 825 in chloride solutions [J]. Corrosion,1996,52(3):194-203.
    [98]Juang H K, Altstetter C. Effect of pH and chloride contents on stress corrosion cracking of austenitic stainless steels at room temperature [J]. Corrosion,1990, 46(11):881-887.
    [99]吕国诚,许淳淳,程海东.304不锈钢应力腐蚀的临界氯离子浓度[J].化工进展,2008,27(8):1284-1287.
    [100]Kamaya M, Haruna T. Crack initiation model for sensitized 304 stainless steel in high temperature water [J]. Corrosion Science,2006,48(9):2442-2456.
    [101]关矞心,李岩,董超芳,等.高温水环境下温度对316L不锈钢应力腐蚀开裂的影响[J].北京科技大学学报,2009,9:1122-1126.
    [102]董超芳,关矞心,程学群,等.pH值对高温高压水中304L不锈钢应力腐蚀开裂的影响[J].北京科技大学学报,2010,32(12):1569-1573.
    [103]Andresen P L, Morra M M. Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water [J]. Corrosion,2008,64(1):15-29.
    [104]Kwon H S, Jang S P. Effects of Ni on stress corrosion susceptibility of high-Cr ferritic stainless steels in hot Cl- solution [J]. Corrosion,1993,49(10): 802-808.
    [105]Yamamoto A, Nakahigashi S, Terasawa M, et al. High-temperature and high-pressure in situ SCC device for synchrotron radiation diffraction experiments and application using an austenitic stainless steel [J]. Journal of Synchrotron Radiation,2006,13:14-18.
    [106]刘素娥.低合金钢、不锈钢和镍基合金高温碱脆研究[D].北京:中国科学院,1998.
    [107]Chasse K R, Raji S, Singh P M. Effect of Chloride Ions on Corrosion and Stress Corrosion Cracking of Duplex Stainless Steels in Hot Alkaline-Sulfide Solutions[J]. Corrosion,2012,68(10):932-949.
    [108]余存烨.频繁碱洗对不锈钢及钛材设备的影响[J].石油化工腐蚀与防护,2010,27(5):42-45.
    [109]A.约翰.塞德赖克斯.不锈钢的腐蚀[M].北京:机械工业出版社,1986:240-246.
    [110]Griess Jr J C. Crevice corrosion of titanium in aqueous salt solutions [J]. Corrosion,1968,24(4):96-109.
    [111]Kennell G F, Evitts R W, Heppner K L. A critical crevice solution and IR drop crevice corrosion model [J]. Corrosion Science,2008,50(6):1716-1725.
    [112]Heppner K L, Evitts R W, Postlethwaite J. Effect of Ionic Interactions on the Initiation of Crevice Corrosion in Passive Metals [J]. Journal of the electrochemical society,2005,152(3):B89-B98.
    [113]梁成浩.钛的缝隙腐蚀行为研究[J].稀有金属材料与工程,1994,23(6):41-45.
    [114]Brossia C S, Cragnolino G A. Effect of palladium on the corrosion behavior of titanium [J]. Corrosion Science,2004,46(7):1693-1711.
    [115]Cheng F T, Lo K H, Man H C. An electrochemical study of the crevice corrosion resistance of NiTi in Hanks'solution [J]. Journal of Alloys and Compounds,2007, 437(1-2):322-328.
    [116]Min X H, Emura S, Sekido N, et al. Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy [J]. Materials Science and Engineering:A,2010,527(10-11):2693-2701.
    [117]王健云,周清木,秦平刚,等.工业纯钛的缝隙腐蚀探讨[J].化工机械,2000,27(3):135-138.
    [118]Satoh H, Shimogori K, Kamikubo F. The crevice corrosion resistance of some titanium materials [J]. Platinum Metals Review,1987,31(3):115-121.
    [119]Tsujikawa S, Kojima Y. Crevice corrosion-NaCl concentration map for grade-2 titanium at elevated temperature [J]. Materials Research Society Symposium Proceedings,1993,294:311-316.
    [120]Schutz R W. Understanding and preventing crevice corrosion of titanium alloys II [J]. Materials Performance,1992,31(11):54-56.
    [121]Yan L, Noel J J, Shoesmith D W. Hydrogen absorption into grade-2 titanium during crevice corrosion [J]. Electrochimica Acta,2011,56(4):1810-1822.
    [122]Rajendran N, Nishimura T. Crevice corrosion monitoring of titanium and its alloys using microelectrodes [J]. Material Corrosion,2007,58(5):334-339.
    [123]Vicentini B, Sinigaglia D, Taccani G. Crevice corrosion of titanium. Behaviour of galvanic cell between shielded and unshielded titanium in sulphuric acid [J]. Corrosion Science,1975,15(6-12):479-492.
    [124]Abdulsalam M I, Pickering H W, The effect of crevice-opening dimension on the stability of crevice corrosion for nickel in sulfuric acid [J]. Journal of the electrochemical society,1998,145 (7):2276-2284.
    [125]AbduIsalam M I, Pickering H W. Effect of the applied potential on the potential and current distributions within crevices in pure nickel [J]. Corrosion Science, 1999,41(2):351-372.
    [126]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008:226-249.
    [127]Yan L, Ramamurthy S, Noel J J, et al. Hydrogen absorption into alpha titanium in acidic solutions [J]. Electrochimica Acta,2006,52(3):1169-1181.
    [128]Abdulsalam M I. Crevice corrosion of titanium in high temperature-concentrated chloride environments [J]. Journal of Materials Engineering and Performance, 2007,16(6):736-740.
    [129]Ogawa T, Yokoyama K, Asaoka K, et al. Hydrogen absorption behavior of beta titanium alloy in acid fluoride solutions[J]. Biomaterials,2004,25(12):2419-2425.
    [130]Yokoyama K, Ogawa T, Asaoka K, et al. Hydrogen absorption of titanium in acidic fluoride solutions [J]. Materials Science and Engineering:A,2004,384(1-2): 19-25.
    [131]Hirohata Y, Motojima D, Hino T, et al. Suppression of hydrogen absorption to V-4Cr-4Ti alloy by TiO2/TiC coating [J]. Journal of Nuclear Materials,2003, 313-316:172-176.
    [132]伍怀龙,赵国庆,周筑颖,等.氘在钛中的扩散行为[J].核技术,1996,19(6):326-331.
    [133]Nishimura R, Shirono J, Jonokuchi A. Hydrogen-induced cracking of pure titanium in sulphuric acid and hydrochloric acid solutions using constant load method [J]. Corrosion Science,2008,50(9):2691-2697.
    [134]Roy A K, Spragge M K, Fleming D L, et al. Cracking of titanium alloys under cathodic applied potential [J], Micron,2001,32 (2):211-218.
    [135]Ernst P, Newman R C. Explanation of the effect of high chloride concentration on the critical pitting temperature of stainless steel [J]. Corrosion science, 2007,49(9):3705-3715.
    [136]Rosenfeld I L, Danilov I S, Oranskaya R N. Breakdown of the passive state and repassivation of stainless steels [J]. Journal of The Electrochemical Society, 1978,125(11):1729-1735.
    [137]林玉华,杜荣归,胡融刚,等.不锈钢钝化膜耐蚀性与半导体特性的关联研究[J].物理化学学报,2005,21(7):740-745.
    [138]Hakiki N E. Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel[J]. Corrosion Science,2011,53(9):2688-2699.
    [139]Xu L W, Li H B, Ma Q F, et al. The Influence of Cold Working on Semiconducting Properties of Passive Film and Pitting Corrosion Resistance of High Nitrogen Austenitic Stainless Steel[J]. Advanced Materials Research,2012,415:784-788.
    [140]Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM)[J]. Corrosion Science,2011,53(10): 3186-3192.
    [141]Macdonald D D, Urquidi-Macdonald M. Theory of Steady-State Passive Films [J]. Journal of the Electrochemical Society,1990,137(8):2395-2402.
    [142]Eghbali F, Moayed M H, Davoodi A, et al. Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1 M NaCl at various molybdate concentrations [J]. Corrosion Science,2011,53(1):513-522.
    [143]Ningshen S, Kamachi Mudali U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corrosion science,2007,49(2):481-496.
    [144]Moayed M H, Newman R C. Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature [J]. Corrosion science,2006,48(4):1004-1018.
    [145]Hashimoto K, Asami K, Kawashima A, et al. The role of corrosion-resistant alloying elements in passivity [J]. Corrosion science,2007,49(1):42-52.
    [146]Han D, Jiang Y, Deng B, et al. Detecting critical crevice temperature for duplex stainless steels in chloride solutions [J]. Corrosion,2011,67(2): 025004-1-025004-7.
    [147]Pickering H W. The significance of the local electrode potential within pits, crevices and cracks [J]. Corrosion science,1989,29(2):325-341.
    [148]Al-Zahrani A M, Pickering H W. IR voltage switch in delayed crevice corrosion and active peak formation detected using a repassivation-type scan [J]. Electrochimica Acta,2005,50(16):3420-3435.
    [149]闫茂成,翁永基.阴极保护管线破损涂层下高pH环境形成规律[J].中国腐蚀与防护学报,2004,24(2):95-99.
    [150]Brigham R J. Direct evidence of the potential distribution in crevices [J]. Corrosion science,1992,33(5):799-803.
    [151]Brigham R J. The thermodynamics of crevice corrosion initiation [J]. Corrosion science,1988,28(1):57-60.
    [152]Pickering H W. Important early developments and current understanding of the IR mechanism of localized corrosion [J]. Journal of the Electrochemical Society, 2003,150(5):K1-K13.
    [153]Utomo W B, Donne S W. Electrochemical behaviour of titanium in H2SO4-MnSO4 electrolytes [J]. Electrochimica Acta,2006,51(16):3338-3345.
    [154]Hryniewicz T, Konarski P, Rokicki R, et al. SIMS studies of titanium biomaterial hydrogenation after magnetoelectropolishing [J]. Surface and Coatings Technology,2012,206:4027-4031.
    [155]Takeda M, Kurisu H, Yamamoto S, et al. Hydrogen distribution in titanium materials with low outgassing property [J]. Vacuum,2009,84(2):352-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700