等径弯曲通道变形制备块体超细晶铜的腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细晶材料具有优良的物理性能和化学性能,是为适应社会发展和需求而逐步开发出来的一种新型材料。在制备超细晶材料的技术中,等径弯曲通道挤压技术(EqualChannel Angular Pressing,简称ECAP)被认为是目前最具工业化应用前景的技术之一。本文以工业纯铜T1为原料,采用两通道内交角φ为90°,外接弧角Ψ为20°的ECAP模具制备出晶粒大小为0.2~0.3μm的块体超细晶铜,利用E-t曲线、动电位极化曲线、电化学阻抗谱(EIS)等电化学方法和x-射线能谱仪、扫描电镜测试方法研究了ECAP超细晶铜和挤压前退火态粗晶铜在不同条件下的腐蚀行为,主要研究结果如下:
     (1)室温条件下,在0.5mol/L NaCl溶液中,ECAP超细晶铜与粗晶铜相比,前者腐蚀电流密度较低,腐蚀速率减小,从电化学分析和微观腐蚀形貌来看,随着浸泡时间的延长,超细晶铜的腐蚀表面较光滑,且较为均匀,而粗晶铜的局部腐蚀十分严重,超细晶铜表现出更好的耐蚀能。在氯化钠溶液中浸泡64h后,ECAP超细晶铜和粗晶铜的腐蚀电流密度均减小,腐蚀速率减慢,表面腐蚀产物保护作用增强。
     (2)在0.5mol/L NaCl溶液中,随着温度的升高,ECAP超细晶铜和粗晶铜表面膜的孔隙率增大,氯离子在膜中更容易扩散,从而使电极的腐蚀速率增大,耐蚀性能降低。当温度达到90℃时,粗晶铜比超细晶铜具有较大的腐蚀电流密度和较高的致钝电位,表明粗晶铜比超细晶铜更易腐蚀。
     (3)室温条件下,随着氯离子浓度升高,ECAP超细晶铜和粗晶铜的腐蚀电位均负移,腐蚀电流密度、致钝电流密度及维钝电流密度都增大,这表明这两者表面钝化膜在高浓度氯离子溶液中更易遭到破坏,耐蚀性能降低。当氯离子浓度达到1.5mol/L时,超细晶铜和粗晶铜具有相似的腐蚀和钝化过程,耐蚀性能相似。
     (4)室温条件下,在含有硫离子的0.5mol/L氯化钠溶液中,随着硫离子浓度的升高,ECAP超细晶铜和粗晶铜的腐蚀电位减小,腐蚀电流密度增大,钝化膜更易遭到破坏,使材料的耐蚀性能降低。在含有0.01mol/L硫离子的氯化钠溶液中,超细晶铜比粗晶铜腐蚀电流密度低且更早进入钝化,表现出更佳的耐蚀性。
     (5)室温条件下,在盐酸溶液中,ECAP超细晶铜的腐蚀电流密度略高于氢氧化钠溶液和氯化钠溶液中的腐蚀电流密度。在氢氧化钠溶液中,随着电极电位的升高,阳极极化进入过钝化区,超细晶铜表面以很大的阳极电流密度溶解,钝化膜在局部遭到破坏,腐蚀又重新加剧。
Ultra-fine grained(UFG) material is a new type of material with excellent physical properties and chemical properties to meet the needs of social development.Equal Channel Angular Pressing(ECAP) is considered one of the most promising industrial technologies in all preparation technologies of UFG material.In this paper,UFG T1(0.2-0.3μm) was made by ECAP(Φ=90°,Ψ=20°),and the corrosion behaviors of ultra-fine grained(UFG) Cu and annealed coarse-grained(CG) Cu were studied in differnet systems through E-t curve, potentiodynamic polarization curve,electrochemical impedance spectroscopy(EIS),X-ray energy dispersion spectrometer and scanning electron microscopy.The main research results were as follows:
     (1) Under room temperature,in 0.5mol/L NaC1 solution,UFG Cu exhibited lower corrosion current density in comparison with CG counterpart.It was that with the extension of immersion time,the corrosion surface of UFG Cu was very smooth and more uniform,but the localized corrosion of CG Cu was very serious,which indicated that UFG Cu had a better corrosion resistance than CG Cu.Immersion 64h later,the corrosion current density of UFG Cu and CG Cu decreased,and the protective effect of corrosion products enhanced.
     (2) In 0.5mol/L NaC1 solution,with increasing temperature,the surface film porosity of UFG Cu and CG Cu increased,which made C~(1-) so easily spread in the passive film that their corrosion rate increased and the protective character against corrosion reduced.When the temperature reached 90℃,CG Cu exhibited higher corrosion current density and passivation current,which showed that CG Cu was more likely to suffer corrosion than UFG Cu.
     (3) Under room temperature,with increasing concentration of C~(1-),the corrosion potential of UFG Cu and CG Cu decreased,meantime their corrosion current density, passivation current density and blunt-dimensional current all increased,which indicated that copper was more likely to suffer damage and its protective character against corrosion reduced.In 1.5mol/L C~(1-) solution,UFG Cu and CG Cu had corrosion and passivation process,which indicated that UFG Cu and CG Cu had similar corrosion resistance.
     (4) Under room temperature,in 0.5mol/L NaC1 solution with S~(2-),with increasing concentrations of S~(2-),the corrosion potential of UFG Cu and CG Cu decreased,and their corrosion current density increased,which indicated that copper's passive film was more likely to suffer damage and its corrosion resisting property reduced.In NaC1 solution with 0.01mol/L S~(2-),UFG Cu had lower corrosion current density,earlier occurred passivation and showed better corrosion resistance than CG Cu.
     (5) Under room temperature,in HC1 solution,the corrosion current density of UFG Cu was higher than in NaC1 solution and NaOH solution.In NaOH solution,with increasing electrode potential,anodic polarization entered transpassive region,the surface of UFG Cu dissoluted in a large current density,copper's passive film suffered damage on the local scale, and corrosion increased again.
引文
[1]柯伟.中国工业与自然环境腐蚀调查[J].全面腐蚀控制,2003,17(1):1-10.
    [2]Gleiter H.Nanocrystalline materials[J].Prog Mater Sci,1989,33:223-315.
    [3]Vinogradov A,Mimaki T,Hashimoto S,et al.On the corrosion behavior of ultra-frain copper[J].Scripta Mater.,1999,45:319-326.
    [4]Rofagha R,Langer R,E1-Sherik AM,et al.The corrosion behavior of nanocrystalline nickel[J].Scripta Met.Mater.,1991,25:2867-2872.
    [5]罗伟,钱聪,无希俊,等.纳米晶铜块体材料电化学腐蚀行为研究[J].浙江大学学报,2006,40(9):1587-1590.
    [6]Rofagha R,Erb U,Ostander D,et al.The effect of grain size and phosphorus on the corrosion of nanocrystalline Ni-P alloys[J].Nanostmct.Mater.,1993,2(1):1-10
    [7]Thorpe S J,Ramaswami B,Aust KT.Corrosion and Au- gut studies of a nickel-base metal-metalloid glass[J].J.Electrochem.Soc.,1988,135:2162-2174.
    [8]Sanders PG,Weertman JR,Barker JG.Structure of nanocrystalline palladium and copper studied by small angle neutron scattering[J].J Mater Res,1996;11:3110-3118.
    [9]Youngdahl J,Sanders PG,Eastman JA.Weertman JR.Compressive yield strengths of nanocrystalline Cu and Pd[J].Scripta Mat,1997,37:809.
    [10]Erb U,E1-Sherik AM,Palumbo G,et al.Synthesis,structure and properties of electroplated nanocrystalline materials[J].Nanostruct Mater,1993,2(4):383-390.
    [11]张振忠,宋广生,杨根仓,等.块体金属纳米材料的制备技术进步及展望[J].兵器材料科学与工程,1999,23(3):46-49.
    [12]Lu K,Liu XD.Crystallization mechanism and characterization of nanostructures from amorphous alloys[J].Nanostructured Materials,1995,6:445-448.
    [13]苏品书.超微粒子材料技术[M].武汉:武汉出版社,1989:22-28.
    [14]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:45.
    [15]Iwahashi Y,Wang JT,Horita Z,et al.Principle of equal-channel angular pressing for the processing ofultra-fine grained materials[J].Scripta Mater,1996,35:143-146.
    [16]Segal VM.Materials Processing.by Simple Shear[J].Mater Sci Eng,1995,A197:157-164.
    [17]Segal VM,Dobatkin SV,Valiev RZ.Equal-channel angular pressing of metallic materials:Achievements and trends[J].Russian Metall,2004,1:1-10.
    [18]Smirnova NA,Levit VI,Pilyugin VI,et al.Evolution of Structure of FCC Single Crystals during Strong plastic deformation[J].Physics of Metals and Metallography, 1986,61:1170-1177.
    [19]Valiev RZ,Kaibyshev OA,Kuznetsov RI,et al.Lower Temperature Superplastieity in Metallic Materials[J].Proc USSR Acad Sci,1988,301:864-867.
    [20]Zhilyaev AP,Nurislamova GV,Kim BK,et al.Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion[J].Acta Mater,2003,51(3):753-765.
    [21]Salishchev GA,Valiahmetov OR,Galeev RM.Formation of Submicrocrystalline Structure in Titanium Alloy VT8 and Its Influence on Mechanical Properties[J].J Mater Sci,1993,28:2898-2902.
    [22]Valitov VA,Salishchev GA,Mukhtarov Sh.Superplasticity of Heat-Resistant Nickel Alloy with a Submicrocrystalline Structure[J].Russian Metall,1994,3:127-136.
    [23]Sitdikov O,Sakai T,Goloborodko A,et al.Effect of pass strain on grain refinement in7475Al alloy during hot multi-directional forging[J].Mater Trans,2004,45:2232-2236.
    [24]Riehert M,Liu Q,Hansen N.Microstructural evolution over a large strain range in aluminium[J].Materials Science and Engineering,1999,A260:275-283.
    [25]Riehert M,Stuwe HP,Richert J,et al.Characteristic features of microstructure of AlMg5 deformed to large plastic strains[J].Materials Science and Engineering,2001,A301:237-243.
    [26]Saito Y,Ysuji N,Utsunomiya H,et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding(ARB)process[J].Seripta Mater,1998,39(9):1221-1227.
    [27]Saito Y,Utsunomiya H,Tsuji N,et al.Novel ultra-high straining process for bulk materials:development of the accumulative roll-bonding process[J].Acta Mater,1999,47(2):579-583.
    [28]Huang JY,Zhu YT,Jiang H,et al.Microstructures and Dislocation Configurations in Bulk Nanostructred Cu Processed by Repetitive Corrugation and Straightening[J].Acta Mater,2001,49:1497-1505.
    [29]Zhu YT,Jiang H,Huang J,et al.A New Route To Bulk Nanostructured Metals[J].Metall Mater Trans,2001,32A:1559-1562.
    [30]Berbon PB,Furukawa M,Horita Z,et al.Influence of pressing speed on microstructural development in equal-channel angular pressing[J].Metall Mater Trans,1999,30A:1989-1997.
    [31]Oh-Ishi K,Horita Z,Furukawa M,et al.Optimizing the rotation contion for grain-refinement in equal-channel angular processing[J].Metallurgical and Materials Transaction A,1998,29:2011-2013.
    [32]Gholinia A,Prangnell PB,Markushev MV.The effect of strain on the development of deformation structures in severely deformed aluminum alloys processed by ECAE[J].Acta mater,2000,48:1115-1130.
    [33]Ruslan Z,Valiev,Terence G,etal.Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in Materials Science,2006,51(7):881-981.
    [34]Iwahashi Y,Horita Z,Nemoto M,et al.An investigation of microstructural evolution during equal-channel angular pressing[J].Acta Mater,1997,45(11):4733-4741.
    [35]Kamachi M,Furukawa M,Horita Z,et al.ECAP using plate samples[J].Mater Sci Eng,2003,A361:258-266.
    [36]Lee JC,Seok HK,Suh JY.Microstructural evolutions of the A1 strip prepared by cold rolling and continuous equal channel angular pressing[J].Acta Mater,2002,50:4005-4019.
    [37]Yamashita A,Yamaguchi D,Horita Z,et al.Influence of pressing temperature on microstructural development in equal-channel angular pressing[J].Mater Sci Eng,2000,A287:100-106.
    [38]Shin DH,Pak JJ,Kim YK,et al.Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing[J].Mater Sci Eng,2002,A325:31-37.
    [39]伍来智.等径弯曲通道变形制备超细晶FeCoV合金及磁性能研究[D].西安建筑科技大学,2006:3-4.
    [40]谭树青,王经涛.金属塑性加工物理基础[M].西安:陕西科技技术出版社,1996:54.
    [41]王庆娟.等径弯曲通道变形制备超细晶铜及其组织生能研究[D].西安交通大学,2008:12-13
    [42]Valiev RZ,Korznikov AV,Mulyukov RR.Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J].Materials Science & Engineering A,1993,168(2):141-248.
    [43]王凤平,康万利,敬和民,等.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2008:92-113.
    [44]安百刚,张学元,韩恩厚.沈阳大气环境下纯铜的相互气腐蚀行为属学报[J].2007,43(1):77-51.
    [45]王宏智,陈君,周建奇,等.紫铜海水管焊接部位在海水中的腐蚀特征[J].中国有 色金属学报,2006,16(4):645-650.
    [46]He Ling,Zhao QinGao Min.Characterization of Corroded bronze Ding from the Yin Ruins of China[J].Corrosion Science,2007,49(6):2534-2546.
    [47]曹楚南.中国材料的自然环境腐蚀.北京:工业出版社,2005:63-65.
    [48]刘光洲等.B10合金的硫酸盐还原菌腐蚀研究[J].电化学,2002,8(2):191-194.
    [49]刘靖,许立铭,等.硫酸盐还原菌生物膜下Cu-Zn合金的腐试研究[J].中国腐蚀与防护学报,2001,21(6):346-350.
    [50]张立德,牟季美.纳米材料学[M].沈阳:辽宁技术出版社,1994:23.
    [51]沈长斌,王胜刚,龙康,等.块体纳米晶工业纯铁在室温硫酸溶液中的腐蚀电化学行为[J].机械工程材料,2005,29(4):48-50.
    [52]Chung MK,Choi YK,Kim JG,et al.Effect of the number of ECAP pass time on the electrochemical properties of 1050 AI alloys[J].Materials Science and Engineering A,2004,366:282-291.
    [53]Vinogradov A,Miyamoto H,Mimaki T,et al.Corrosion,stress corrosion cracking and fatigue of ultra-fine grain copper fabricated by severe plastic deformation[J].Ann.China.Sci.Mat,2002,27:65-75.
    [54]Sanders PG,Eastman JA,Weertman JR.Elastic and tensile behavior of nanocrystalline copper and palladium[J].Acta Mater,1997,45:4019-4025.
    [55]罗伟,钱聪,无希俊,等.纳米晶铜块体材料电化学腐蚀行为研究[J].浙江大学学报,2006,40(9):1587-1590.
    [56]N·J·塞勒.电化学的实验方法[M].北京:科学出版社,1985.
    [57]田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2000.
    [58]杨熙珍,杨武.金属腐蚀电化学热力学-电位-pH图及其应用[M].北京:化学工业出版社,1991:55.
    [59]赵春梅.模拟苦咸水中铜腐蚀行为的研究[D].北京化工大学,2000:37.
    [60]Rahmouni K,Keddam M,Srhiri A,et al.Corrosion of copper in 3%NaC1 solution polluted by sulphide ions[J].Corrosion Science,2005,47:3249-3266.
    [61]张雅妮.铬青铜耐腐蚀性能的研究[D].西安交通大学,2008:81.87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700