混凝土钢筋酸雨腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构是世界上最普遍、最广范应用的结构形式之一,但在一些恶劣条件下,尤其酸雨环境下混凝土内部钢筋的腐蚀会显著缩短其使用寿命,并降低其安全性。
     本文模拟重庆市酸雨为腐蚀环境,利用极化曲线法、交流阻抗法研究了两种常见钢筋材料(45钢和Q235钢)在模拟酸雨及模拟混凝土孔隙溶液中的腐蚀行为,并采取了模拟酸雨室内间歇浸泡法和室外自然腐蚀法来研究钢筋混凝土的腐蚀,通过检测混凝土浸泡溶液的pH值的变化、混凝土试件的重量变化、交流阻抗图谱来了解钢筋混凝土的腐蚀情况。初步探讨了发生在钢筋腐蚀介面上的动力学特征和电极界面结构的信息。
     实验结果表明:随着钢筋混凝土在模拟酸雨中浸泡时间的延长,酸雨浸泡液的pH值升高,但变化范围逐渐变小。酸雨环境中混凝土钢筋在室内干湿交替状态下的腐蚀速率远大于室外自然环境中的腐蚀速率
     在模拟酸雨中钢筋随着pH值的降低和Cl~-、SO_4~(2-)和NO_3~-离子浓度的增加的腐蚀速率逐渐增大,其中的Cl~-的去极化作用对钢筋腐蚀阳极反应起到明显的加速作用,相比之下,SO_4~(2-)和NO_3~-对电极的腐蚀反应影响程度较小;随着浸泡时间的延长钢筋的腐蚀速率出现了增→减→增的过程。说明酸雨酸性增强和腐蚀性离子浓度增加对钢筋的腐蚀起到了加速作用,浸泡时间引起钢筋表面的腐蚀产物层的变化,从而对钢筋腐蚀速度产生影响。
     在模拟混凝土孔隙溶液中钢筋通常保持钝态,但受到酸雨侵蚀后的模拟混凝土溶液中的钢筋腐蚀速度明显加快,并且随着体系中Cl~-离子浓度的增加而增加;Q235钢随着SO_4~(2-)和NO_3~-离子浓度的增加腐蚀速度有逐渐加快,但随着SO_4~(2-)和NO_3~-离子浓度的增加45钢的腐蚀速度却有所下降;浸泡时间的延长会导致钢筋出现点蚀。
     通过45钢和Q235钢在模拟酸雨和模拟混凝土孔隙溶液中的腐蚀行为进行对比,45钢因含有致钝性高的合金元素而具有比Q235钢更好的抗腐蚀性能。
Concrete structure is one of the most widely applied structures in the world. But reinforced concrete is easy to be corroded in some severe atmosphere, especially under the effect of acid rain. Corrosion of steel rebar in the reinforcement concrete will significantly shorten the service life of the structure, and reduce its safety.
     Rain of Chongqing is simulated as corrision situlation in the article, the corrosion of two common rebar steels, namely No. 45 and Q235 steel, was studied through electrochemical methods, such as polar curve and impedance, under the environment of simulated acid rain and reinforcement concrete pore solution. The corrosion of reinforced concrete under the indoor periodical immersion in simulated acid rain and atmosphere outside was investigated by measure the change of pH value of the immersion solution, weight of the samples and the electrochemical impedance of the rebar. It was roughly discussed that the dynamic characteristics of corrosion and the structure of electrode interface occurred in the interface of the rebar.
     The results showed that with the immersion time increase of reinforce concrete in acid rain solution, the pH value of solution increased gradually, but the change range was decreased. Corrosion rate of reinforce concrete periodically immersed in acid rain solution indoors was far beyond that in atmosphere outside.
     With the decrease of the pH value and the increase of the concentration of SO_4~(2-), Cl~- and NO_3~- in simulated acid rain, the corrosion rate of steel rebar is rising. The corrosion of steel rebar was obviously accelerated by the depolarization of Cl~-, while the effect of SO_4~(2-) and NO_3~- was very small on the corrosion. As the immersion time goes on, the corrosion rate increased firstly, then decreased, and increased again later, which indicated that the corrosion product layer on the steel rebar changed and had some effect on the corrosion rate of rebar during the its immersion.
     Rebar was blunt usually in simulated pore solutions of reinforcement concrete. But the corrosion rate of rebar was raised with the addition of corrosive acid rain, especially with the increase of the concentration of Cl~- ion. However, with the increase of SO_4~(2-) and NO_3~-, corrosion rate of steel 45 was decreased, and that of Q235 was increase to some extent. As the immersion time goes on, pitting corrosion of rebar could occur.
     In the simulated acid rain and pore solution of reinforcement concrete, the corrosion resistance of 45 steel is better than that of Q235 steel, the reason might be that there are some alloy elements in steel 45 could result deactivation.
引文
[1]张学元,安百刚.酸雨对材料的腐蚀/冲刷研究现状[J].腐蚀科学与防护技术, 2002,14(3):36.
    [2]张勇.重庆市“十五”期间酸雨污染特征及成因[N].西南大学学报(自然科学),2005,29(4):124.
    [3]周飞鹏.混凝土的酸雨腐蚀模型研究[C].中国优秀硕士学位论文集, 2005.
    [4]布拉德GS,克劳瑟HR,张效忠.材料手册[M].北京:科学出版社, 1989.
    [5]洪乃丰.混凝土中钢筋腐蚀与防护技术(2)-混凝土中钢筋腐蚀破坏的研究概况[J].工业建筑1999,29,(9):58-61.
    [6]刘晓敏,宋光铃,林海潮,史志明,曹楚南.混凝土中钢筋腐蚀破坏的研究概况[J].材料保护1996,29(6):17.
    [7]刘传明,刘咸.钢筋混凝土的腐蚀原因分析防护措施[J].全面腐蚀控制.2002,16(3)49.
    [8]洪乃丰.基础设施腐蚀防护和耐久性问与答[M].化学工业出版社,2003,8.
    [9] Baker J.M,Nixon P.J,A.J.Majumdar and H Davies. Durability of Building Materials and Component,Chapman and hall[J].New York,1991.
    [10]金伟良,赵羽习.混凝土结构耐久性[M].北京出版社,2002.
    [11]朱伯龙.碳化混凝土的结构性能[J].工业建筑,1998,28,(9):41-44.
    [12]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990.10.
    [13]赵铁军,李淑进.碳化对混凝土渗透及孔隙率的影响[J].工业建筑,2003,33,(1):46-47.
    [14] J.C.Maso.Durability of Construction Materials,Chapman and hall,London and New York[J].Magazine of Concrete Research, 1990
    [15]亢景富.混凝土硫酸盐侵蚀研究中的几个基本问题[M].混凝土,1995,3.
    [16] Bing Titan,Mena shi,D Co hen..Does gypsum formation during sulfate attack on concrete lead to expansion? [J].Cem. Concr . Res.2000,30(1):117-123.
    [17] M.Samthanam, D.M.Cohen, J.Olek.Effects of gypsum formation on the performance of cement mortars during external sulfate attack [J].Cem .Concr .Res,2003,33(2):325~332.
    [18] lrassar E F,Bonavetti V L,González M.Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature[J].Cem Concr Res. 2003,33 (1):31-41.
    [19]侯敬会.土壤和地下水环境下混凝土结构耐久性若干问题的研究院[D].杭州大学,2005.
    [20] Goazalex JA, FeliuS,odriguez P,Some Questions on the Corrosion of Steel in Concrete Part 1:when how much steel corrodes [J].Materisls and strucrtures,1996,29(6):40-45 .
    [21] Goazalex JA,Andrade C, alonso C,et al,Comparison of Rates of General Corrosion and Maximum Pitting Penetration on Concrete Embedded Steel[J].General and Concrete Research, 1996,25(4):257-264.
    [22] Slater JE. Magnitude of the problem,ASTM,ASTM,STP818 [J].Corrosion of Metals in Association with Concrete,1983,12(6):5-9.
    [23]贾福萍,秦杰.锈蚀钢筋混凝土研究现状和方向[J].化工腐蚀与防护,1997,25(3):24-30.
    [24] T.E.Graedel, RP.Frankenthal,Corrosion mechanisms for iron and low alloy steel exposed to the atmosphere[J].J.Electrochem.Soc.,1990,137(6):2385~2394.
    [25] El-Sayed H A. A case study of corrosion of a galvanized steel structure: application of some repair and protection technologies[J].Corrosion Prevention & Control 1988,35(8):93-95
    [26] Marco J F, Gracia M, Gancedo J R.Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere[J].Corrosion Science, 2000,42(4):753~771.
    [27]陈惠玲,魏雨.碳钢在含SO2环境大气中腐蚀机理的研究[J].腐蚀与防护.
    [28]刘晓敏,史志刚,林海潮等.硫酸盐和温度对钢筋腐蚀行为的影响[J].中国腐蚀与防护学报,1999,19(1):35-37.
    [29] Kalousek GL,Porter LC,Concrete for long term service in sulfate environment[J].Cement and Concrete Research,1972,2(1):79一90.
    [30] Mietz J, lsecke B. Monitoring of concrete structures with respect Construction and Building Materials to rebar corrosion[J].1996, 10(2):367-373.
    [31] Popovics J S.NDE techniques for concrete and masonry structures [J].Prog Struc.Engng Mater,2003, 8(1):49-59.
    [32] Millard S C, Law D, Bungey J H, Carins J.Environment influences on linear polarization corrosion rate measurement in reinforced concrete[J].NDT&E International,2001, 34: 409-417.
    [33] Mansfield F, Little B.A . technical review of electrochemical techniques applied to microbiologically influenced corrosion [J].Corrosion Science, 1991, 32(3): 247-272.
    [34] Stem M, Geary A L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves [J].Electrochem Soc 1957, 104:56-63.
    [35] Alvarez R.Frequency domain transform and the coulostatic technique[J].corrosion 1946(167):91-98.
    [36] Li L. Sagues A.Chloride corrosion threshold of reinforcing steel in alkaline solution cyclic polarization behavior[J].Corrosion,2002,58(4):304-316.
    [37] T.E.Graedel, RP.Frankenthal,Corrosion mechanisms for iron and low alloy steel exposed to the atmosphere[J].J.Electrochem.Soc.,1990,137:2385~2394.
    [38] G.O.Lloyd,25 years of research in atmospheric corrosion[J].Br.Corros.J,1990,25:30~33.
    [39] P.Verbiest, C.R.Janssen,I. Odnevall Wallinder,C.Leygraf.Environmental Effects of Zinc run off from Phosphated zinc Sheets used for Building Application[J].14th Int Corros Congr Cape Town,south africa,26 Sep(1999).
    [40] L.Espada, Acid rain: its influence on corrosion processes,13th International Corrosion Conference.
    [41] S.Magaino. Corrosion rate of copper rotating-disk electrode in simulated acid rain[J].Electrochimica Acta,1997,42 (3):377~384.
    [42]刘永辉电化学测试技术[M].北京:北京航空学院出版社,1987,28-29.
    [43]曹楚南.腐蚀电化学[M].北京工业出版社,1985,172~174.
    [44]梁彩凤,侯文泰.合金元素对碳钢和低合金钢在大气腐蚀中的影响[J].中国腐蚀与防护学报,1997,17:87~92.
    [45]屈庆,严川伟,张蕾,万哗,曹楚南.SO2和NaCl在A3钢初期大气腐蚀中的协同效应[J].金属学报,2002,38(10):1062-1066.
    [46]史美伦.交流阻抗谱原理与应用[M].北京:国防工业出版社,1998,223~225.
    [47] NesiS,JohnP,VrhovaM.H+ corrosion of carbon steel-fro mechanism to empirical modeling[J].Corrosion Reviews,1997,15:11~2126.
    [48] T.E.Graedel,R.P.Frankenthal.Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere[J].Electrochem.Soc,1990,137:2385~2394.
    [50] Vinod Kumar. Protection of steel reinforcement for concrete-A review[J].Corrosion Reviews,1988,16(4):317~358.
    [51]孙秋霞.材料腐蚀与防护[M].冶金工业出版社2001,217~219.
    [52]宫川丰章.Early chloride corrosion of reinforcing steel in concrete[J].京都大学学报论文1983,12.
    [53] M.Masi, D.Colella,G.Radaelli.Simulation of Chloride Penetration in Cement-Based Materials[J].Cement and Concrete Research,1997,27 (10) :1591~1601.
    [54] Kurtis KE,PJM,Madanat SM.Empirical models to predict concrete expansion caused by sulfate Montero attack [J].ACI Material Journal,2000,97(2):156~161.
    [55] Brug G J,Van den Eden A,Sluyters,Rehbach M,Sluyters J H.The analysis of electrode impedance complicated by the presence of a constant phase element [J].Elec-roanal. Chem.Interfacial Electrochem,1984,176 (12):275~295.
    [56] C.Andrade,P.Merino,X.R.Novoa,M.C.Perez,L.Passivation of reinforcing steel in concrete[J].Materials Science Forum 192–194(1995):891–898.
    [57] HongN F.Steel corrosion and protective technology in concreteⅠ.Damage of steel corrosion and failure effect on concrete[J].Ind.Constr,1999, 29(9) 66~68.
    [58] Vinod Kumar.Protection of steel reinforcement for concrete-A review[J].Corrosion Reviews, 1988, 16(4):317~358.
    [59]史美伦.混凝土阻抗图谱[M].中国铁道出版社,2003,219~221.
    [60]刘晓敏,史美伦,许刚,宋光铃,林海潮,曹楚南.钢筋在混凝土中腐蚀行为的电化学阻抗特征[J].腐蚀科学与防护技术,1999,11(13):125~134.
    [61] 0.Poupard,P.Dumargue.Impedance spectroscopy in reinforced concrete: Procedure for monitoring steel corrosion[J].materials science,2003,11(38):2845一2850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700