用户名: 密码: 验证码:
携带自杀基因的内皮祖细胞靶向治疗人肝癌裸鼠皮下移植瘤的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分从PBMCs及CD133免疫磁珠分选获得内皮祖细胞的体外研究
     目的:比较从外周血单个核细胞(PBMCs)和CD133免疫磁珠分选体外培养人外周血内皮祖细胞(EPCs)的表型、分化、扩增、功能特点,为EPCs细胞/基因治疗提供临床参考。
     方法:健康成年人外周血,经Ficoll密度梯度离心法得PBMCs,经直接接种法或CD133免疫磁珠分选后置于M199培养基中培养,于第7、14天比较两组细胞表型变化及分泌、扩增、体外血管形成及趋化能力。
     结果:相同量标本PBMCs组早期集落数高于CD133组(P<0.01),随着培养时间的推移,流式细胞检测两组细胞均显示造血干细胞标志的表达下调和内皮细胞标志表达上升,但CD133分选组CD144表达率低于PBMCs组(P<0.01)。ELISA法检测到在PBMCs组早期EPCs分泌VEGF的水平高于CD133分选组(P<0.01)。MTT法显示PBMCs组有较强的增殖能力。基质胶及transwell实验表明PBMCs组细胞参与血管形成的能力较强。
     结论:CD133分选EPCs所得细胞分化、分泌、增殖及血管形成能力较低,分化为内皮表型不完全,不宜作为EPCs细胞治疗载体。
     第二部分氯化钴预处理对内皮祖细胞相关功能的影响
     目的:研究氯化钴(cobalt chloride, CoCl2)预处理对培养的内皮祖细胞(endothelial progenitor cell, EPC)体外相关功能的影响。
     方法:用不同浓度的CoCl2预处理培养的EPC,用MTT和ELISA检测细胞增殖、分泌能力,用细胞迁移和基质胶管型实验检测细胞趋化和体外管样形成的功能,Western蛋白印迹检测CoCl2处理后EPC相关蛋白的变化。
     结果:100μM浓度CoCl2预处理6小时可增加EPC分泌,趋化及体外管样结构形成;CoCl2浓度大于400μM或预处理超过24h显著降低EPC功能活性;随着CoCl2浓度的增高,BCL-2/BAX比值逐渐降低。
     结论:CoCl2低浓度短时间预处理可以增强EPC体外分泌,趋化及管样形成能力,而高浓度CoCl2降低EPC的生存及增殖能力,可能与促凋亡蛋白上调有关。
     第三部分携带自杀基因的内皮祖细胞靶向治疗人肝癌裸鼠皮下移植瘤的初步研究
     目的:观察转染自杀基因的EPC (EPC-CD/UPRT)对肝癌细胞HepG2和SMMC-7721的体外杀伤作用,建立人肝癌裸鼠皮下移植瘤模型,观察EPC-CD/UPRT直接和经氯化钴预处理后在裸鼠体内的杀伤效果。
     方法:扩增pORF5-Fcy::Fur质粒并酶切鉴定,用fugene HD将pORF5-Fcy::Fur质粒导入EPC,免疫组化检测目的基因表达,将EPC与肝癌细胞HepG2和SMMC-7721混合培养,用MTT检测其活性;在裸鼠颈部皮下接种肝癌细胞,成瘤后观察EPC-CD/UPRT在5-FC作用下对其杀伤作用,比较EPC-CD/UPRT直接注射或经氯化钴预处理后注射对肿瘤的抑制效果,比较两组肿瘤体积大小,计算抑瘤率;最后用TUNEL法检测肿瘤凋亡指数。
     结果:酶切电泳图显示质粒成功扩增,纯度达99%;免疫组化结果显示,EPC经基因改造后可表达目的蛋白CD;MTT分析表明EPC-CD/UPRT能发挥强大的旁观者效应,对肿瘤细胞造成明显的杀伤;EPC-CD/UPRT联合5-FC能有效的抑制裸鼠移植瘤的生长,氯化钴预处理后可增强抑制肿瘤效果;CD/UPRT/5-FC系统对肿瘤有促凋亡作用。
     结论:携带CD/UPRT自杀基因的EPC能有效抑制肝癌移植瘤的生长,经氯化钴预处理后将增强肿瘤抑制效果。
Part-1 Isolation of Cultured Endothelial Progenitor Cells in vitro from PBMCs and CD133+Enriched Cells
     Objective:Two isolation methods for sorting of endothelial progenitor cells (EPCs): from peripheral blood mononuclear cells (PBMCs) and CD133+enriched cells were compared, by defining the cell morphology, phenotype, reproductive activities and function in vitro, to provide a reference for clinical application of EPCs.
     Methods:PBMCs from healthy subjects were used either directly for cell culture or for CD133+sorting. The two groups of cells were cultured in complete medium M199 for 7 to 14 days and the phenotypes of EPCs were analyzed by FACS. The proliferation of differentiated EPCs was studied by MTT assay, and the VEGF concentration was measured using an ELISA kit. ECM gel experiment and migration assay were performed in vivo.
     Results:The results showed that PBMCs produced more colony-forming units (CFU) than CD133+enriched cells from the same volume of blood (P<0.01). From day 7 to 14, the two groups show decreased expression of hematopoietic stem cell markers and increased level of endothelial markers, but CD144+cells in CD133+group were less than in PBMCs group (P<0.01). PBMCs group secreted more VEGF than CD133+group on the day 7 (P<0.01). As compared with CD133+group, PBMCs group had more potent potential of proliferation and vascularization in vitro.
     Conclusion:It was concluded that CD133+sorted cells showed a lower capacity of differentiation, secretion, proliferation and vascularization in vitro, speculating that CD133-negative cells may be a preferential way to get EPCs for clinical therapy.
     Part-2 Influence of Cobalt Chloride Preconditioning on The Proagiogenic Function of Endothelial Progenitor Cells
     Objective:To exploit the effect of cobalt chloride (CoCl2) pretreatment on angiogenic function in vitro of cultured endothelial progenitor cells(EPC).
     Methods:Cultured endothelial progenitor cells from patients were pretreated with CoCl2 under a range of concentrations. Then, Cell proliferation and VEGF secretion were examined by MTT and ELISA. Matrigel experiment and migration assay were imitate vascularization in vivo.the expressions of HIF-la and its target genes were examed by Western blot analysis.
     Results:CoCl2 pretreatment with 100μM at 6 hours enhanced the angiogenic function of EPC such as secretion, chemotaxis and tube formation in vitro, CoCl2 pretreatment with more than 400μM or 24h hinderd the functional properties of EPC, the ratio of BCL-2/BAX decreased along with an increasing concentration of CoCl2.
     Conclusions:CoCl2 preconditioning with low concentration and short time will enhance neovascularization of EPC in vitro, high concentration of CoCl2 reduce cell viability and proliferation, which may attributable to increased expression of proapoptotic gene.
     Part-3 Pilot Research on Targeted Therapy for Transplanted Human Hepatocarcinoma under Nude Mice Skin Based on Endothelial Progenitor Cells Armed with A Suicide Gene
     Objective:To explore the killing effect of gene modified EPC (EPC-CD/UPRT) on hepatocarcinoma HepG2 and SMMC-7721, established a transplanted tumor model of human hepatocarcinoma in nude mouse and study the killing effects of direct EPC-CD/UPRT treatment and pretreatment with cobalt chloride.
     Methods:pORF5-Fcy::Fur plasmid with its correctness evaluated by the means of restriction enzyme and destination protein detected by immunohistochemistry after transduction to EPC with fugene HD, HepG2/SMMC-7721 cells were mixed with modified EPC by different proportion and the total cell survival rate was analyzed with MTT. Hepatocarcinoma cells then be inoculated into the neck skin of nude mice. When the tumor is formed, the damage effects of EPC-CD/UPRT under the 5-fluorocytosine can be observed. The depressor effects in tumor with direct injection of EPC-CD/UPRT or pretreatment with cobalt chloride before application was compared, and then the tumor sizes and tumor inhibitory rate was calculated; finally, tumor Apoptosis Index was tested with TUNEL assay.
     Results:Enzymes electrophorogram shows that plasmids are extensively increased successfully with the purity of 99%; IHC results shows that after gene transformation, EPC can express the target protein CD; MTT analysis indicate that EPC-CD/UPRT can play a significant role of bystander effects which cause obvious damage to HepG2 and SMMC-7721; EPC-CD/UPRT mixed with 5-FC can effectively restrain the growth of transplanted tumor of nude mice; the pretreatment of cobalt chloride can enhance the inhibitory effects of tumor; CD/UPRT/5-FC system may play a proapoptosis role in tumors.
     Conclusions:EPC armed with CD/UPRT can effectively inhibit the growth of hepatocarcinoma transplanted tumor. The pretreatment of cobalt chloride may enhance the restraining effects by recruitment more EPC-CD/UPRTs
引文
1 Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science.1997;275:964-967.
    2 Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Nat Acad Sci USA. 2000;97:3422-27.
    3 Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial. Lancet.2002;360:427-435.
    4 Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction:final one-year results of the TOPCARE-AMI Trial. JAm Coll Cardiol.2004;44:1690-1699.
    5 Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell.2003;114:763-776.
    6 Mieno S, Clements RT, Boodhwani M, et al. Characteristics and function of cryopreserved bone marrow-derived endothelial progenitor cells. Ann Thorac Surg. 2008;85:1361-6.
    7 Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med.2003;348:593-600.
    8 Gulati R, Jevremovic D, Peterson TE, et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood, Circ Res.2003;93:1023-25.
    9 Dome B, Timar J, Ladanyi A, et al. Circulating endothelial cells, bone marrow-derived endothelial progenitor cells and proangiogenic hematopoietic cells in cancer:From biology to therapy. Crit Rev Oncol Hematol.2009;69:108-124.
    10 Gallacher L, Murdoch B, Wu DM, et al. Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers
    AC133 and CD7. Blood.2000;95:2813-20.
    11 Kuci S, Wessels JT, Buhring HJ, et al. Identification of a novel class of human adherent CD34-stem cells that give rise to SCID-repopulating cells. Blood.2003; 101:869-76.
    12 Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood.2000;95:3106-12.
    13 Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest.2000;105:71-77.
    14 Rehman J, Li J, Orschell CM, March KL. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation.2003; 107:1164-1169.
    15 Eggermann J, Kliche S, Jarmy G, et al. Endothelial progenitor cell culture and differentiation in vitro:a methodological comparison using human umbilical cord blood. Cardiovasc Res.2003;58:478-486.
    16 George J, Shmilovich H, Deutsch V, et al. Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng.2006;12:331-335.
    17 Hur J, Yang HM, Yoon CH, et al. Identification of a novel role of T cells in postnatal vasculogenesis:characterization of endothelial progenitor cell colonies. Circulation. 2007; 116:1671-82.
    18 Gordon PR, Leimig T, Mueller I, et al. Large-scale isolation of CD133+progenitor cells from G-CSF mobilized peripheral blood stem cells. Bone Marrow Transplant. 2003;31:17-22.
    19 Yoder MC, Mead LE, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood.2007; 109:1801-09.
    20 Timmermans F, Van Hauwermeiren F, De Smedt M, et al. Endothelial outgrowth cells are not derived from CD 133+cells or CD45+hematopoietic precursors. Arterioscler Thromb Vasc Biol.2007;27:1572-79.
    21 Lu X, Baudouin SV, Gillespie JI, et al. A comparison of CFU-GM, BFU-E and endothelial progenitor cells using ex vivo expansion of selected cord blood CD133(+) and CD34(+) cells. Cytotherapy.2007;9:292-300.
    22 He T, Peterson TE, Katusic ZS. Paracrine mitogenic effect of human endothelial progenitor cells:role of interleukin-8. Am J Physiol Heart Circ Physiol. 2005;289:H968-972.
    23 Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. JMol Cell Cardiol.2005;39:733-742.
    24 Nevskaya T, Ananieva L, Bykovskaia S, et al. Autologous progenitor cell implantation as a novel therapeutic intervention for ischaemic digits in systemic sclerosis. Rheumatology (Oxford).2009;48:61-64.
    25 Canizo MC, Lozano F, Gonzalez-Porras JR. et al. Peripheral endothelial progenitor cells (CD133+) for therapeutic vasculogenesis in a patient with critical limb ischemia. One year follow-up. Cytotherapy.2007;9:99-102.
    26 Bitan M, Shapira MY, Resnick IB, et al. Successful transplantation of haploidentically mismatched peripheral blood stem cells using CD133+-purified stem cells. Exp. Hematol.2005;33;7
    [1]Kupatt C, Horstkotte J, Vlastos GA, et al. Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J.2005;19:1576-78.
    [2]Kawamoto A, Asahara T. Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc Interv.2007;70:477-84.
    [3]Seeger FH, Zeither AM, Dimmeler S. Cell-enhancement strategies for thetreatment of ischemic heart disease. Nat Clin Pract Cardiovasc Med.2007;1:S110-S113.
    [4]Springer ML. A balancing act:therapeutic approaches for the modulation of angiogenesis. Curr Opin Investig Drugs.2006;7:243-250.
    [5]Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis J Thorac Cardiovasc Surg 2008;135:799-808
    [6]Bergeron M, Gidday JM, Yu AY, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000;48:285-96.
    [7]Baek JM, Jang JE, Kang CM, et al. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 2000; 19:4621-31.
    [8]Masumi N, Toshiharu Y, Hiromi H, et al. Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood. 2007;110:151-60
    [9]Yamashita K, Discher DJ, Hu J, et al. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J. Biol. Chem.2001;276:12645-53
    [10]Cai Z, Manalo DJ,Wei G, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 2003;108:79-85.
    [11]Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399:271-275,
    [12]Yuan Y, G Hilliard, T Ferguson, et al. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem.2003;278:15911-16.
    [13]Semenza GL. HIF-1:mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol.2000;88:1474-80.
    [14]Yu EZ, Li Y, Liu X, Kagan E et al. Anti-apoptotic action of hypoxia-inducible factor-la in human endothelial cells. Lab Invest.2004;84:553-561.
    [15]Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 2002;55:438-55.
    [16]Ardyanto TD, Osaki M, Tokuyasu N, et al. CoC12-induced HIF-1alpha expression correlates with proliferation and apoptosis in MKN-1 cells:a possible role for the PI3K/Akt pathway. Int J Oncol. 2006;29:549-55.
    [17]Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109:1615-22.
    [1]Hanahan, D, and Folkman, J. et al. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996,86,353-364.
    [2]Asahara, T., Murohara, T., Sullivan, A. et al. Isolation of putativeprogenitor endothelial cells for angiogenesis. Science 1997,275,964-967.
    [3]Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M.,Kearne, M., Magner, M., and Isner, J.M. Bone marrow origin ofendothelial progenitor cells responsible for postnatal vasculogenesis in phys-iological and pathological neovascularization. Circ. Res.1999,85,221-228.
    [4]Shi, Q., Rafii, S., Wu, M.H., Wijelath, E.S., Yu, C., Ishida, A., Fujita, Y., Kothari, S., Mohle, R., Sauvage, L.R., et al. Evidence for circulatingbone marrow-derived endothelial cells. Blood 1998, 92,362-367.
    [5]Peichev, M., Naiyer, A.J., Pereira, D., Zhu, Z., Lane, W.J., Williams, M., Oz, M.C., Hicklin, D.J., Witte, L., Moore, M.A., and Rafii, S. Expressionof VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies apopulation of functional endothelial precursors. Blood 2000,95,952-958.
    [6]Gehling, U.M., Ergun, S., Schumacher, U., Wagener, C., Pantel, K., Otte,M., Schuch, G, Schafhausen, P., Mende, T., Kilic, N., et al. In vitrodifferentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000,95,3106-3112.
    [7]Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn,A., Heissig, B., Marks, W., Witte, L., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med.2001,7,1194-1201.
    [8]Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P.H., and Verfaillie, C.M. Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest.2002,109,337-346.
    [9]Davidoff, AM., Ng, CY, Brown, P., Leary, MA., Spurbeck, WW., Zhou, J., Horwitz, E., Vanin, E.F., and Nienhuis, A.W. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express anangiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res. 2001,7,2870-2879.
    [10]De Palma, M., Venneri, M.A., Roca, C., and Naldini, L.et al. Targetingexogenous genes to tumor angiogenesis by transplantation of geneticallymodified hematopoietic stem cells. Nat. Med.2001,9, 789-795.
    [11]Huber, BE., Austin, EA., Richards, CA., Davis, ST., and Good, SS. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumorcells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc. Natl. Acad. Sci. USA 1994,91,8302-8306.
    [12]Gomez-Navarro, J, Contreras, JL, Arafat, W., Jiang, XL., Krisky, D, Olig-ino, T, Marconi, P, Hubbard, B, Glorioso, J.C., Curiel, D.T., and Thomas, J.M. Genetically modified CD34+cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther.2000,7, 43-52.
    [13]Ferrari, N., Glod, J., Lee, J., Kobiler, D., and Fine, H.A. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther.2003,10, 647-656.
    [14]Koyama F,Sawada H,Fuji H,et al.Adenoviral-mediated transfer of Escherichia coli uracil phosphoribosyl transferase (UPRT) gene to modulate the sensitivity of the human colon cancer cells to 5-fluorouracil. Eur J Cancer.2000,36(18):2403-2410.
    [15]F Graepler, ML Lemken, WA Wybranietz, et al. Bifunctional chimeric Super CD suicide gene-YCD:YUPRT fusion is highly effective in a rat hepatoma model. World J Gastroenterol 2005, 11:6910-19.
    [16]Huber BE, Richards CA, Austin EA. Virus-directed enzyme/prodrug therapy (VDEPT). Selectively engineering drug sensitivity intotumors. Ann NY Acad Sci.1994,716:140-143.
    [17]Culver KW, Ran Z, Walluvidfe S, et al. In vivo gene transfer with retroviral vector, producer cells for treatment of experimental brail rumors. Science 1992,256(2):1550-1552.
    [18]Nicholas TW, Read SB, Burrows FJ, et al. Suicide gene therapy with Herpes simplex virus thymidine kinase and ganciclovir is enhanced with connexins to improve gap junctions and bystander effects. Histol Histopathol.2003,18(2):495-507.
    [19]Asklund T, Appelskog IB, Ammerpotd O, et a 1.Gap junction-mediated bystander effect in primary cultures of human malignant gliomas with recombinant expression of the HSV-TK gene. Exp Cell Res 2003,284(2):185-195.
    [20]Hyer ML,Sudarshan S, Schwartz DA, et al. Quantification and characterization of the bystander effect in prostate cancer cells following adenovirus-mediated FasL expression [J]. Cancer Gene Ther.2003,10(4):330-339.
    [21]Freeman SM, Abboud CN, Whartenby KA, et al.The"bystander effect":tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res,1993 53(21):5274-83.
    [22]Nishi Y. Enzyme/abzyme prodrug activation systems:potential use in clinical ontology [J]. Curr Pharm Des.2003,9(26):2113-2130.
    [23]McLellan AD, Sorg RV, Williams LA, et al. Human dendritic cells activate Tlymphocytes via a CD40:CD40 ligand dependent pathway. Eur J Irnmunol 1996,26(12):1204-1210
    [24]Garcia Barros M, Paris F, Cordon Cardo C, et al:Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003,300:1155-1159.
    [25]Crosby JR, Kaminski WE, Schatteman G, et al:Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 2000; 87:728-730.
    [26]Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. Thorac Cardiovasc Surg 2008,135:799-808
    [27]Bergeron M, Gidday JM, Yu AY, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000,48:285-96.
    [28]Masood, R., Cai, J., Zheng, T., Smith, D.L., Hinton, D.R., and Gill, P.S. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 2001,98,1904-1913.
    [29]Bachelder, R.E., Crago, A., Chung, J., Wendt, M.A., Shaw, L.M., Robinson, G., and Mercurio, A.M. Vascular endothelial growth factor is anautocrine survival factor for neuropilin-expressing breast carcinoma cells.Cancer Res.2001,61,5736-5740.
    [30]Luc Negroni, Michel Samson, Jean Marie Guigonis, et al. Treatment of colonancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90p phosphorylation. Cancer Ther,2007,6(10):2747-56.
    [1]Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971;285:1182-6.
    [2]Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 2004;287:C572-9.
    [3]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964-7.
    [4]Dome B, Hendrix MJ, Paku S, Tovari J, Timar J. Alternative vascularization mechanisms in cancer. Pathology and therapeutic implications. Am J Pathol 2007; 170:1-15.
    [5]Brigati C,NoonanD M,Albini A.BenelliR. Tumors and inflammatory infiltrates:friends or foes? Clin Exp Metastasis 2002; 19:247-58.
    [6]Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353-64.
    [7]De Palma M, Naldini L. Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochim Biophys Acta 2006; 1766:159-66.
    [8]SchmidMC, Varner JA.Myeloid cell trafficking and tumor angiogenesis. Cancer Lett 2007;250:1-8.
    [9]BlannAD, WoywodtA, Bertolini F, et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 2005;93:228-35.
    [10]Hladovec J. Circulating endothelial cells as a sign of vessel wall lesions. Physiol Bohemoslov 1978;27:140-4.
    [11]Wright HP, Glacometti NJ. Circulating endothelial cells and arterial endothelial mitosis in anaphylactic shock. Br J Exp Pathol1972;53:1-4.
    [12]Sbarbati R, deBoer M, MarzilliM, Scarlattini M, RossiG, vanMourik JA. Immunologic detection of endothelial cells in humanwhole blood. Blood 1991;77:764-9.
    [13]George F, Brisson C, Poncelet P, et al. Rapid isolation ofhuman endothelial cells from whole blood using S-Endolmonoclonal antibody coupled to immunomagnetic beads:demonstration of endothelial injury after angioplasty. Thromb Haemost1992;67:147-53.
    [14]Bardin N, George F, Mutin M, et al. S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen. Tissue Antigens 1996;48:531-9.
    [15]George F, Brouqui P, Boffa MC, et al. Demonstration of Rickettsiaconorii-induced endothelial injury in vivo by measuring circulating endothelial cells, thrombomodulin, and von Willebrand factor inpatients with Mediterranean spotted fever. Blood 1993;82:2109-16.
    [16]Khan SS, Solomon MA, McCoy Jr JP. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom 2005;64:1-8.
    [17]Goon PK, Boos CJ, Stonelake PS, Lip GY. Circulating endothelial cells in malignant disease. Future Oncol 2005;1:813-20.
    [18]Woywodt A, Goldberg C, Scheer J, Regelsberger H, Haller H, Haubitz M. An improved assay for enumeration of circulating endothelial cells. Ann Hematol 2004;83:491-4.
    [19]Duda DG, Cohen KS, Scadden DT, Jain RK. A protocol for phenotypic detection and enumeration of circulating endothelial cell sand circulating progenitor cells in human blood. Nat Protoc 2007;2:805-10.
    [20]Strijbos MH, Kraan J, den Bakker MA, Lambrecht BN, Slei-jfer S, Gratama JW. Cells meeting our immunophenotypic criteriaof endothelial cells are large platelets. Cytometry B Clin Cytom2007;72:86-93.
    [21]Mancuso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, Bertolini F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001;97:3658-61.
    [22]Beerepoot LV, Mehra N, Vermaat JS, Zonnenberg BA, Gebbink MF, Voest EE. Increased levels of viable circulating endothelial cells arean indicator of progressive disease in cancer patients. Ann Oncol 2004;15:139-45.
    [23]Zhang H,Vakil V, BraunsteinM, et al.Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 2005;105:3286-94.
    [24]Wierzbowska A, Robak T, Krawczynska A, et al. Circulating endothelial cells in patients with acute myeloid leukemia. Eur J Haematol2005;75:492-7.
    [25]Furstenberger G, von Moos R, Lucas R, et al. Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer 2006;94:524-31.
    [26]Rowand JL, Martin G, Doyle GV, et al. Endothelial cells in peripheral blood of healthy subjects and patients with metastatic carcinomas. Cytometry A 2007;71:105-13.
    [27]Norden-Zfoni A, Desai J,Manola J, et al. Blood-based biomarkers ofSU11248 activity and clinical outcome in patients with metastaticimatinib-resistant gastrointestinal stromal tumor. Clin Cancer Res2007; 13:2643-50.
    [28]Della Porta MG, Malcovati L, Rigolin GM, et al. Immunophenotypic, cytogenetic and functional characterization of circulating endothelial cells in myelodysplastic syndromes. Leukemia 2007;(December)[Epub ahead of print].
    [29]Go RS, Jobe DA, Asp KE, et al. Circulating endothelial cells inpatients with chronic lymphocytic leukemia. Ann Hematol 2008;(January) [Epub ahead of print].
    [30]Burger PE, Coetzee S, McKeehan WL, et al. Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood.2002; 100:3527-35.
    [31]MassaM, Rosti V, FerrarioM, et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acutemyocardial infarction. Blood 2005; 105:199-206.
    [32]Heissig B,Werb Z, Rafii S, Hattori K. Role of c-kit/Kit ligand signaling in regulating vasculogenesis. Thromb Haemost 2003;90:570-6.
    [33]Hristov M, Erl W, Weber PC. Endothelial progenitor cells:isolation and characterization. Trends Cardiovasc Med.2003; 13:201-6.
    [34]Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells:novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2002;2:826-35.
    [35]Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res 2003;34:461-75.
    [36]Salven P, Mustjoki S, Alitalo R, et al. VEGFR-3 and CD 133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood.2003; 101:168-72.
    [37]Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation.2002; 105:732-8.
    [38]Timmermans F, Plum J, Yoder MC,et al. Endothelial progenitor cells:identity defined? J Cell Mol Med.2009; 13:87-102.
    [39]Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med.2005;353:999-1007.
    [40]Tang DG, Conti CJ. Endothelial cell development, vasculogenesis, angiogenesis, and tumor neovascularization:an update. Semin Thromb Hemost.2004;30:109-117.
    [41]Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc Radiat Med.2002;3:221-5.
    [42]Yu JX, Huang XF, Lv WM,et al. Combination of stromal-derived factor-1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg.2009:608-16
    [43]Khakoo AY, Finkel T. Endothelial progenitor cells. Annu Rev Med2005;56:79-101.
    [44]Rabbany SY, Heissig B, Hattori K, et al. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med.2003;9:109-17.
    [45]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18:3964-72.
    [46]Gadelhak NA, Gadelhak SA, El-Morsi DA, et al. Prognostic significance of three hepatitis markers (p53 antibodies, vascular endothelial growth factors and alpha fetoprotein) in patients with hepatoceliular carcinoma. Hepatogastroenterology.2009;56:1417-24.
    [47]Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med.2001;11:303-7.
    [48]Natori T, Sata M, Washida M,et al. Nicotine enhances neovascularization and promotes tumor growth. Mol Cells.2003;16:143-6.
    [49]Okazaki T, Ebihara S, Asada M, et al. Erythropoietin promotes the growth of tumors lacking its receptor and decreases survival of tumor-bearing mice by enhancing angiogenesis. Neoplasia. 2008;10:932-9.
    [50]Westenbrink BD, Lipsic E, van der Meer P,et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J.2007;28:2018-27.
    [51]Aicher A, ZeiherAM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension 2005;45:321-5.
    [52]Sinclair AM, Todd MD, Forsythe K, Knox SJ, Elliott S, Begley CG Expression and function of erythropoietin receptors in tumors:implications for the use of erythropoiesis-stimulating agents in cancerpatients. Cancer 2007;110:477-88.
    [53]Lovey J, Bereczky B, Gilly R, et al. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells andmicrovessels. Strahlenther Onkol2008; 184:1-7.
    [54]Tovari J, Gilly R, Raso E, et al. Recombinant human erythropoietinalpha targets intratumoral blood vessels, improving chemotherapy inhuman xenograft models. Cancer Res 2005;65:7186-93.
    [55]Li B, Sharpe EE, Maupin AB, et al. VEGF and P1GF promote adult vasculogenesis by enhancing EPC recruitment and vessel formationat the site of tumor neovascularization. FASEB J 2006;20:1495-7.
    [56]Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193:1005-14.
    [57]Li X, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. JClin Invest 2005;115:118-27.
    [58]Moore MA, Hattori K, Heissig B, et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci.2001;938:36-45.
    [59]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway:next-generation chemokine therapy for therapeutic neovascularization. Circulation.2004; 109:2454-61.
    [60]Dimmeler S, Aicher A, Vasa M,et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest.2001;108:391-7.
    [61]Iwakura A, Luedemann C, Shastry S, et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation.2003;108:3115-21.
    [62]Gertz K, Priller J, Kronenberg G, et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Oirc Res.2006;99:1132-40.
    [63]Kuki S, Imanishi T, Kobayashi K, et al. Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ J.2006;70:1076-81.
    [64]Suh W, Kim KL, Choi JH, et al. C-reactive protein impairs angiogenic functions and decreases the secretion of arteriogenic chemo-cytokines in human endothelial progenitor cells. Biochem Biophys Res Commun.2004;321:65-71.
    [65]Li H, Gerald WL, Benezra R. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. ncer Res.2004;64:6137-43.
    [66]Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science2003;300:1155-9.
    [67]Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 2006;8:79-88.
    [68]De Palma M, Venneri MA, Naldini L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther.2003; 14:1193-206.
    [69]Purhonen S, Palm J, Rossi D, et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci U S A. 2008; 105:6620-5.
    [70]Hammerling GJ, Ganss R. Vascular integration of endothelial progenitors during multistep tumor progression. Cell Cycle.2006;5:509-11.
    [71]Lyden D, Hattori K, Dias S, Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med.2001;7:1194-201.
    [72]Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000;60:1878-86.
    [73]Bertolini F, Paul S, Mancuso P, et al. Maximum tolerable dose andlow-dose metronomic chemotherapy have opposite effects on themobilization and viability of circulating endothelial progenitor cells.Cancer Res 2003;63:4342-6.
    [74]Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 2005;39:733-42.
    [75]Watson AR, Pitchford SC, Reynolds LE, et al. Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization. J Pathol.2010;220:435-45.
    [76]Ahn GO, Brown JM. Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis.2009; 12:159-64.
    [77]Ribatti D. The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med. 2004;8:294-300.
    [78]Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive endothelial progenitor cells contribute to the tumor vasculature in non-small cell lung cancer. J Clin Pathol 2004;57:965-9.
    [79]Yu D, Sun X, Qiu Y, et al. Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma.Clin Cancer Res 2007;13:3814-24.
    [80]Dome B, Timar J, Dobos J, et al. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 2006;66:7341-7.
    [81]Mehra N, Penning M, Maas J, et al. Progenitor marker CD 133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin Cancer Res 2006; 12:4859-66.
    [82]Lin EH, Hassan M, Li Y, et al. Elevated circulating endothelial progenitor marker CD 133 messenger RNA levels predict colon cancer recurrence. Cancer 2007; 110:534-42.
    [83]Pircher A, Kahler CM, Skvortsov S, et al. Increased numbers of endothelial progenitor cells in peripheral blood and tumor specimens in non-small cell lung cancer:a methodological challenge and an ongoing debate on the clinical relevance. Oncol Rep 2008;19:345-52.
    [84]Richter-Ehrenstein C, Rentzsch J, Runkel S, Schneider A, Schonfelder G. Endothelial progenitor cells in breast cancer patients. Breast Cancer Res Treat 2007; 106:343-9.
    [85]Naik RP, Jin D, Chuang E, et al. Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res Treat 2008; 107:133-8.
    [86]Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF specific antibody bevacizumab has antivascular effects inhuman rectal cancer. Nat Med 2004; 10:145-7.
    [87]Willett CG, Boucher Y, Duda DG, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab withradiation and chemotherapy:continued experience of a phase I trialin rectal cancer patients. J Clin Oncol 2005;23:8136-9.
    [88]Massa M, Rosti V, Ramajoli I, et al. Circulating CD34+, CD133+,and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J ClinOncol 2005;23:5688-95.
    [89]Zheng PP, Hop WC,Luider TM, Sillevis Smitt PA, Kros JM. Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas.Ann Neurol2007;62:40-8.
    [90]Takakura N. Role of hematopoietic lineage cells as accessory components in blood vessel formation. Cancer Sci 2006;97:568-74.
    [91]Moore MA, Metcalf D. Ontogeny of the haemopoietic system:yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 1970; 18:279-96.
    [92]Dieterlen-Lievre F, Martin C. Diffuse intraembryonic hemopoiesisin normal and chimeric avian development. Dev Biol 1981;88:180-91.
    [93]Lu LS,Wang SJ, Auerbach R. In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded> 100-fold by coculture with a clonal yolk sac endothelial cell line. Proc Natl Acad Sci USA 1996;93:14782-7.
    [94]Prindull G. Hemangioblasts representing a functional endothelio hematopoietic entity in ontogeny, postnatal life, and CML neovasculogenesis. Stem Cell Rev 2005; 1:277-84.
    [95]ForraiA, Robb L. The hemangioblast-between blood and vessels. Cell Cycle 2003;2:86-90.
    [96]Nienartowicz A, Sobaniec-Lotowska ME, Jarocka-Cyrta E,Lemancewicz D. Mast cells in neoangiogenesis. Med Sci Monit2006;12:RA53-6.
    [97]Zhang W, Stoica G, Tasca SI, KellyKA,Meininger CJ. Modulation of tumor angiogenesis by stem cell factor. CancerRes 2000;60:6757-62.
    [98]Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999; 13:1382-97.
    [99]Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression:potential targets of anti-cancer therapy. Eur JCancer 2006;42:717-27.
    [100]Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117:1155-66.
    [101]Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996;56:4625-9.
    [102]Takanami I, Takeuchi K, Kodaira S. Tumor-associated macrophage infiltration in pulmonary adenocarcinoma:association with angiogenesis and poor prognosis. Oncology 1999; 57:138-42.
    [103]Di(?)kx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW. Monocyte/macrophage infiltration in tumors:modulators of angiogenesis. J Leukoc Biol 2006;80:1183-96.
    [104]ZouW. Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-74.
    [105]Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer:recruitment, phenotype,
    properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16:53-65.
    [106]Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immunesuppressorGr+CD11b+cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004;6:409-21.
    [107]Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer:presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1995;1:95-103.
    [108]Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients:a mechanism of immuno-suppression in cancer. J Immunol 2001; 166:678-89.
    [109]Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007;13:721s-6s.
    [110]De PalmaM, VenneriMA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8:211-26.
    [111]Venneri MA, De Palma M, Ponzoni M, et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 2007;109:5276-85.
    [112]Inoshima N, Nakanishi Y, Minami T, et al. The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clin Cancer Res2002;8:3480-6.
    [113]Ishigami S, Natsugoe S, Matsumoto M, et al. Clinical implications of intratumoral dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep 2003; 10:1237-40.
    [114]Ladanyi A, Kiss J, Somlai B, et al. Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognosticfactor. Cancer Immunol Immunother 2007;56:1459-69.
    [115]Lutz MB, Schuler G Immature, semi-mature and fully mature dendritic cells:which signals induce tolerance or immunity? Trends Immunol 2002;23:445-9.
    [116]Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2:1096-103.
    [117]Davidoff AM, Leary MA, Ng CY, et al. Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg. 2001;36:30-6.
    [118]Ojeifo JO, Lee HR, Rezza P, Su N, Zwiebel JA. Endothelial cell-based systemic gene therapy of metastatic melanoma. Cancer Gene Ther 2001;8:636-48.
    [119]Rancourt C, Robertson MW.Wang M, et al. Endothelial cell vehicles for delivery of cytotoxic genes as a gene therapy approach for carcinoma of the ovary. Clin Cancer Res 1998;4:265-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700