原发系统型ALCL中ALK对预后影响机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     1985年Stein等首次描述间变性大细胞淋巴瘤(anaplastic large cell lymphoma,ALCL),并确认为一种新的淋巴瘤类型。ALCL是一种T细胞淋巴瘤,以CD30(肿瘤坏死因子受体超家族成员8,TNFRSF8)表达为特征,在成人非霍奇金淋巴瘤中比例小于5%,但在儿童中发病率较高,占儿童非霍奇金淋巴瘤的40%。原发系统型ALCL病理特征主要由淋巴样细胞组成,细胞较大,胞质丰富,胞核经常成马蹄样或胚胎样。原发系统型ALCL包括两个亚型:ALK(+)型和ALK(-)型。
     ALK(间变性淋巴瘤激酶,anaplastic lymphoma kinase)完整蛋白质分子是一个200kDa的受体酪氨酸激酶(receptor tyrosine kinase,RTK),由2p23染色体区段编码,拥有胞外区,穿膜区和胞内区。全长ALK与白细胞酪氨酸激酶高度同源,都属于胰岛素受体超家族。虽然ALK首先在造血系统肿瘤中被发现,但是ALK基因从未检测到在正常造血组织有表达。ALK在正常组织的功能迄今为止仍不清楚。在ALCL中出现的是由染色体易位t(2;5)(p23;q35)编码的NPM-ALK融合蛋白,2p23上的ALK基因易位至5q35的NPM(核磷酸蛋白)基因旁并被后者激活而高表达,ALK激酶呈激活状态可能是ALCL成瘤的关键机制,也是部分ALCL特征性的遗传学指标。融合蛋白长度80kDa,相应位置为全长ALK的胞内区部分,其N末端与NPM(phosphoprotein nucleophosmin)结合,NPM执行二聚体功能,结构性激活ALK的激酶活性和其致瘤性。NPM-ALK是一个“停靠蛋白质”,可以依次偶联有丝分裂、抗凋亡、粘附及DNA修复能力等多条信号传导途径。PL-C,P13K,STATs,和Src是NPM-ALK的重要下游靶标,对细胞有着促有丝分裂和抗凋亡的作用,是一个受到广泛认可的致瘤性酪氨酸激酶。
     ALK与ph染色体形成的致瘤性BCR/ABL酪氨酸激酶同源,现在针对ABL酪氨酸激酶的研究进展较快,其特异性抑制剂STI571已经在临床上成功治疗了BCR/ABL(+)的白血病患者。因此ALCL倍受关注,研究的焦点一部分集中于探讨该类染色体易位产生的酪氨酸激酶在肿瘤的发生发展中所起作用,但是ALK在原发系统型ALCL中,除了作为致瘤性酪氨酸激酶对ALCL的发生有重要的作用外,还在预后预测中有着比较特殊的地位,大部分的报道认为,ALK(+)是ALCL中最重要的预后指标,在美国、欧洲、日本的一系列研究中,ALK(+)与预后良好有关;因为ALK(+)ALCL对治疗的反应良好,接受经典CHOP化疗方案后完全缓解率高,少数的复发病人仍保持着对化疗敏感。
     尽管大多数研究者在临床研究中得到了ALK与ALCL良好预后具有正相关关系的结果,但ALCL中ALK对预后影响的机制目前并未得到良好诠释。因此本研究从ALCL病人临床病情、诊治过程、生存随访入手,首先验证ALK(+)ALCL和ALK(-)ALCL对治疗的不同反应性及ALK对预后产生的影响,然后从可能与ALK有关的机体免疫、肿瘤转移、侵袭、粘附、凋亡因子中寻找ALK对ALCL预后良好影响的可能机制与信号传导途径,并在细胞株中用不同方法抑制ALK的酪氨酸激酶活性表达后,实验验证这条信号传导途径对预后相关因子的影响,为ALCL预后判断及靶向治疗提供理论与实验依据。
     方法
     1 ALCL病人的病情与生存时间随访及ALK与预后的关系
     本部分对34例ALCL进行了病情和生存状况随访,其中4例病人失访。随访资料主要包含以下字段:一般信息(病案号、病理号、姓名、年龄、性别)和临床病情与生存状况信息(发病部位、是否有骨髓侵犯、起病时是否有B症状、治疗方案、治疗结果、肿瘤临床分期、IPI评分、生存时间、生存状态)。
     采用免疫组织化学染色和荧光原位杂交技术分别在蛋白水平和基因水平检测ALCL组织中的ALK蛋白和染色体2p23区段断裂。
     应用SPSS11.5统计分析软件进行统计分析,生存率采用寿命表法,单因素生存分析采用Kaplan-Meier法分析,Log-rank检验。各因子间相关分析采用卡方检验。
     2 ALCL临床病理组织内相关预后因子的筛选及与ALK相关预后信号传导途径推测
     采用免疫组织化学方法检测并筛选ALK在ALCL组织内影响的侵袭,粘附,凋亡相关因子,运用免疫荧光检测共定位的细胞内蛋白,应用PCR-SSCP分析P53的第5、6、7、8外显子突变情况,运用SPSS11.5统计分析软件进行统计分析,单因素生存分析采用Kaplan-Meier法分析,Log-rank检验,各因子间相关分析采用卡方检验,从中筛选与ALK和预后有关的因子,以期发现在ALCL组织内ALK对预后产生影响的信号传导途径。
     3 ALCL细胞株内抑制ALK酪氨酸激酶活性的研究及ALK相关预后信号传导途径验证
     在利用酪氨酸蛋白酶抑制剂除莠霉素A作用于ALCL细胞株karpas299以减弱ALK的酪氨酸激酶作用以及因AS干扰引起ALK表达降低这两种造成ALK表达减弱的情况下,检测组织中筛选出的信号传导途径分子。以台盼蓝拒染法和流式细胞检测仪检测药物作用前后ALK的酪氨酸激酶活性变化以及细胞凋亡和细胞周期阻滞情况;对作用前后相应信号传导途径蛋白进行免疫细胞化学染色分析(对半衰期较短的P53蛋白采取蛋白酶抑制剂处理延缓降解,并用PCR-SSCP分析从基因水平分析有无突变);对研究中关键性的ALK和cleaved caspase3蛋白进行Western Blotting半定量分析。
     结果
     1 ALCL病人ALK表达与临床病情、生存时间随访的关系
     ALK(+)ALCL病人预后较ALK(-)ALCL预后好。临床病情与生存分析发现与预后与ALK均相关临床因子有:年龄、化疗后完全缓解情况、临床肿瘤分期和IPI。
     2 ALK与侵袭粘附及凋亡通路因子关系及其可能影响预后的信号传导途径
     根据临床分析结果,选择有关因子在组织中进行了研究:CD44及其突变体、MMP2、TIMP1、nm23、CD56、survivin、Bax、bcl-2、P53、MDM2、HSP90α、细胞色素C和Cleaved Caspase3。
     经过对上述因子的初筛,与ALK有关的因子有:HSP90α与ALK在细胞内共表达,MDM2过表达、bax表达、细胞色素C表达、cleaved caspase3的表达与ALK表达成正相关,P53在ALK阳性的ALCL组织内未见突变,bcl-2与ALK表达负相关,且上述因子均与预后有关,根据这些因子中存在的上下游调节关系或相互影响的关系,可能组成一条ALK影响ALCL预后的信号传导途径。
     3 ALCL细胞株karpas299除莠霉素A抑制ALK酪氨酸激酶活性与预后相关因子变化
     除莠霉素A作用karpas299细胞后,karpas299细胞酪氨酸激酶活性下降,细胞凋亡率上升,细胞周期在G1期阻滞,并随药物浓度梯度和时间作用梯度的加大而升高;Hsp90α、MDM2表达减弱,野生型P53、bax、细胞色素C与cleaved caspase3表达增强。表达变化与对照组相比差别明显。
     4 karpas299细胞中ALK表达因AS干扰受抑制后对除莠霉素A的反应与预后相关因子变化
     对因AS干扰引起ALK表达降低的karpas299细胞研究发现,ALK受其他因素影响而表达降低后,对除莠霉素A的反应降低,除莠霉素A引起的凋亡较karpas299细胞明显减弱。同样的,MDM2,P53,bax,细胞色素C,cleaved caspase3等相关因子在药物作用后的表达变化较未做干扰的karpas299细胞程度减轻。表达变化与对照组相比差别明显。
     结论
     1 ALK(+)ALCL病人预后优于ALK(-)ALCL预后;
     2 ALCL临床预后相关因子主要有:发病年龄、完全缓解率、临床肿瘤分期和IPI评分。ALK(+)ALCL病人发病年龄轻,临床肿瘤分期较早和IPI评分较低,完全缓解率较高。
     3 ALCL临床预后相关因子对应组织因子表达为:
     ALK(+)ALCL:ALK、Hsp90α、MDM2过表达;Bax、细胞色素c、cleavedcaspase3有表达或强表达;bcl-2弱表达或无表达;无P53突变型蛋白表达。ALK(-)ALCL表达情况则与ALK(+)ALCL相反。
     4抑制ALK酪氨酸激酶活性后,ALK(+)ALCL细胞株中组织因子表达变化:
     ALK、Hsp90α、MDM2表达减弱;P53野生型蛋白出现表达;Bax、细胞色素c、cleaved caspase3表达增强。表达变化与对照组相比差别明显。
     根据临床病理与生存分析,组织学研究和细胞学研究综合分析表明,在ALK(+)ALCL中ALK通过这样一条可能信号传导途径促进肿瘤发生:染色体易位造成ALK的过度表达,依附Hsp90保证其蛋白活性,发挥其酪氨酸激酶活性激活ras途径,造成MDM2过表达,进而抑制了ALCL内野生型p53的表达,但是由于野生型p53的微量活性存在,其调节的下游分子仍然部分的发挥作用。因此通过抑制ALK进而抑制MDM2表达,可使野生型P53表达增强,其下游促凋亡分子Bax高表达,而抑制凋亡分子bcl-2表达减弱。Bax促进了细胞色素c从线粒体的释放,最终引起凋亡执行分子caspase3的激活,细胞趋向于发生凋亡。在这条途径中P53仅为MDM2抑制,未突变或仅为一条等位基因突变,野生型P53蛋白在被增强表达后起到促进细胞凋亡的作用,因此使ALK(+)ALCL对化疗有着良好的反应性,本研究认为这可能是其良好预后的一种机制。
     本研究创新之处
     将ALCL临床病情发展变化、生存分析、肿瘤组织学与细胞学结合探讨,对ALCL中ALK影响预后的可能机制进行了研究,为将来ALCL及其他涉及染色体易位产生致瘤性酪氨酸激酶的肿瘤更好的治疗提供理论依据。
BACKGROUND & OBJECTIVE
     Anaplastic large cell lymphoma(ALCL) is a subtype of T-cell non-Hodgkin's lymphoma characterized by the expression of CD30 antigen(also known as tumor necrosis factor).Primary systemic ALCL has a peak incidence in childhood, accounting for approximately 40%of NHL cases diagnosed in pediatric patients, whereas it accounts for<5%of NHL in adults.The common type is composed of large,pleomorphic,atypical tumor cells with an abundant grey-blue cytoplasm.Their nuclei are large,horseshoe- or kidney-shaped,and sometimes have pseudonuclear inclusions(so-called doughnut cells).About half of these lymphomas have the t(2;5)(p23;q35) translocation and express a hybrid protein comprised of the anaplastic lymphoma kinase(ALK) and the nucleolar phosphoprotein nucleophosminutes (NPM).Additional translocations are rare in which ALK is fused to other partners. Half of ALCL do not express ALK or other recurrent translocations.
     Full-length ALK have been shown as novel,putative receptor tyrosine kinase (RTK) of the insulin receptor family,encoded by chromosome 2p23,and comprised of extracellular,transmembrane,and cytoplasmic domain.The most closely related kinase to ALK is leukocyte tyrosine kinase(LTK),which lacks a sequence corresponding to the amino terminal half of the ALK extracellular domain.The extracellular domain and protein kinase domain of LTK possess 50%and 78%amino acid identity,respectively,to the corresponding regions of ALK.These two kinases comprise a new subfamily of the insulin receptor family.Although ALK was originally identified in hematopoietic neoplasm anaplastic large cell lymphomas (ALCL),ALK expression was never detected in normal hematopoietic tissue. However ALK is expressed preferentially in neurons of the central and peripheral nervous systems at late embryonic stages.ALK function in normal tissue is still an enigma.In ALCL the cytoplasmic domain of ALK is fused to the amino terminal half of nucleophosmin(NPM) to generate a fusion gene product,p80NPM-ALK(Morris et al.,1994).NPM is a multifunctional protein that plays a role in protein shuttling between the cytoplasm and nucleus(Borer,at al.,1989) and in cell cycle-dependent entrosome duplication(Okuda et al.,2000).Previous studies have shown that the NPM portion of p80NPM-ALK mediates oligomerization.The t(2;5)(p23;q35) translocation creates the fusion gene NPM-ALK(p80) that encodes a product with tyrosine kinase activity believed to play an important role in development of anaplastic large cell lymphoma(ALCL).NPM-ALK acts as a docking protein for a signalosome which in turn couples the fusion protein to signalling pathways with mitogenic,antiapoptotic and possibly DNA repair capabilities.NPM-ALK induces oncogenic signals by autophosphorylation at multiple Tyr residues,followed by recruitment of a signalosome:an ensemble of proteins containing docking SH2 or PTB domains that couples the fusion protein to downstream signalling pathways. Investigations based largely on cell line data suggest that the NPM-ALK signalosome stimulates pathways regulating mitogenesis and survival,involving the phosphoinositide 3-kinase(PI 3-kinase) and Ras/MAP kinase pathways,and the STAT family of transcription factors.
     ALK can function as an oncogene via dysregulation of its tyrosine kinase regions in NPM-ALK(p80) much as bcr-abl tyrosine kinase.Tyrosine kinase inhibitors have been considered as antineoplastic agents.The recent studies demonstrated utilization of signal transduction inhibition as shown by STI-571,which selectively inhibits the activation of the bcr-abl tyrosine kinase for successful treatment of chronic myelogenous leukemia(CML).Therefore much attention was paid to ALK in ALCL although it is rare in human carcinoma.ALK in ALCL is known as an oncogenic protein.However,ALK protein expression is an independent predictor of survival and serves as a useful biologic marker of a specific disease entity within the spectrum of ALCL.Patients with ALK(+)ALCL are reported to have a better prognosis than patients with ALK(-)ALCL.
     Because the mechanisms for this survival difference are unknown and the prognostic factors that are useful for predicting survival remain unclear,we investigated the hypothesis that pathways of expansion,invasion,adhesion or apoptosis may be involved.We therefore collected the clinical features and survival time and attempted to identify the clinical and pathological factors of prognostic importance and then we assessed expression levels of the expansion,invasion, adhesion and anti-apoptotic proteins in ALCL tissue and identify them in Karpas 299 cell line using tyrosine kinase inhibitors to find a possible mechanism pathway of ALK effects to the prognosis in Anaplastic Large cell lymphoma.
     METHODS
     1 the clinical features and survival time follow-up in ALCL and the relationship between ALK and the prognosis
     The study group included 34 ALCLs accessioned at Southern Medical University affiliated Nanfang Hospital,Fouzhou General Hospital and Shenzhen Nanshan Hospital between 1999 and 2006..The diagnosis of ALCL was based on criteria specified by the WHO classification.Cases of primary cutaneous ALCL were excluded.4 patients were totally lost contact information and lost to follow-up.
     FISH and immunocytochemistry was used to evaluate NPM-ALK in ALCL tissues on genome and protein levels,respectively.
     Survival analysis was based on life tables and Kaplan-Meier.Statistical comparison of ALK and other clinical parameters was based on the crosstabs analysis (Microsoft SPSS 11.5).
     2 screening possible pathway through which ALK may effect on prognosis in ALCL
     Immunocytochemistry was used to screening possible pathway through which ALK may effect on prognosis in ALCL.Immunofluorescence was used to analyze co-localization of ALK and Hsp90αproteins.PCR-SSCP analysis was used to detect P53 mutation of 5,6,7,8 exons.Survival analysis was based on life tables and Kaplan-Meier.Statistical comparison of ALK and other intracellular pathway parameters was based on the crosstabs analysis(Microsoft SPSS 11.5).
     3 identify the pathway found in the 2 chapter in Karpas 299 cell line
     Tyrosine kinase inhibitor Herbimycin A was used to inhibit the ALK tyrosine kinase activity in Karpas 299.Immunocytochemistry,trypan blue and Flow cytometry was used to detect the tyrosine kinase activity,apoptosis,and apoptosis-related factors.P53 protein was protected by protease inhibitor PMSF. PCR-SSCP analysis was used to detect P53 mutation of 5,6,7,8 exons in cells. Western Blotting electrophoresis was used to semi-quantitative analysis.
     RESULTS
     1 Relationship between ALK and clinical condition and survival time:
     Patients with ALK(+)ALCL had a better prognosis than patients with ALK(-)ALCL.
     Clinical parameters related both ALK and prognosis are:age;CR;clinical tumor stage;IPI.ALK(+)ALCL patients were younger than ALK(-)ALCL patients that means better basic condition presented in ALK(+)ALCL patients.ALK(+)ALCL patients had earlier clinical tumor stage and lower IPI than ALK(-)ALCL patients that means inferior invasion power presented in ALK(+)ALCL patients.ALK(+)ALCL patients had higher CR rate than ALK(-)ALCL patients that means better reactiveness to chemical therapy presented in ALK(+)ALCL patients.
     2 Pathway screening related to ALK and prognosis:
     After the screening of the possible pathway ALK effects on prognosis in ALCL tissue,CD4,CD5,CD44、MMP2、TIMP1、nm23、CD56、survivin、Bax、bcl-2、P53、MDM2、Hsp90α、cytochrome C and Cleaved Caspase3 were selected in our research.Hsp90αwas co-localized with ALK in ALK(+) ALCL tissue.MDM2 over expression and ALK expression did not have significant difference.P53 did not mutate in all ALK(+) ALCL tissues and mutated in 2 ALK(-) cases of ALCL.Bax expression and ALK expression did not have significant difference.Bcl-2 negative expression and ALK expression did not have significant difference.Cytochrome C and cleaved caspase3 expression and ALK expression did not have significant difference.
     3 Pathway reaction to Herbimycin A in Karpas 299
     Cell tyrosine kinase activity of ALK decreased and apoptosis increased after Herbimycin A action in Karpas 299 cells.Cell cycle was arrested in G1/S.ALK, Hsp90αand MDM2 expression decreased after Herbimycin A action.Wild type P53 protein,Bax,Cytochrome C and cleaved caspase3 expression all increased after Herbimycin A action.
     4 Pathway reaction to Herbimycin A in Karpas 299 with ALK downregulation by AS RNA interference
     Pathway reaction to Herbimycin A in Karpas 299 with ALK downregulation by AS RNA interference was weaker than that in Karpas 299.Cell tyrosine kinase activity of ALK decreased and apoptosis increased after Herbimycin A action but were in lower degree than that in Karpas 299.
     CONCLUSION
     ALK(+) ALCL has a better prognosis than ALK(-) ALCL.The clinical prognosis factors were age,;CR;clinical tumor stage;IPI.There may be such a pathway which induces the tumorigenesis of ALCL but probably be reason of the well prognosis of ALK(+) ALCL:
     Chromosome translocation t(2;5) lets hybrid protein NPM-ALK over expression.
     Hsp90 protects ALK and ALK can execute its receptor tyrosine kinase activity and stimulates Ras pathway.
     Ras pathway can enhances MDM2 expression and MDM2 can inhibit wild type P53 protein.
     P53 protein is inhibited by overexpression MDM2 but still has tiny effect on its downstream factors.
     When ALK tyrosine kinase activity was inhibited by Herbimycin A,Hsp90 loses its client and expresses weaker.
     ALK's effect on ras pathway weakened and MDM2 expression is downregulated.
     Wild type P53 protein expresses after MDM2 expression is downregulated and effect of P53 on its downstream factors began manifest.
     Bax protein is upregulated by P53 and promotes Cytochrome C releasing from chondrosome.
     Caspase 3 is stimulated and apoptosis happens.
引文
[1]Stein H,Mason DY,Gerdes J,et al.The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue:evidence that Reed-Stemberg cells and histiocytic malignancies are derived from activated lymphoid cells[J].Blood 1985;66(4):848-58.
    [2]Pulford K,Morris SW,Turturro F.Anaplastic lymphoma kinase proteins in growth control and cancer[J].J Cell Physiol 2004;199(3):330-58.
    [3]Bellezza G,Cavaliere A,Del Sordo R,et al.Inflammatory myofibroblastic tumor of the larynx with anaplastic lymphoma kinase(ALK) protein overexpression.A case report[J].Tumori 2006;92(5):449-51.
    [4]Chun YS,Wang L,Nascimento AG,et al.Pediatric inflammatory myofibroblastic tumor:anaplastic lymphoma kinase(ALK) expression and prognosis[J].Pediatr Blood Cancer 2005;45(6):796-801.
    [5]Chikatsu N,Kojima H,Suzukawa K,et al.ALK+,CD30-,CD20- large B-cell lymphoma containing anaplastic lymphoma kinase(ALK) fused to clathrin heavy chain gene (CLTC)[J].Mod Pathol 2003;16(8):828-32.
    [6]Costes-Martineau V,Delfour C,Obled S,et al.Anaplastic lymphoma kinase(ALK) protein expressing lymphoma after liver transplantation: case report and literature review[J]. J Clin Pathol 2002;55(11):868-71.
    [7] Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer[J]. Nat Rev Cancer 2008;8(1):l 1-23.
    [8] Turner SD, Alexander DR. What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis?[J]. Leukemia 2005; 19(7): 1128-34.
    [9] Bowden ET, Stoica GE, Wellstein A. Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase[J]. J Biol Chem 2002;277(39):35862-8.
    [10] Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino, 17-demethoxyge- ldanamycin[J]. Cancer Res 2002;62(5): 1559-66.
    [11] Schumacher JA, Crockett DK, Elenitoba-Johnson KS, et al. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells[J]. Proteomics 2007;7(15):2603-16.
    [12] Georgakis GV, Li Y, Rassidakis GZ, et al. The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression[J]. Exp Hematol 2006;34(12): 1670-9.
    [13] Wieser R, Schreiner U, Rieder H, et al. Interphase fluorescence in situ hybridization assay for the detection of rearrangements of the EVI-1 locus in chromosome band 3q26 in myeloid malignancies[J]. Haematologica 2003;88(1):25-30.
    [14] Alsop S, Sanger WG, Elenitoba-Johnson KS, et al. Chronic myeloid leukemia as a secondary malignancy after ALK-positive anaplastic large cell lymphoma[J]. Hum Pathol 2007;38(10):1576-80.
    [15] Akisik E, Bavbek S, Dalay N. CD44 variant exons in leukemia and lymphoma[J]. Pathol Oncol Res 2002;8(1):36-40.
    [16] Salesi N, Bossone G, Delia Longa G, et al. [A new drug in the therapy of chronic myeloid leukemia: ST1571][J]. Minerva Med 2003;94(2):71-6.
    [17] Jiang G, Yang F, Li M, et al. Imatinib (ST1571) provides only limited selectivity for CML cells and treatment might be complicated by silent BCR-ABL genes[J]. Cancer Biol Ther 2003;2(1):103-8.
    [18] Murgo A, Wood KF, Gravell AE, et al. Clinical trials referral resource. ST1571[J]. Oncology (Williston Park) 2001;15(7):881-2, 85-6.
    [19] Ren SY, Bolton E, Mohi MG, et al. Phosphatidylinositol 3-kinase p85{alpha} subunit-dependent interaction with BCR/ABL-related fusion tyrosine kinases: molecular mechanisms and biological consequences[J]. Mol Cell Biol 2005;25(18):8001-8.
    [20] Thompson MA, Stumph J, Henrickson SE, et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas[J]. Hum Pathol 2005;36(5): 494-504.
    [21] Kanavaros P, Bai M, Stefanaki K, et al. Immunohistochemical expression of the p53, mdm2, p21/Waf-l, Rb, pl6, Ki67, cyclin D1, cyclin A and cyclin B1 proteins and apoptotic index in T-cell lymphomas[J]. Histol Histopathol 2001;16(2):377-86.
    [22] Rassidakis GZ, Thomaides A, Wang S, et al. p53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma[J]. Leukemia 2005;19(9):1663-9.
    [23] Schneider C, Stohr D, Merz H, et al. Signal transduction in anaplastic large cell lymphoma cells (ALCL) mediated by the tumor necrosis factor receptor CD30[J]. Leuk Lymphoma 2004;45(5):1009-15.
    [24] Rink L, Slupianek A, Stoklosa T, et al. Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mrell-RAD50-Nbsl, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells[J]. Blood 2007; 110(2):651-60.
    [25] Turturro F, Frist AY, Arnold MD, et al. Comparison of the effects of recombinant adenovirus-mediated expression of wild-type p53 and p27Kipl on cell cycle and apoptosis in SUDHL-1 cells derived from anaplastic large cell lymphoma[J]. Leukemia 2001 ;15(8): 1225-31.
    [26] Berro Al, Perry GA, Agrawal DK. Increased expression and activation of CD30 induce apoptosis in human blood eosinophils[J]. J Immunol 2004; 173(3):2174-83.
    [27] Amin HM, McDonnell TJ, Ma Y, et al. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma[J]. Oncogene 2004;23(32):5426-34.
    [28] Chen C, Chang MC, Hsieh RK, et al. Activation of CD44 facilitates DNA repair in T-cell lymphoma but has differential effects on apoptosis induced by chemotherapeutic agents and ionizing radiation [J]. Leuk Lymphoma 2005;46(12): 1785-95.
    [29] Clarke LE, Bayerl MG, Bruggeman RD, et al. Death receptor apoptosis signaling mediated by FADD in CD30-positive lymphoproliferative disorders involving the skin[J]. Am J Surg Pathol 2005;29(4):452-9.
    [30] Park SS, Kim YN, Jeon YK, et al. Genistein-induced apoptosis via Akt signaling pathway in anaplastic large-cell lymphoma[J]. Cancer Chemother Pharmacol 2005;56(3):271-8.
    [31] Zhang W, McQueen T, Schober W, et al. Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation[J]. Leukemia 2005;19(l l):1977-84.
    [32] Ye K. Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis[J]. Cancer Biol Ther 2005;4(9):918-23.
    [33] Niu Q, Wang LP, Chen YL, et al. [Relationship between apoptosis of rat hippocampus cells induced by aluminum and the copy of the bcl-2 as well as bax mRNA][J]. Wei Sheng Yan Jiu 2005;34(6):671-3.
    [34] Oyarzo MP, Medeiros LJ, Atwell C, et al. c-FLIP confers resistance to FAS-mediated apoptosis in anaplastic large-cell lymphoma[J]. Blood 2006;107(6):2544-7.
    [35] Shi X, Franko B, Frantz C, et al. JSI-124 (cucurbitacin I) inhibits Janus kinase-3/signal transducer and activator of transcription-3 signalling, downregulates nucleophosmin-anaplastic lymphoma kinase (ALK), and induces apoptosis in ALK-positive anaplastic large cell lymphoma cells[J]. Br J Haematol 2006;135(1):26-32.
    [36] Staber PB, Noehammer C, Durkop H, et al. mRNA expression patterns indicate CD30 mediated activation of different apoptosis pathways in anaplastic large cell lymphoma but not in Hodgkin's lymphoma[J]. Leuk Res 2006;30(3):343-8.
    [37] Zhang QL, Niu PY, Shi YT, et al. [Role of Bcl-2 and Bax protein contents and their gene expression in Al-induced neurons apoptosis][J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2006;24(10):582-6.
    [38] Bonvini P, Zorzi E, Basso G, et al. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma[J]. Leukemia 2007;21(4):838-42.
    [39] Nowak D, Boehrer S, Hochmuth S, et al. Src kinase inhibitors induce apoptosis and mediate cell cycle arrest in lymphoma cells[J]. Anticancer Drugs 2007;18(9):981-95.
    [40] Rassidakis GZ, Sarris AH, Herling M, et al. Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage[J]. Am J Pathol 2001;159(2):527-35.
    [41] Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death[J]. Cancer Res 1999;59(7 Suppl):1693s-700s.
    [42] Rassidakis GZ, Jones D, Lai R, et al. BCL-2 family proteins in peripheral T-cell lymphomas: correlation with tumour apoptosis and proliferation[J]. J Pathol 2003;200(2):240-8.
    [43] Goteri G, Simonetti O, Rupoli S, et al. Differences in survivin location and Bcl-2 expression in CD30+ lymphoproliferative disorders of the skin compared with systemic anaplastic large cell lymphomas: an immunohistochemical study[J]. Br J Dermatol 2007;157(1):41-8.
    [44] Nomdedeu JF, Baiget M, Gaidano G, et al. p53 mutation in a case of blastic transformation of follicular lymphoma with double bcl-2 rearrangement (MBR and VCR)[J]. Leuk Lymphoma 1998;29(5-6):595-605.
    [45] Kapur S, Tiemann M, Menke MA, et al. The role of p53 and anaplastic lymphoma kinase genes in the progression of cutaneous CD30(+) lymphoproliferative diseases[J]. Indian J Med Res 2005;121(1):46-54.
    [46] Hongyo T, Hoshida Y, Nakatsuka S, et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan[J]. Oncol Rep 2005;13(2):265-71.
    [47] Shaminie J, Peh SC. Tan J. p53 alterations in sequential biopsies of Asian follicular lymphoma: a study of immunohistochemical staining pattern and gene mutations by PCR-SSCP in paraffin-embedded tissues[J]. Pathology 2005;37(1):39-44.
    [48] Tai YC, Tan JA, Peh SC. Higher frequency of p53 gene mutations in diffuse large B-cell lymphoma with MALT component[J]. Pathol Int 2004;54(11):811-8.
    [49] Hirose Y, Fukushima T, Masaki Y, et al. Epstein-Barr virus-associated composite lymphoma composed of peripheral T-cell lymphoma and an anaplastic variant of a diffuse large B-cell type of non-Hodgkin's lymphoma and strongly expressing p53 protein[J]. Int J Hematol 2004;79(3):260-5.
    [50] Kerbauy FR, Colleoni GW, Saad ST, et al. Detection and possible prognostic relevance of p53 gene mutations in diffuse large B-cell lymphoma. An analysis of 51 cases and review of the literature[J]. Leuk Lymphoma 2004;45(10):2071-8.
    [51] Hirose Y, Masaki Y, Shimoyama K, et al. Epstein-Barr virus-associated anaplastic large cell variant of diffuse large B-cell-type non-Hodgkin's lymphoma with concurrent p53 protein expression[J]. Int J Hematol 2003;77(5):499-502.
    [52] Villuendas R, Pezzella F, Garter K, et al. p21WAF1/CIP1 and MDM2 expression in non-Hodgkin's lymphoma and their relationship to p53 status: a p53+, MDM2-, p21-immunophenotype associated with missense p53 mutations[J]. J Pathol 1997;181(1):51-61.
    [53] Oyarzo MP, Drakos E, Atwell C, et al. Intrinsic apoptotic pathway in anaplastic large cell lymphoma[J]. Hum Pathol 2006;37(7):874-82.
    [54] Bartosova J, Kuzelova K, Pluskalova M, et al. UVA-activated 8-methoxypsoralen (PUVA) causes G2/M cell cycle arrest in Karpas 299 T-lymphoma cells[J]. J Photochem Photobiol B2006;85(1):39-48.
    [55] Mourali J, Benard A, Lourenco FC, et al. Anaplastic lymphoma kinase is a dependence receptor whose proapoptotic functions are activated by caspase cleavage[J]. Mol Cell Biol 2006;26(16):6209-22.
    [56] Ergin M, Denning MF, Izban KF, et al. Inhibition of tyrosine kinase activity induces caspase-dependent apoptosis in anaplastic large cell lymphoma with NPM-ALK (p80) fusion protein[J]. Exp Hematol 2001 ;29(9): 1082-90.
    [57] Drakos E, Rassidakis GZ, Lai R, et al. Caspase-3 activation in systemic anaplastic large-cell lymphoma[J]. Mod Pathol 2004; 17(1): 109-16.
    [1]Stein H,Mason DY,Gerdes J,et al.The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue:evidence that Reed-Steinberg cells and histiocytic malignancies are derived from activated lymphoid cells[J].Blood 1985;66(4):848-58.
    [2]Voena C,Conte C,Ambrogio C,et al.The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration[J].Cancer Res 2007;67(9):4278-86.
    [3] Li C, Takino H, Eimoto T, et al. Prognostic significance of NPM-ALK fusion transcript overexpression in ALK-positive anaplastic large-cell lymphoma[J]. Mod Pathol 2007;20(6):648-55.
    [4] Turner SD, Alexander DR. What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis?[J]. Leukemia 2005;19(7):1128-34.
    [5] Gu TL, Tothova Z, Scheijen B, et al. NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a[J]. Blood 2004;103(12):4622-9.
    [6] Awaya N, Mori S, Takeuchi H, et al. CD30 and the NPM-ALK fusion protein (p80) are differentially expressed between peripheral blood and bone marrow in primary small cell variant of anaplastic large cell lymphoma[J]. Am J Hematol 2002;69(3):200-4.
    [7] Mathew P, Sanger WG, Weisenburger DD, et al. Detection of the t(2;5)(p23;q35) and NPM-ALK fusion in non-Hodgkin's lymphoma by two-color fluorescence in situ hybridization[J]. Blood 1997;89(5):1678-85.
    [8] Mencia-Gutierrez E, Gutierrez-Diaz E, Salamanca J, et al. Cutaneous presentation on the eyelid of primary, systemic, CD30+, anaplastic lymphoma kinase (ALK)-negative, anaplastic large-cell lymphoma (ALCL)[J]. Int J Dermatol 2006;45(6):766-9.
    [9] Li R, Morris SW. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy[J]. Med Res Rev 2007.
    [10] ten Berge RL, Oudejans JJ, Ossenkoppele GJ, et al. ALK-negative systemic anaplastic large cell lymphoma: differential diagnostic and prognostic aspects--a review[J]. J Pathol 2003;200(1):4-15.
    [11] Chen CH, Chen SW, Shen WL, et al. Successful allogeneic stem cell transplantation for an adult with refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma[J]. Int J Hematol 2007;85(2): 105-7.
    [12] Li R, Xue L, Zhu T, et al. Design and synthesis of 5-aryl-pyridone-carboxamides as inhibitors of anaplastic lymphoma kinase[J]. J Med Chem 2006;49(3): 1006-15.
    [13] Piccaluga PP, Ascani S, Fraternali Orcioni G, et al. Anaplastic lymphoma kinase expression as a marker of malignancy. Application to a case of anaplastic large cell lymphoma with huge granulomatous reaction[J]. Haematologica 2000;85(9):978-81.
    [14] ten Berge RL, Meijer CJ, Dukers DF, et al. Expression levels of apoptosis-related proteins predict clinical outcome in anaplastic large cell lymphoma[J]. Blood 2002;99(12):4540-6.
    [15] Schlette EJ, Medeiros LJ, Goy A, et al. Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma[J]. J Clin Oncol 2004;22(9): 1682-8.
    [16] Alsop S, Sanger WG, Elenitoba-Johnson KS, et al. Chronic myeloid leukemia as a secondary malignancy after ALK-positive anaplastic large cell lymphoma[J]. Hum Pathol 2007;38(10):1576-80.
    [17] Onciu M, Behm FG, Raimondi SC, et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement is a clinicopathologic entity with an unfavorable prognosis. Report of three cases and review of the literature[J]. Am J Clin Pathol 2003;120(4):617-25.
    [18] Bayle C, Charpentier A, Duchayne E, et al. Leukaemic presentation of small cell variant anaplastic large cell lymphoma: report of four cases[J]. Br J Haematol 1999;104(4):680-8.
    [19] Zinzani PL, Bendandi M, Martelli M, et al. Anaplastic large-cell lymphoma: clinical and prognostic evaluation of 90 adult patients[J]. J Clin Oncol 1996;14(3):955-62.
    [20] Romaguera JE, Manning JT, Jr., Tornos CS, et al. Long-term prognostic importance of primary Ki-1 (CD30) antigen expression and anaplastic morphology in adult patients with diffuse large-cell lymphoma[J]. Ann Oncol 1994;5(4):317-22.
    [21] Pileri SA, Pulford K, Mori S, et al. Frequent expression of the NPM-ALK chimeric fusion protein in anaplastic large-cell lymphoma, lympho-histiocytic type[J]. Am J Pathol 1997;150(4):1207-11.
    [22] Turturro F, Heineke HL, Drevyanko TF, et al. Adenovirus-p53-mediated gene therapy of anaplastic large cell lymphoma with t(2;5) in a nude mouse model[J]. Gene Ther 2000;7(11):930-3.
    [23] Dong LF, Zhang YJ, Liu JS, et al. [Anti-tumor effect of monkshood polysaccharide with adriamycin long circulating temperature-sensitive liposome and its mechanism][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2006;22(4):458-62.
    [24] Rassidakis GZ, Jones D, Lai R, et al. BCL-2 family proteins in peripheral T-cell lymphomas: correlation with tumour apoptosis and proliferation[J]. J Pathol 2003;200(2):240-8.
    [25] Hirsch B, Hummel M, Bentink S, et al. CD30-induced signaling is absent in Hodgkin's cells but present in anaplastic large cell lymphoma cells[J]. Am J Pathol 2008;172(2):510-20.
    [26] Heuck F, Ellermann J, Borchmann P, et al. Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines[J]. J Immunother (1997) 2004;27(5):347-53.
    [27] Nakagawa A, Nakamura S, Ito M, et al. CD30-positive anaplastic large cell lymphoma in childhood: expression of p80npm/alk and absence of Epstein-Barr virus[J]. Mod Pathol 1997;10(3):210-5.
    [28] Turturro F, Arnold MD, Frist AY, et al. Effects of adenovirus-mediated expression of p27Kipl, p21Wafl and p16INK4A in cell lines derived from t(2;5) anaplastic large cell lymphoma and Hodgkin's disease[J]. Leuk Lymphoma 2002;43(6): 1323-8.
    [29] Turturro F, Seth P, Link CJ, Jr. In vitro adenoviral vector p53-mediated transduction and killing correlates with expression of coxsackie-adenovirus receptor and alpha(nu)beta5 integrin in SUDHL-1 cells derived from anaplastic large-cell lymphoma[J]. Clin Cancer Res 2000;6(1):185-92.
    [30] Oyarzo MP, Drakos E, Atwell C, et al. Intrinsic apoptotic pathway in anaplastic large cell lymphoma[J]. Hum Pathol 2006;37(7):874-82.
    [31] Dong LF, Mei HS, Song SX, et al. [Synergistic role between rhIL-2 and adriamycin long circulating temperature-sensitive liposome in targeting therapy on tumor][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2005;21(3):296-300.
    [32] Greer JP, Kinney MC, Loughran TP, Jr. T cell and NK cell lymphoproliferative disorders[J]. Hematology Am Soc Hematol Educ Program 2001:259-81.
    [33]Park SR,Baek JY,Kim DW,et al.Primary systemic anaplastic large cell lymphoma in a single Korean institution:clinical characteristics and treatment outcome[J].J Korean Med Sci 2006;21(4):633-8.
    [34]Corradini P,Tarella C,Zallio F,et al.Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation[J].Leukemia 2006;20(9):1533-8.
    [35]Heuck F,Ellermann J,Borchmann P,et al.Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines[J].J Immunother 2004;27(5):347-53.
    [36]Shiota M,Nakamura S,Ichinohasama R,et al.Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK:a distinct clinicopathologic entity[J].Blood 1995;86(5):1954-60.
    [37]Nasr MR,Laver JH,Chang M,et al.Expression of anaplastic lymphoma kinase,tyrosine-phosphorylated STAT3,and associated factors in pediatric anaplastic large cell lymphoma:A report from the children's oncology group[J].Am J Clin Pathol 2007;127(5):770-8.
    [38]Li JF,Li GD,Liu WP,et al.[Expression of anaplastic lymphoma kinase and survivin proteins in anaplastic large cell lymphoma and its significance][J].Zhonghua Bing Li Xue Za Zhi 2006;35(4):213-7.
    [39]Chun YS,Wang L,Nascimento AG,et al.Pediatric inflammatory myofibroblastic tumor:anaplastic lymphoma kinase(ALK) expression and prognosis[J].Pediatr Blood Cancer 2005;45(6):796-801.
    [40]Kutok JL,Aster JC.Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma[J].J Clin Oncol 2002;20(17):3691-702.
    [41]Hebeda KM,MacKenzie MA,van Krieken JH.A case of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma presenting with spontaneous splenic rupture:an extremely unusual presentation[J].Virchows Arch 2000;437(4):459-64.
    [42]Pulford K,Falini B,Banham AH,et al.Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma[J].Blood 2000;96(4):1605-7.
    [43]Pulford K,Lamant L,Morris SW,et al.Detection of anaplastic lymphoma kinase(ALK) and nucleolar protein nucleophosmin(NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1[J].Blood 1997;89(4):1394-404.
    [44]Rassidakis GZ,Sarris AH,Herling M,et al.Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage[J].Am J Pathol 2001;159(2):527-35.
    [45]Suzuki R,Kagami Y,Takeuchi K,et al.Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype[J].Blood 2000;96(9):2993-3000.
    [46]许良中杨.免疫组织化学反应结果的判断标准[J].中国癌症杂志 1996;6(4):229-31.
    [47] Drakos E, Rassidakis GZ, Lai R, et al. Caspase-3 activation in systemic anaplastic large-cell lymphoma[J]. Mod Pathol 2004;17(1): 109-16.
    [48] Wang WY, Ma ZG, Li GD, et al. [Diffuse large B-cell lymphoma with expression of anaplastic lymphoma kinase protein: clinicopathologic and immunohistochemical study of 5 cases][J]. Zhonghua Bing Li Xue Za Zhi 2006;35(9):529-34.
    [49] Kapur S, Tiemann M, Menke MA, et al. The role of p53 and anaplastic lymphoma kinase genes in the progression of cutaneous CD30(+) lymphoproliferative diseases[J]. Indian J Med Res 2005;121(1):46-54.
    [50] Pulford K, Morris SW, Mason DY. Anaplastic lymphoma kinase proteins and malignancy[J]. Curr Opin Hematol 2001 ;8(4):231-6.
    [51] Cheuk W, Chan JK. Timely topic: anaplastic lymphoma kinase (ALK) spreads its influence[J]. Pathology 2001 ;33(1):7-12.
    [52] Goteri G, Simonetti O, Rupoli S, et al. Differences in survivin location and Bcl-2 expression in CD30+ lymphoproliferative disorders of the skin compared with systemic anaplastic large cell lymphomas: an immunohistochemical study[J]. Br J Dermatol 2007;157(1):41-8.
    [53] Rassidakis GZ, Claret FX, Lai R, et al. Expression of p27(Kip1) and c-Jun activation binding protein 1 are inversely correlated in systemic anaplastic large cell lymphoma[J]. Clin Cancer Res 2003;9(3):1121-8.
    [54] Ait-Tahar K, Barnardo MC, Pulford K. CD4 T-helper responses to the anaplastic lymphoma kinase (ALK) protein in patients with ALK-positive anaplastic large-cell lymphoma[J]. Cancer Res 2007;67(5): 1898-901.
    [55] Gascoyne RD, Aoun P, Wu D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma[J]. Blood 1999;93(11):3913-21.
    [56] Shiota M, Mori S. The clinicopathological features of anaplastic large cell lymphomas expressing p80NPM/ALK[J]. Leuk Lymphoma 1996;23(l-2):25-32.
    [57] Muller J, Csoka M, Jakab Z, et al. Treatment of pediatric non-Hodgkin lymphoma in Hungary: 15 years experience with NHL-BFM 90 and 95 protocols[J]. Pediatr Blood Cancer 2008;50(3):633-5.
    [1]Shiota M,Nakamura S,Ichinohasama R,et al.Anaplastic large cell lymphomas expressing the novel chimeric protein pSONPM/ALK:a distinct clinicopathologic entity[J].Blood 1995;86(5):1954-60.
    [2]Nasr MR,Laver JH,Chang M,et al.Expression of anaplastic lymphoma kinase,tyrosine-phosphorylated STAT3,and associated factors in pediatric anaplastic large cell lymphoma:A report from the children's oncology group[J].Am J Clin Pathol 2007;127(5):770-8.
    [3]Li JF,Li GD,Liu WP,et al.[Expression of anaplastic lymphoma kinase and survivin proteins in anaplastic large cell lymphoma and its significance][J].Zhonghua Bing Li Xue Za Zhi 2006;35(4):213-7.
    [4]Chun YS,Wang L,Nascimento AG,et al.Pediatric inflammatory myofibroblastic tumor: anaplastic lymphoma kinase (ALK) expression and prognosis[J]. Pediatr Blood Cancer 2005;45(6):796-801.
    [5] Kutok JL, Aster JC. Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma[J]. J Clin Oncol 2002;20(17):3691-702.
    [6] Hebeda KM, MacKenzie MA, van Krieken JH. A case of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma presenting with spontaneous splenic rupture: an extremely unusual presentation[J]. Virchows Arch 2000;437(4):459-64.
    [7] Pulford K, Falini B, Banham AH, et al. Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma[J]. Blood 2000;96(4): 1605-7.
    [8] Pulford K, Lamant L, Morris SW, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1[J]. Blood 1997;89(4): 1394-404.
    [9] Rassidakis GZ, Sarris AH, Herling M, et al. Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage[J]. Am J Pathol 2001;159(2):527-35.
    [10] Li C, Takino H, Eimoto T, et al. Prognostic significance of NPM-ALK fusion transcript overexpression in ALK-positive anaplastic large-cell lymphoma[J]. Mod Pathol 2007;20(6):648-55.
    [11] Suzuki R, Kagami Y, Takeuchi K, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype[J]. Blood 2000;96(9):2993-3000.
    [12] Ma Z, Chang MJ, Shah R, et al. Brg-1 is required for maximal transcription of the human matrix metalloproteinase-2 gene[J]. J Biol Chem 2004;279(44):46326-34.
    [13] Hansen HP, Dietrich S, Kisseleva T, et al. CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme[J]. J Immunol 2000;165(12):6703-9.
    [14] Watanabe M, Ogawa Y, Itoh K, et al. Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma[J]. Lab Invest 2008;88(1):48-57.
    [15] Menzel C, Schirrmann T, Konthur Z, et al. Human antibody RNase fusion protein targeting CD30+ lymphomas[J]. Blood 2008;111(7):3830-7.
    [16] Hirsch B, Hummel M, Bentink S, et al. CD30-induced signaling is absent in Hodgkin's cells but present in anaplastic large cell lymphoma cells[J]. Am J Pathol 2008; 172(2):510-20.
    [17] Wright CW, Rumble JM, Duckett CS. CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells[J]. J Biol Chem 2007;282(14): 10252-62.
    [18] Krysov SV, Rowley TF, Al-Shamkhani A. Inhibition of p38 mitogen-activated protein kinase unmasks a CD30-triggered apoptotic pathway in anaplastic large cell lymphoma cells[J]. Mol Cancer Ther 2007;6(2):703-11.
    [19] Galkin AV, Melnick JS, Kim S, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK[J]. Proc Natl Acad Sci U S A2007;104(1):270-5.
    [20] Drakos E, Leventaki V, Schlette EJ, et al. c-Jun expression and activation are restricted to CD30+ lymphoproliferative disorders[J]. Am J Surg Pathol 2007;31(3):447-53.
    [21] Damm-Welk C, Schieferstein J, Schwahn S, et al. Flow cytometric detection of circulating tumour cells in nucleophosmin/anaplastic lymphoma kinase-positive anaplastic large cell lymphoma: comparison with quantitative polymerase chain reaction[J]. Br J Haematol 2007;138(4):459-66.
    [22] Staber PB, Noehammer C, Durkop H, et al. mRNA expression patterns indicate CD30 mediated activation of different apoptosis pathways in anaplastic large cell lymphoma but not in Hodgkin's lymphoma[J]. Leuk Res 2006;30(3):343-8.
    [23] Hsu FY, Johnston PB, Burke KA, et al. The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin-anaplastic lymphoma kinase-mediated JunB level in a cell type-specific manner[J]. Cancer Res 2006;66(18):9002-8.
    [24] Watanabe M, Sasaki M, Itoh K, et al. JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and reed-sternberg cells of Hodgkin lymphoma[J]. Cancer Res 2005;65(17):7628-34.
    [25] Nishioka C, Takemoto S, Kataoka S, et al. Serum level of soluble CD30 correlates with the aggressiveness of adult T-cell leukemia/lymphoma[J]. Cancer Sci 2005;96(11):810-5.
    [26] Nishikori M, Ohno H, Haga H, et al. Stimulation of CD30 in anaplastic large cell lymphoma leads to production of nuclear factor-kappaB p52, which is associated with hyperphosphorylated Bcl-3[J]. Cancer Sci 2005;96(8):487-97.
    [27] Nagata S, Ise T, Onda M, et al. Cell membrane-specific epitopes on CD30: Potentially superior targets for immunotherapy[J]. Proc Natl Acad Sci U S A 2005;102(22):7946-51.
    [28] Clarke LE, Bayerl MG, Bruggeman RD, et al. Death receptor apoptosis signaling mediated by FADD in CD30-positive lymphoproliferative disorders involving the skin[J]. Am J Surg Pathol 2005;29(4):452-9.
    [29] Schneider C, Stohr D, Merz H, et al. Signal transduction in anaplastic large cell lymphoma cells (ALCL) mediated by the tumor necrosis factor receptor CD30[J]. Leuk Lymphoma 2004;45(5): 1009-15.
    [30] Hubinger G, Schneider C, Stohr D, et al. CD30-induced up-regulation of the inhibitor of apoptosis genes cIAPl and cIAP2 in anaplastic large cell lymphoma cells[J]. Exp Hematol 2004;32(4):382-9.
    [31] Heuck F, Ellermann J, Borchmann P, et al. Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines[J]. J Immunother 2004;27(5):347-53.
    [32] Heuck F, Ellermann J, Borchmann P, et al. Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines[J]. J Immunother (1997) 2004;27(5):347-53.
    [33] Hansen HP, Recke A, Reineke U, et al. The ectodomain shedding of CD30 is specifically regulated by peptide motifs in its cysteine-rich domains 2 and 5[J]. Faseb J 2004;18(7):893-5.
    [34] Berro AI, Perry GA, Agrawal DK. Increased expression and activation of CD30 induce apoptosis in human blood eosinophils[J]. J Immunol 2004; 173(3):2174-83.
    [35] Willers J, Dummer R, Kempf W, et al. Proliferation of CD30+ T-helper 2 lymphoma cells can be inhibited by CD30 receptor cross-linking with recombinant CD30 ligand[J]. Clin Cancer Res 2003 ;9(7):2744-54.
    [36] Nishikori M, Maesako Y, Ueda C, et al. High-level expression of BCL3 differentiatest(2;5)(p23;q35)-positive anaplastic large cell lymphoma from Hodgkin disease[J]. Blood 2003;101(7):2789-96.
    [37] Jiang H, Hou J, Fu WJ, et al. [Establishment of a human CD30+ anaplastic large cell lymphoma cell line and its biological characteristics][J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2003;11(5):490-4.
    [38] Durkop H, Hirsch B, Hahn C, et al. Differential expression and function of A20 and TRAF1 in Hodgkin lymphoma and anaplastic large cell lymphoma and their induction by CD30 stimulation[J]. J Pathol 2003;200(2):229-39.
    [39] Chikatsu N, Kojima H, Suzukawa K, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC)[J]. Mod Pathol 2003;16(8):828-32.
    [40] Schneider C, Hubinger G. Pleiotropic signal transduction mediated by human CD30: a member of the tumor necrosis factor receptor (TNFR) family[J]. Leuk Lymphoma 2002;43(7): 1355-66.
    [41] Hansen HP, Matthey B, Barth S, et al. Inhibition of metalloproteinases enhances the internalization of anti-CD30 antibody Ki-3 and the cytotoxic activity of Ki-3 immunotoxin[J]. Int J Cancer 2002;98(2):210-5.
    [42] Akamatsu M, Takeshita M, Ohshima K, et al. Analysis of adhesion molecules in Ki-1 anaplastic large-cell lymphoma[J]. Virchows Arch 1994;425(1):33-9.
    [43] Chen C, Chang MC, Hsieh RK, et al. Activation of CD44 facilitates DNA repair in T-cell lymphoma but has differential effects on apoptosis induced by chemotherapeutic agents and ionizing radiation[J]. Leuk Lymphoma 2005;46(12):1785-95.
    [44] Avin E, Haimovich J, Hollander N. Anti-idiotype x anti-CD44 bispecific antibodies inhibit invasion of lymphoid organs by B cell lymphoma[J]. J Immunol 2004;173(7):4736-43.
    [45] Li L, Yoon SO, Fu DD, et al. Novel follicular dendritic cell molecule, 8D6, collaborates with CD44 in supporting lymphomagenesis by a Burkitt lymphoma cell line, L3055[J]. Blood 2004;104(3):815-21.
    [46] Tzankov A, Pehrs AC, Zimpfer A, et al. Prognostic significance of CD44 expression in diffuse large B cell lymphoma of activated and germinal centre B cell-like types: a tissue microarray analysis of 90 cases[J]. J Clin Pathol 2003;56(10):747-52.
    [47] Akisik E, Bavbek S, Dalay N. CD44 variant exons in leukemia and lymphoma[J]. Pathol Oncol Res 2002;8(1):36-40.
    [48] Li T, Liu D, Zhang F. [Expression and significance of CD44 and angiogenic growth factor in nasal NK/T cells lymphoma][J]. Zhonghua Yi Xue Za Zhi 2001 ;81(13):776-8.
    [49] Niitsu N, Iijima K. High serum soluble CD44 is correlated with a poor outcome of aggressive non-Hodgkin's lymphoma[J]. Leuk Res 2002;26(3):241-8.
    [50] Wallach-Dayan SB, Grabovsky V, Moll J, et al. CD44-dependent lymphoma cell dissemination: a cell surface CD44 variant, rather than standard CD44, supports in vitro lymphoma cell rolling on hyaluronic acid substrate and its in vivo accumulation in the peripheral lymph nodes[J]. J Cell Sci 2001;114(Pt 19):3463-77.
    [51] Gee K, Kozlowski M, Kryworuchko M, et al. Differential effect of IL-4 and IL-13 on CD44 expression in the Burkitt's lymphoma B cell line BL30/B95-8 and in Epstein-Barr virus (EBV) transformed human B cells: loss of IL-13 receptors on Burkitt's lymphoma B cells[J], CellImmunol 2001 ;211(2): 131-42.
    [52] Tacyildiz N, Cavdar AO, Yavuz G, et al. Serum levels and differential expression of CD44 in childhood leukemia and malignant lymphoma: correlation with prognostic criteria and survival[J]. Pediatr Int 2001;43(4):354-60.
    [53] Fukuda Y. Clinical significance of serum CD44 measurement in malignant lymphoma[J]. Kurume Med J 2001;48(1):65-9.
    [54] Li W, Li Y, Han Y. [The expression of CD44, PCNA, vWF: Ag in non-Hodgkin's lymphoma and its relationship with the grade of malignancy][J]. Zhonghua Xue Ye Xue Za Zhi 1998;19(11):569-72.
    [55] Iczkowski KA, Han AC, Edelson MI, et al. Primary, localized vulvar B-cell lymphomaexpressing CD44 variant 6 but not cadherins. A case report[J]. J Reprod Med 2000;45(10):853-6.
    [56] Maenpaa H, Ristamaki R, Virtamo J, et al. Serum CD44 levels preceding the diagnosis of non-Hodgkin's lymphoma[J]. Leuk Lymphoma 2000;37(5-6):585-92.
    [57] Beksac M, Arat M, Akan H, et al. Circulating CD44 and intercellular adhesion molecule-1 levels in low grade non-hodgkin lymphoma and B-cell chronic lymphocytic leukemia patients during interferon-alpha-2a treatment[J]. Cancer 2000;89(7): 1474-81.
    [58] Sasaki K, Niitsu N. Elevated serum levels of soluble CD44 variant 6 are correlated with shorter survival in aggressive non-Hodgkin's lymphoma[J]. Eur J Haematol 2000;65(3): 195-202.
    [59] Wallach SB, Friedmann A, Naor D. The CD44 receptor of the mouse LB T-cell lymphoma: analysis of the isoform repertoire and ligand binding properties by reverse-transcriptase polymerase chain reaction and antisense oligonucleotides[J]. Cancer Detect Prev 2000;24(1):33-45.
    [60] Rochman M, Moll J, Herrlich P, et al. The CD44 receptor of lymphoma cells: structure-function relationships and mechanism of activation[J]. Cell Adhes Commun 2000;7(4):331-47.
    [61] Harada N, Mizoi T, Kinouchi M, et al. Introduction of antisense CD44S CDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells[J]. Int J Cancer 2001;91(1):67-75.
    [62] Jones M, Tussey L, Athanasou N, et al. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action[J]. J Biol Chem 2000,275(11):7964-74.
    [63] Bartolazzi A, Jackson D, Bennett K, et al. Regulation of growth and dissemination of a human lymphoma by CD44 splice variants[J]. J Cell Sci 1995;108 ( Pt 4):1723-33.
    [64] Sy MS, Guo YJ, Stamenkovic I. Inhibition of tumor growth in vivo with a soluble CD44-immunoglobulin fusion protein[J]. J Exp Med 1992;176(2):623-7.
    [65] Horst E, Meijer CJ, Radaszkiewicz T, et al. Adhesion molecules in the prognosis of diffuse large-cell lymphoma: expression of a lymphocyte homing receptor (CD44), LFA-1 (CD11a/18), and ICAM-1 (CD54)[J]. Leukemia 1990;4(8):595-9.
    [66] Kapur S, Tiemann M, Menke MA, et al. The role of p53 and anaplastic lymphoma kinase genes in the progression of cutaneous CD30(+) lymphoproliferative diseases[J]. Indian J Med Res 2005;121(1):46-54.
    [67] Hongyo T, Hoshida Y, Nakatsuka S, et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan[J]. Oncol Rep 2005;13(2):265-71.
    [68] Rassidakis GZ, Thomaides A, Wang S, et al. p53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma[J]. Leukemia 2005;19(9): 1663-9.
    [69] Shaminie J, Peh SC, Tan J. p53 alterations in sequential biopsies of Asian follicular lymphoma: a study of immunohistochemical staining pattern and gene mutations by PCR-SSCP in paraffin-embedded tissues[J]. Pathology 2005;37(1):39-44.
    [70] Tai YC, Tan JA, Peh SC. Higher frequency of p53 gene mutations in diffuse large B-cell lymphoma with MALT component[J]. Pathol Int 2004:54(11):811-8.
    [71] Hirose Y, Fukushima T, Masaki Y, et al. Epstein-Barr virus-associated composite lymphoma composed of peripheral T-cell lymphoma and an anaplastic variant of a diffuse large B-cell type of non-Hodgkin's lymphoma and strongly expressing p53 protein[J]. Int J Hematol 2004;79(3):260-5.
    [72] Kerbauy FR, Colleoni GW, Saad ST, et al. Detection and possible prognostic relevance of p53 gene mutations in diffuse large B-cell lymphoma. An analysis of 51 cases and review of the literature[J]. Leuk Lymphoma 2004;45(10):2071-8.
    [73] Hirose Y, Masaki Y, Shimoyama K, et al. Epstein-Barr virus-associated anaplastic large cell variant of diffuse large B-cell-type non-Hodgkin's lymphoma with concurrent p53 protein expression[J]. Int J Hematol 2003;77(5):499-502.
    [74] Kanavaros P, Bai M, Stefanaki K, et al. Immunohistochemical expression of the p53, mdm2, p21/Waf-1, Rb, p16, Ki67, cyclin D1, cyclin A and cyclin B1 proteins and apoptotic index in T-cell lymphomas[J]. Histol Histopathol 2001;16(2):377-86.
    [75] Villuendas R, Pezzella F, Gatter K, et al. p21 WAF1/CIP1 and MDM2 expression in non-Hodgkin's lymphoma and their relationship to p53 status: a p53+, MDM2-, p21-immunophenotype associated with missense p53 mutations[J]. J Pathol 1997;181(1):51-61.
    
    [76] Bircan S, Inamdar KV, Rassidakis GZ, et al. nm23-Hl expression in non-Hodgkin and Hodgkin lymphomas[J]. Appl Immunohistochem Mol Morphol 2008;16(3):207-14.
    [77]Huang HQ,Pan ZH,Lin XB,et al.[Expression and clinical significance of nm23-H1 and MUC-1 in peripheral T-cell lymphoma][J].Ai Zheng 2006;25(12):1517-23.
    [78]Lee JH,Cho SJ,Zhang X,et al.nm23-H1 protein expression and gene mutation in 150patients with non-Hodgkin's lymphomas[J].J Korean Med Sci 2006;21(4):645-51.
    [79]Kaul R,Verma SC,Murakami M,et al.Epstein-Barr virus protein can upregulate cyclo-oxygenase-2 expression through association with the suppressor of metastasis Nm23-H1[J].J Virol 2006;80(3):1321-31.
    [80]Niitsu N,Nakamine H,Okamoto M,et al.Clinical significance of intracytoplasmic nm23-H1expression in diffuse large B-cell lymphoma[J].Clin Cancer Res 2004;10(7):2482-90.
    [81]Niitsu N,Nakamine H,Okamoto M,et al.Expression of nm23-H1 is associated with poor prognosis in peripheral T-cell lymphoma[J].Br J Haematol 2003;123(4):621-30.
    [82]Okabe-Kado J,Kasukabe T.Physiological and pathological relevance of extracellular NM23/NDP kinases[J].J Bioenerg Biomembr 2003;35(1):89-93.
    [83]Li HY,Liu JS,Wang YF.[The prognostic relation of nm23-H1/NDPK-A with leukemia and lymphoma][J].Sheng Li Ke Xue Jin Zhan 2003;34(1):74-7.
    [84]Niitsu N,Okamoto M,Honma Y,et al.Serum levels of the nm23-H1 protein and their clinical implication in extranodal NK/T-cell lymphoma[J].Leukemia 2003;17(5):987-90.
    [85]Niitsu N,Honma Y,Iijima K,et al.Clinical significance of nm23-H1 proteins expressed on cell surface in non-Hodgkin's lymphoma[J].Leukemia 2003;17(1):196-202.
    [86]Okabe-Kado J.Serum nm23-H1 protein as a prognostic factor in hematological malignancies[J].Leuk Lymphoma 2002;43(4):859-67.
    [87]Niitsu N,Okamoto M,Okabe-Kado J,et al.Serum nm23-H1 protein as a prognostic factor for indolent non-Hodgkin's lymphoma[J].Leukemia 2001;15(5):832-9.
    [88]Magyarosy E,Sebestyen A,Timar J.Expression of metastasis associated proteins,CD44v6and NM23-H1,in pediatric acute lymphoblastic leukemia[J].Anticancer Res 2001;21(1B):819-23.
    [89]Subramanian C,Cotter MA,2nd,Robertson ES.Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1:a molecular link to cancer metastasis[J].Nat Med 2001;7(3):350-5.
    [90]Niitsu N,Okabe-Kado J,Okamoto M,et al.Serum nm23-H1 protein as a prognostic factor in aggressive non-Hodgkin lymphoma[J].Blood 2001;97(5):1202-10.
    [91]Niitsu N,Okabe-Kado J,Kasukabe T,et al.Prognostic implications of the differentiation inhibitory factor nm23-H1 protein in the plasma of aggressive non-Hodgkin's lymphoma[J].Blood 1999;94(10):3541-50.
    [92]Koomagi R,Sauerbrey A,Zintl F,et al.nm23-H1 protein expression in newly diagnosed and relapsed childhood acute lymphoblastic leukemia[J].Anticancer Res 1998;18(6A):4307-9.
    [93]Aryee DN,Simonitsch I,Mosberger I,et al.Variability of nm23-H1/NDPK-A expression in human lymphomas and its relation to tumour aggressiveness[J].Br J Cancer 1996;74(11):1693-8.
    [94]Caligo MA,Cipollini G,Petrini M,et al.Down regulation of NM23.H1,NM23.H2 and c-myc genes during differentiation induced by 1,25 dihydroxyvitamin D3[J]. Leuk Res 1996;20(2):161-7.
    [95] Chang BH, Stork L, Fan G. A unique case of adolescent CD56-negative extranodal NK/T-cell lymphoma, nasal type[J]. Pediatr Dev Pathol 2008;ll(1):50-4.
    [96] Dunphy CH, DeMello DE, Gale GB. Pediatric CD56+ anaplastic large cell lymphoma: a review of the literature[J]. Arch Pathol Lab Med 2006; 130(12): 1859-64.
    [97] Boudova L, Kazakov DV, Jindra P, et al. Primary cutaneous histiocyte and neutrophil-rich CD30+ and CD56+ anaplastic large-cell lymphoma with prominent angioinvasion and nerve involvement in the forehead and scalp of an immunocompetent woman[J]. J Cutan Pathol 2006;33(8):584-9.
    [98] Ng CS, Lo ST, Chan JK, et al. CD56+ putative natural killer cell lymphomas: production of cytolytic effectors and related proteins mediating tumor cell apoptosis?[J]. Hum Pathol 1997;28(11):1276-82.
    [99] Wasik MA, Sackstein R, Novick D, et al. Cutaneous CD56+ large T-cell lymphoma associated with high serum concentration of IL-2[J]. Hum Pathol 1996;27(7):738-44.
    [100] Dong LF, Mei HS, Song SX, et al. [Synergistic role between rhIL-2 and adriamycin long circulating temperature-sensitive liposome in targeting therapy on tumor][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2005;21(3):296-300.
    [101] Lai R, Rassidakis GZ, Lin Q, et al. Jak3 activation is significantly associated with ALK expression in anaplastic large cell lymphoma[J]. Hum Pathol 2005;36(9):939-44.
    [102] Muto A, Nakagawa A, Shimomura Y, et al. Antineoplastic agents for pediatric anaplastic large cell lymphoma: Vinblastine is the most effective in vitro[J]. Leuk Lymphoma 2005;46(10):1489-96.
    [103] Niu Q, Wang LP, Chen YL, et al. [Relationship between apoptosis of rat hippocampus cells induced by aluminum and the copy of the bcl-2 as well as bax mRNA][J]. Wei Sheng Yan Jiu 2005;34(6):671-3.
    [104] Park SS, Kim YN, Jeon YK, et al. Genistein-induced apoptosis via Akt signaling pathway in anaplastic large-cell lymphoma[J]. Cancer Chemother Pharmacol 2005;56(3):271-8.
    [105] Zhang W, McQueen T, Schober W, et al. Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation[J]. Leukemia 2005;19(l l):1977-84.
    [106] Bartosova J, Kuzelova K, Pluskalova M, et al. UVA-activated 8-methoxypsoralen (PUVA) causes G2/M cell cycle arrest in Karpas 299 T-lymphoma cells[J]. J Photochem Photobiol B 2006;85(1):39-48.
    [107] Dong LF, Zhang YJ, Liu JS, et al. [Anti-tumor effect of monkshood polysaccharide with adriamycin long circulating temperature-sensitive liposome and its mechanism][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2006;22(4):458-62.
    [108] Georgakis GV, Li Y, Rassidakis GZ, et al. The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression[J]. Exp Hematol 2006;34(12): 1670-9.
    [109] Han Y, Amin HM, Frantz C, et al. Restoration of shpl expression by 5-AZA-2'-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma[J]. Leukemia 2006;20(9): 1602-9.
    [110] Lankoff A, Banasik A, Duma A, et al. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes[J]. Toxicol Lett 2006;161(1):27-36.
    [111] Oyarzo MP, Drakos E, Atwell C, et al. Intrinsic apoptotic pathway in anaplastic large cell lymphoma[J]. Hum Pathol 2006;37(7):874-82.
    [112] Oyarzo MP, Medeiros LJ, Atwell C, et al. c-FLIP confers resistance to FAS-mediated apoptosis in anaplastic large-cell lymphoma[J]. Blood 2006; 107(6):2544-7.
    [113] Piva R, Chiarle R, Manazza AD, et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas[J]. Blood 2006;107(2):689-97.
    [114] Vega F, Medeiros LJ, Leventaki V, et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell Iymphoma[J]. Cancer Res 2006;66(13):6589-97.
    [115] Zhang QL, Niu PY, Shi YT, et al. [Role of Bcl-2 and Bax protein contents and their gene expression in Al-induced neurons apoptosis][J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2006;24(10):582-6.
    [116] Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma[J]. Mol Cancer Ther 2007;6(12):3314-22.
    [117] Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma[J]. Mol Cancer Ther 2007;6(12 Pt 1):3314-22.
    [118] Galietta A, Gunby RH, Redaelli S, et al. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma[J]. Blood 2007;110(7):2600-9.
    [119] Lin XB, Jiang WQ, Zhong XY, et al. [Expression and clinical significance of Mcl-1 in T-cell non-Hodgkin's lymphoma][J]. Ai Zheng 2007;26(4):435-9.
    [120] Hubinger G, Scheffrahn I, Muller E, et al. The tyrosine kinase NPM-ALK, associated with anaplastic large cell lymphoma, binds the intracellular domain of the surface receptor CD30 but is not activated by CD30 stimulation [J]. Exp Hematol 1999;27( 12): 1796-805.
    [121] Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK)[J]. Oncogene 2001;20(40):5623-37.
    [122] Bonvini P, Gastaldi T, Falini B, et al. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin[J]. Cancer Res 2002;62(5):1559-66.
    [123] Schumacher JA, Crockett DK, Elenitoba-Johnson KS, et al. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells[J]. Proteomics 2007;7(15):2603-16.
    [124] Shi X, Franko B, Frantz C, et al. JSI-124 (cucurbitacin I) inhibits Janus kinase-3/signal transducer and activator of transcription-3 signalling, downregulates nucleophosmin-anaplastic lymphoma kinase (ALK), and induces apoptosis in ALK-positive anaplastic large cell lymphoma cells[J]. Br J Haematol 2006;135(1):26-32.
    [125] Damm-Welk C, Busch K, Burkhardt B, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma[J]. Blood 2007;110(2):670-7.
    [126] Giuriato S, Faumont N, Bousquet E, et al. Development of a conditional bioluminescent transplant model for TPM3-ALK-induced tumorigenesis as a tool to validate ALK-dependent cancer targeted therapy[J]. Cancer Biol Ther 2007;6(8): 1318-23.
    [127] Mathivet T, Mazot P, Vigny M. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)?[J]. Cell Signal 2007;19(12):2434-43.
    [128] Shinmura K, Kageyama S, Tao H, et al. EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas[J]. Lung Cancer 2008.
    [129] Fujimoto J, Shiota M, Iwahara T, et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocationt(2;5)[J]. Proc Natl Acad Sci U S A 1996;93(9):4181-6.
    [130] Hoshida Y, Hongyo T, Jia X, et al. Analysis of p53, K-ras, c-kit, and beta-catenin gene mutations in sinonasal NK/T cell lymphoma in northeast district of China[J]. Cancer Sci 2003;94(3):297-301.
    [131] Klumb CE, de Resende LM, Tajara EH, et al. p53 gene analysis in childhood B non-Hodgkin's lymphoma[J]. Sao Paulo Med J 2001;119(6):212-5.
    [132] Gruszka-Westwood AM, Hamoudi RA, Matutes E, et al. p53 abnormalities in splenic lymphoma with villous lymphocytes[J]. Blood 2001;97(11):3552-8.
    [133] Chen Y, Xiang Z, Li H, et al. P53 gene mutations in non-Hodgkin's lymphoma[J]. J Tongji Med Univ 1999;19(1):27-30.
    [134] Chen PM, Chiou TJ, Hsieh RK, et al. p53 gene mutations and rearrangements in non-Hodgkin's lymphoma[J]. Cancer 1999;85(3):718-24.
    [135] Koga H, Zhang S, Ichikawa T, et al. Primary malignant lymphoma of the brain: demonstration of the p53 gene mutations by PCR-SSCP analysis and immunohistochemistry[J]. Noshuyo Byori 1994;11(2): 151-5.
    [1]Ergin M,Denning MF,Izban KF,et al.Inhibition of tyrosine kinase activity induces caspase-dependent apoptosis in anaplastic large cell lymphoma with NPM-ALK(p80) fusion protein[J].Exp Hematol 2001;29(9):1082-90.
    [2]Giuriato S,Faumont N,Bousquet E,et al.Development of a conditional bioluminescent transplant model for TPM3-ALK-induced tumorigenesis as a tool to validate ALK-dependent cancer targeted therapy[J]. Cancer Biol Ther 2007;6(8): 1318-23.
    [3] Turturro F, Arnold MD, Frist AY, et al. Model of inhibition of the NPM-ALK kinase activity by herbimycin A[J]. Clin Cancer Res 2002;8(1):240-5.
    [4] Fischer P, Nacheva E, Mason DY, et al. A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a high-grade non-Hodgkin's lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor beta-chain gene[J]. Blood 1988;72(1):234-40.
    [5] Hubinger G, Muller E, Scheffrahn I, et al. CD30-mediated cell cycle arrest associated with induced expression of p21(CIP1/WAF1) in the anaplastic large cell lymphoma cell line Karpas 299[J]. Oncogene 2001;20(5):590-8.
    [6] Lawrence B, Perez-Atayde A, Hibbard MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors[J]. Am J Pathol 2000;157(2):377-84.
    [7] Hu ZT, Zhu YY, Chen XJ. [Inhibitory effect of combined transfection of p53 and AS genes on K562 cell proliferation][J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007;15(6):1173-6.
    [8] Brusa G, Mancini M, Campanini F, et al. Tyrosine kinase inhibitor STI571 (Imatinib) cooperates with wild-type p53 on K562 cell line to enhance its proapoptotic effects[J]. Acta Haematol2005;114(3):150-4.
    [9] Sabatini N, Di Giacomo V, Rapino M, et al. JNK/p53 mediated cell death response in K562 exposed to etoposide-ionizing radiation combined treatment[J]. J Cell Biochem 2005;95(3):611-9.
    [10] Meech SJ, McGavran L, Odom LF, et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4~anaplastic lymphoma kinase gene fusion[J]. Blood 2001;98(4):1209-16.
    [11] ten Berge RL, de Bruin PC, Oudejans JJ, et al. ALK-negative anaplastic large-cell lymphoma demonstrates similar poor prognosis to peripheral T-cell lymphoma, unspecified[J]. Histopathology 2003;43(5):462-9.
    [12] Usuda J, Inomata M, Fukumoto H, et al. Restoration of p53 gene function in 12-O-tetradecanoylphorbor 13-acetate-resistant human leukemia K562/TPA cells[J]. Int J Oncol 2003;22(1):81-6.
    [13] Di Bacco AM, Cotter TG. p53 expression in K562 cells is associated with caspase-mediated cleavage of c-ABL and BCR-ABL protein kinases[J]. Br J Haematol 2002;117(3):588-97.
    [14] Cummings M, Siitonen T, Higginbottom K, et al. p53-mediated downregulation of Chkl abrogates the DNA damage-induced G2M checkpoint in K562 cells, resulting in increased apoptosis[J]. Br J Haematol 2002;116(2):421-8.
    [15] Kalinina EV, Saprin AN, Solomka VS, et al. [Role of the antioxidant system and redox-dependent regulation of transcription factors bcl-2 and p53 in forming resistance of human K562 erythroleukemia cells to doxorubicin][J]. Vopr Onkol 2001 ;47(5):595-600.
    [16] Nathanson S, Debray D, Delarue A, et al. Long-term survival after post-transplant lymphoproliferative disease in children[J]. Pediatr Nephrol 2002;17(8):668-72.
    [17] Chylicki K, Ehinger M, Svedberg H, et al. p53-mediated differentiation of the erythroleukemia cell line K562[J]. Cell Growth Differ 2000; 11(6):315-24.
    [18] Ceballos E, Delgado MD, Gutierrez P, et al. c-Myc antagonizes the effect of p53 on apoptosis and p21WAF1 transactivation in K562 leukemia cells[J]. Oncogene 2000; 19(18):2194-204.
    [19] Mahdi T, Alcalay D, Cognard C, et al. Rescue of K562 cells from MDM2-modulated p53-dependent apoptosis by growth factor-induced differentiation[J]. Biol Cell 1998;90(9):615-27.
    [20] Kremenetskaya OS, Logacheva NP, Baryshnikov AY, et al. Distinct effects of various p53 mutants on differentiation and viability of human K562 leukemia cells[J]. Oncol Res 1997;9(4): 155-66.
    [21] Kremenetskaia OS, Logacheva NP, Baryshnikov A, et al. [The effect of the tumor suppressor p53 and its mutant forms on the differentiation and viability of K562 leukemic cells][J]. Tsitologiia 1996;38(12):1280-93.
    [22] Magnelli L, Cinelli M, Chiarugi V. Phorbol esters attenuate the expression of p53 in cells treated with doxorubicin and protect TS-P53/K562 from apoptosis[J]. Biochem Biophys Res Commun 1995;215(2):641-5.
    [23] Ehinger M, Nilsson E, Persson AM, et al. Involvement of the tumor suppressor gene p53 in tumor necrosis factor-induced differentiation of the leukemic cell line K562[J]. Cell Growth Differ 1995;6(1):9-17.
    [24] Feinstein E, Gale RP, Reed J, et al. Expression of the normal p53 gene induces differentiation of K562 cells[J]. Oncogene 1992;7(9): 1853-7.
    [25] Campbell ML, Li W, Arlinghaus RB. P210 BCR-ABL is complexed to P160 BCR and ph-P53 proteins in K562 cells[J]. Oncogene 1990;5(5):773-6.
    [1]Li BS,Gu LJ,Luo CY,et al.The downregulation of asparagine synthetase expression can increase the sensitivity of cells resistant to 1-asparaginase[J].Leukemia 2006;20(12):2199-201.
    [2]Su N,Pan YX,Zhou M,et al.Correlation between asparaginase sensitivity and asparagine synthetase protein content, but not mRNA, in acute lymphoblastic leukemia cell lines[J]. Pediatr Blood Cancer 2008;50(2):274-9.
    [3] Luo CY, Li BS, Tie LJ, et al. [Single nucleotide polymorphism in the promoter region of asparagine synthetase and its impact on the gene expression] [J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007;15(2):283-7.
    [4] Iwamoto S, Mihara K, Downing JR, et al. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase[J]. J Clin Invest 2007; 117(4): 1049-57.
    [5] Estes DA, Lovato DM, Khawaja HM, et al. Genetic alterations determine chemotherapy resistance in childhood T-ALL: modelling in stage-specific cell lines and correlation with diagnostic patient samples[J]. Br J Haematol 2007;139(1):20-30.
    [6] Richards NG, Kilberg MS. Asparagine synthetase chemotherapy[J]. Annu Rev Biochem 2006;75:629-54.
    [7] Sakamoto E, Yamane T, Nakane T, et al. [Temporary effective treatment with L-asparaginase for a patient with refractory nasal NK/T-cell lymphoma][J]. Gan To Kagaku Ryoho 2005;32(12):1993-6.
    [8] MacDonald VS, Thamm DH, Kurzman ID, et al. Does L-asparaginase influence efficacy or toxicity when added to a standard CHOP protocol for dogs with lymphoma?[J]. J Vet Intern Med 2005;19(5):732-6.
    [9] Northrup NC, Rassnick KM, Snyder LA, et al. Neutropenia associated with vincristine and L-asparaginase induction chemotherapy for canine lymphoma[J]. J Vet Intern Med 2002;16(5):570-5.
    [10] Yong W, Zheng W, Zhang Y. [Clinical characteristics and treatment of midline nasal and nasal type NK/T cell lymphoma][J]. Zhonghua Yi Xue Za Zhi 2001 ;81(13):773-5.
    [11] Nagafuji K, Fujisaki T, Arima F, et al. L-asparaginase induced durable remission of relapsed nasal NK/T-cell lymphoma after autologous peripheral blood stem cell transplantation[J]. Int J Hematol 2001;74(4):447-50.
    [12] Yong W, Zhang Y, Zheng W. [The efficacy of L-asparaginase in the treatment of refractory midline peripheral T-cell lymphoma][J]. Zhonghua Xue Ye Xue Za Zhi 2000;21(l l):577-9.
    [13] Tubergen DG, Krailo MD, Meadows AT, et al. Comparison of treatment regimens for pediatric lymphoblastic non-Hodgkin's lymphoma: a Childrens Cancer Group study [J]. J Clin Oncol 1995;13(6):1368-76.
    [14] Gutierrez JA, Pan YX, Koroniak L, et al. An inhibitor of human asparagine synthetase suppresses proliferation of an L-asparaginase-resistant leukemia cell line[J]. Chem Biol 2006;13(12):1339-47.
    [15] Appel IM, den Boer ML, Meijerink JP, et al. Up-regulation of asparagine synthetase expression is not linked to the clinical response L-asparaginase in pediatric acute lymphoblastic leukemia[J]. Blood 2006;107(11):4244-9.
    [16] Akagi T, Yin D, Kawamata N, et al. Methylation analysis of asparagine synthetase gene in acute lymphoblastic leukemia cells[J]. Leukemia 2006;20(7): 1303-6.
    [17] Stams WA, den Boer ML, Holleman A, et al. Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia[J].Blood 2005;105(11):4223-5.
    [18]Stams WA,den Boer ML,Beverloo HB,et al.Upregulation of asparagine synthetase and cell cycle arrest in t(12;21)-positive ALL[J].Leukemia 2005;19(2):318-9;author reply 19-21.
    [19]Matsumoto Y,Nomura K,Kanda-Akano Y,et al.Successful treatment with Erwinia L-asparaginase for recurrent natural killer/T cell lymphoma[J].Leuk Lymphoma 2003;44(5):879-82.
    [20]Muller HJ,Boos J.Use of L-asparaginase in childhood ALL[J].Crit Rev Oncol Hematol 1998;28(2):97-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700